Supplementary materials

Table S1. The experimental bond lengths [Å] and angles [°] for **1-6**.

- **Table S2.** The comparison of the experimental and optimized bond lengths [Å] for three DFT method(B3LYP, BP86, PBE1PBE) combined with several basis sets.
- **Table S3**. The energy and molar absorption coefficients of experimental absorption bands and the electronic transitions calculated with the TDDFT method for 1.
- **Table S4.** The energy and molar absorption coefficients of experimental absorption bands and the electronictransitions calculated with the TDDFT method for **3**.
- Figure S1. The experimental and calculated (non-scaled) vibrational spectra of 1 and 3.
- Figure S2. ¹H NMR spectra of 1a and 3
- Figure S3. Difference in the bond distance Re–N_{imido} between calculated values and the crystallographic results obtained by employing B3LYP, BP86, PBE1PBE method for *trans*-(Cl,Cl)-[Re(*p*-NC₆H₄CH₃)Cl₂(py-2-COO)(PPh₃)] (a) and *cis*-(Cl,Cl)-[Re(*p*-NC₆H₄CH₃)Cl₂(py-2-COO)(PPh₃)] (b).
- **Figure S4.** The contours of natural bond orbitals (NBOs) between the rhenium and the *p*-tolylimido ligand for **1** (a) and **3** (b).

 Table S1.
 The experimental bond lengths [Å] and angles [°] for 1-6.

	1a (X = Cl)	1b (X = Cl)	2 (X = Br)	3 (X = CI)	4 (X = Br)	5 (X = CI)	6 (X = Br)
Bond lengths							
Re(1)-N(2)	1.708(6)	1.650(17)	1.708(11)	1.708(4)	1.717(3)	1.747(3)	1.746(4)
Re(1)-O(1)	2.035(6)	2.027(10)	2.076(9)	2.072(3)	2.057(3)	1.915(3)	1.900(3)
Re(1)-N(1)	2.156(8)	2.151(7)	2.124(10)	2.110(3)	2.113(4)		
Re(1)-X(1)	2.389(2)	2.391(3)	2.5401(16)	2.3571(11)	2.5120(6)	2.4550(10)	2.6052(7)
Re(1)-X(2)	2.420(3)	2.405(3)	2.5497(14)	2.3928(12)	2.5490(6)	2.4006(9)	2.5490(7)
Re(1)-P(1)	2.433(2)	2.450(2)	2.450(3)	2.4398(11)	2.4444(11)	2.4936(10)	2.5050(13)
Re(1)-P(2)						2.4979(11)	2.5112(13)
Bond angles							
N(2)-Re(1)-O(1)	172.1(3)	172.2(5)	172.2(5)	168.39(12)	168.39(13)	172.20(12)	171.23(19)
N(2)-Re(1)-N(1)	100.5(3)	96.0(5)	96.6(5)	96.36(14)	94.76(15)		
O(1)-Re(1)-N(1)	75.6(3)	76.7(3)	75.6(3)	75.66(11)	75.45(13)		
N(2)-Re(1)-X(1)	101.1(2)	98.0(4)	94.8(3)	98.65(11)	99.49(12)	89.18(9)	87.88(16)
O(1)-Re(1)-X(1)	85.8(2)	84.3(2)	84.1(2)	90.28(7)	90.76(8)	83.07(8)	84.09 (12)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2014

N(1)-Re(1)-X(1)	88.2(2)	85.7(2)	86.7(3)	163.91(9)	165.23(10)		
N(2)-Re(1)-X(2)	91.3(2)	94.6(4)	96.5(4)	102.73(12)	98.95(12)	101.94(9)	100.44(16)
O(1)-Re(1)-X(2)	81.5(2)	82.5(2)	83.7(2)	84.84(8)	86.37(8)	85.82(8)	87.84(12)
N(1)-Re(1)-X(2)	84.1(2)	86.8(2)	84.6(3)	82.79(9)	83.80(9)		
X(1)-Re(1)-X(2)	166.47(9)	165.95(10)	166.45(5)	88.27(4)	90.14(2)	168.87(4)	170.79(2)
N(2)-Re(1)-P(1)	96.9(2)	92.9(5)	93.1(4)	93.25(12)	93.98(12)	90.58(10)	91.21(15)
O(1)-Re(1)-P(1)	87.14(18)	94.3(3)	94.6(2)	79.37(8)	80.80(9)	89.23(8)	86.73(10)
N(1)-Re(1)-P(1)	162.6(2)	170.7(2)	169.9(3)	95.59(9)	94.51(10)		
X(1)-Re(1)-P(1)	88.53(8)	95.72(12)	89.82(9)	89.33(4)	88.38(3)	94.93(4)	98.60(4)
X(2)-Re(1)-P(1)	95.47(10)	89.83(9)	96.98(10)	164.02(4)	167.06(3)	85.59(3)	85.32(4)
C(25)-N(2)-Re(1)	167.9(6)	171.9(10)	173.1(10)	174.4(3)	175.1(3)		
O(1)-Re(1)-P(2)						91.19(8)	87.00(10)
N(2)-Re(1)-P(2)						89.44(10)	96.03(15)
P(1)-Re(1)-P(2)						176.80(3)	171.45(4)
P(2)-Re(1)-X(2)						91.27(3)	88.64(4)
P(2)-Re(1)-X(1)						88.27(4)	86.52(4)
C(37)-N(2)-Re(1)						161.5(3)	161.1(4)

Table S2. The comparison of the experimental and optimized bond lengths [Å] for three DFT methods (B3LYP, B3LYP^d, BP86, PBE1PBE) combined with several basis sets.

1														
		B3LYP				B3LYP ^d	BP86			PBE1PBE				
Bond	X-Ray	LTZ631	LTZ631+	LTZ6311	LDZ631+	LDZ631+	LTZ631	LTZ631+	LTZ6311	LDZ631+	LTZ631	LTZ631+	LTZ6311	LDZ631+
Re(1)-N(1)	2.156(8)	2.147	2.145	2.146	2.146	2.146	2.114	2.110	2.111	2.112	2.122	2.121	2.121	2.121
Re(1)-N(2)	1.708(6)	1.720	1.719	1.720	1.720	1.714	1.741	1.739	1.739	1.739	1.707	1.707	1.707	1.706
Re(1)-O(1)	2.035(6)	2.017	2.025	2.024	2.025	2.033	2.009	2.017	2.017	2.020	2.010	2.016	2.016	2.018
Re(1)-P(1)	2.433(2)	2.490	2.496	2.498	2.493	2.431	2.478	2.483	2.483	2.479	2.446	2.451	2.451	2.448
Re(1)-Cl(1)	2.389(2)	2.444	2.434	2.434	2.434	2.434	2.422	2.419	2.419	2.420	2.406	2.399	2.401	2.406
Re(1)-Cl(2)	2.420(3)	2.457	2.457	2.454	2.458	2.449	2.451	2.443	2.442	2.444	2.421	2.420	2.418	2.413
	l		I	1		I	3				I	I	L	
		B3LYP				B3LYP ^d		BI	P86			PBE	1PBE	
Bond	X-Ray	LTZ631	LTZ631+	LTZ6311	LDZ631+	LDZ631+	LTZ631	LTZ631+	LTZ6311	LDZ631+	LTZ631	LTZ631+	LTZ6311	LDZ631+
Re(1)-N(1)	2.110(3)	2.142	2.142	2.144	2.142	2.135	2.104	2.104	2.104	2.104	2.113	2.113	2.114	2.112
Re(1)-N(2)	1.708(4)	1.719	1.718	1.718	1.717	1.715	1.739	1.738	1.738	1.737	1.706	1.705	1.705	1.705
Re(1)-O(1)	2.072(3)	2.041	2.049	2.049	2.051	2.058	2.033	2.040	2.040	2.042	2.035	2.040	2.039	2.042
Re(1)-P(1)	2.4398(11)	2.501	2.508	2.508	2.501	2.434	2.478	2.483	2.483	2.478	2.449	2.454	2.453	2.449
Re(1)-Cl(1)	2.3928(12)	2.417	2.410	2.409	2.413	2.409	2.404	2.395	2.396	2.399	2.382	2.377	2.377	2.379
Re(1)-Cl(2)	2.3571(11)	2.389	2.386	2.386	2.387	2.385	2.382	2.378	2.378	2.379	2.360	2.358	2.398	2.358

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2014

B3LYP ^d - B3LYP functional improved by adding dispersion correction

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2014

Table S3. The energy and molar absorption coefficients of experimental absorption bands and the electronictransitions calculated with the TDDFT method for **1**.

The most	Character	λ[nm]	E[eV]	<i>f</i> x10 ²	Experimental
important orbital excitations					Λ[nm](E[eV])ε
H→L	$d/\pi(Cl) \rightarrow \pi^*(p-tol)/d$	712.1	1.74	0.04	791.2 (1.57) 130
H→L+1	$d/\pi(Cl) \rightarrow \pi^*(py-2-COO)/d/\pi^*(p-tol)$	606.9	2.04	0.76	602.4 (2.06) 200
H→L+2	$d/\pi(Cl) \rightarrow \pi^*(py-2-COO)/d/\pi^*(p-tol)$	412.6	3.00	8.83	425.6 (2.91) 7400
H-8→L	$\pi(PPh_3)/\pi(p-tol)/\pi(Cl) \rightarrow \pi^*(p-tol)/d$	330.2	3.76	13.20	333.2 (3.72) 43 220
H-2→L	$\pi(PPh_3)/\pi(p-tol) \rightarrow \pi^*(p-tol)/d$	320.0	3.87	26.50	
H-8→L+1	$\pi(PPh_3)/\pi(p-tol)/\pi(Cl) \rightarrow \pi^*(py-2-COO)/d/\pi^*(p-tol)$	282.5	4.39	3.24	266.8 (4.65) 44 100
H-8→L+2	$\pi(PPh_3)/\pi(p-tol)/\pi(Cl) \rightarrow \pi^*(py-2-COO)/d/\pi^*(p-tol)$	249.5	4.97	7.88	224.8 (5.52) 76 800
H-5→L+2	$\pi(PPh_3)/\pi(Cl) \rightarrow \pi^*(py-2-COO)/d/\pi^*(p-tol)$	239.6	5.17	6.48	
H-15→L+1	$\pi(\text{py-2-COO})/\pi(\text{Cl})/\text{d} \rightarrow \pi^*(\text{py-2-COO})/\text{d}/\pi^*(\text{p-tol})$	236.6	5.24	6.01	

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2014

Table S4. The energy and molar absorption coefficients of experimental absorption bands and the electronic transitions calculated with the TDDFT method for **3**.

The most	Character	λ[nm]	E[eV]	<i>f</i> x10 ²	Experimental
important orbital excitations					Λ[nm](E[eV])ε
H→L	$d/\pi(Cl)/\pi(py-2-COO) \rightarrow \pi^*(p-tol)/d/\pi^*(py-2-COO)$	654.9	1.89	0.19	763.6 (1.62) 155
H→L+1	$d/\pi(Cl)/\pi(py-2-COO) \rightarrow \pi^*(py-2-COO)/d/\pi^*(p-tol)$	564.4	2.20	0.33	617.6 (2.01) 190
$H \rightarrow L+2$	$d/\pi(Cl)/\pi(py-2-COO) \rightarrow \pi^*(py-2-COO)/d/\pi^*(p-tol)$	397.5	3.12	0.13	418.0 (2.97) 3 200
H-1→L	$\pi(\text{p-tol})/d/\pi(\text{Cl}) \rightarrow \pi^*(\text{p-tol})/d/\pi^*(\text{py-2-COO})$	354.5	3.50	9.13	333.6 (3.72) 24 500
H-1→L	$\pi(p-tol)/d/\pi(Cl) \rightarrow \pi^*(p-tol)/d/\pi^*(py-2-COO)$	321.4	3.86	35.04	
H-11→L	$\pi(\text{py-2-COO})/\pi(\text{Cl}) \rightarrow \pi^*(\text{p-tol})/\text{d}/\pi^*(\text{py-2-COO})$	256.7	4.83	3.58	260.4 (4.77) 22 270
H-1→L+8	$\pi(p-tol)/d/\pi(Cl) \rightarrow \pi^*(p-tol)$	223.1	5.56	10.24	223.6 (5.54) 69 420
H-15→L+1	π (Cl)/ π (py-2-COO)/ π (p-tol) $\rightarrow \pi^*$ (py-2-COO)/d/ π^* (p-tol)	219.3	5.65	8.75	

Figures

Figure S1. The experimental and calculated (non-scaled) vibrational spectra of 1a (a) and 3 (b).

Figure S2. ¹H NMR spectra of 1a and 3

b)

Figure S3. Difference in the bond distance Re–N_{imido} between calculated values and the crystallographic results obtained by employing B3LYP, BP86, PBE1PBE method for *trans*-(Cl,Cl)-[Re(*p*-NC₆H₄CH₃)Cl₂(py-2-COO)(PPh₃)] (a) and *cis*-(Cl,Cl)-[Re(*p*-NC₆H₄CH₃)Cl₂(py-2-COO)(PPh₃)] (b).

0.609 (d)_{Re} + 0.793 (p)_N

0.657 (d)_{Re} + 0.753 (p)_N

Figure S4. The contours of natural bond orbitals (NBOs) between the rhenium and the *p*-tolylimido ligand for **1** (a) and **3** (b).