Supplementary material

A novel intermediate in the LiAlH₄-LiNH₂ hydrogen storage system

L. H. Jepsen¹, D. B. Ravnsbæk², C. Grundlach³, F. Besenbacher⁴, J. Skibsted⁵, T. R. Jensen^{1*}

¹Center for Materials Crystallography, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

² Department of Material Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, MA, USA

³ MAXlab-II Laboratory, Lund University, Ole Romers vag 1, 223 63, S-22100 Lund, Sweden

⁴ Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, 8000 Aarhus C, Denmark

⁵ Instrument Centre for Solid-State NMR Spectroscopy, Department of Chemistry, Aarhus University, Denmark.

*Corresponding author Torben R. Jensen, Ph.D., Associate Professor Center for Materials Crystallography iNANO and Department of Chemistry Langelandsgade 140 DK-8000 Aarhus C Aarhus University Denmark

Table S1 Observed temperatures for decomposition and formation of listed compounds during *in situ* SR-PXD. All samples are heated from RT with 5 °C/min under dynamic vacuum.

	s0	s1	s2	s3	s1(DSC)
Decomposition of LiAlH ₄ (°C)	151	162	155	160	174
Decomposition of Li ₃ AlH ₆ (°C)	213	206	205	205	209
Reaction between $LiNH_2$ and LiH (°C)	287	296	285	292	298
Formation of $Li_{4-x}Al_x(NH)_{2-2x}N_{2x}(^{\circ}C)$	-	340	310	315	
Last observation of Li ₂ NH (°C)	>500	>500	390	391	
Formation of Li ₃ AlN ₂ (°C)	410	413	410	408	
Disappearance of Al (°C)	>500	>500	620	>500	

Figure S1 *In situ* SR-PXD of LiAlH₄—LiNH₂ (1:2.5, **s3**) heated from RT to 500 °C (5 °C/min, dynamic vacuum, $\lambda = 1.00355$ Å). Symbols: \blacksquare Li₂NH; \blacksquare Li_{4-x}Al_x(NH)_{2-2x}N_{2x}; \blacksquare Al; \Box Li₃AlN₂. Reflections from Al and Li₂NH decrease and disappear, respectively when Li_{4-x}Al_x(NH)_{2-2x}N_{2x} is formed.

Figure S2 *In situ* SR-PXD of LiAlH₄—LiNH₂ (1:2, **s2**) heated from RT to 635 °C (5 °C/min, dynamic vacuum, $\lambda = 1.00989$ Å). Symbols: $\mathbf{\nabla}$ Li₂NH; $\mathbf{\nabla}$ Li_{4-x}Al_x(NH)_{2-2x}N_{2x}; $\mathbf{\nabla}$ Al; \Box Li₃AlN₂; \circ Li₂O

Figure S3 *In situ* SR-PXD of LiAlH₄—LiNH₂ (1:1, **s0**) heated from RT to 500 °C (5 °C/min, dynamic vacuum, $\lambda = 1.10205$ Å). Li₂NH does not react with Al forming Li_{4-x}Al_x(NH)_{2-2x}N_{2x} in contrast to **s1**, **s2** and **s3**. Symbols: LiNH₂; LiAlH₄; LiAlH₄; Li₃AlH₆; Li₂NH; Al; Li₃AlN₂.

Figure S4 *In situ* SR-PXD of LiAlH₄—LiNH₂ (1:1.5, **s1**) heated from RT to 500 °C (5 °C/min, dynamic vacuum, $\lambda = 1.00355$ Å). Symbols: \blacksquare LiNH₂; \blacksquare LiAlH₄; \heartsuit Li₃AlH₆; \blacktriangledown Li₂NH; \heartsuit Al

 $\Box \text{ Li}_{3}\text{AlN}_{2}; \ \overline{\forall} \text{ Li}_{4\text{-}x}\text{Al}_{x}(\text{NH})_{2\text{-}2x}\text{N}_{2x}.$

Figure S5 *In situ* SR-PXD of LiAlH₄—LiNH₂ (1:2.5, **s3**) heated from RT to 500 °C (5 °C/min, dynamic vacuum, $\lambda = 1.00355$ Å). Symbols: **•** LiNH₂; **•** LiAlH₄; **•** Li₃AlH₆; **•** Li_{4-x}Al_x(NH)_{2-2x}N_{2x}; **•** Li₂NH; **•** Al; **•** Li₃AlN₂.

Figure S6 An expansion of the *in situ* SR-PXD data for LiAlH_4 —LiNH₂ (1:1, **s0**) heated from RT to 500 °C (5 °C/min, dynamic vacuum, $\lambda = 1.10205$ Å). In contrast to **s1**, **s2** and **s3**, the formation of $\text{Li}_{4-x}\text{Al}_x(\text{NH})_{2-2x}N_{2x}$ is not observed. Symbols: \P Li₂NH; \P Al; \square Li₃AlN₂;

Figure S7 An expansion of the *in situ* SR-PXD data for LiAlH₄—LiNH₂ (1:1.5, **s1**) heated from RT to 500 °C (5 °C/min, dynamic vacuum, $\lambda = 1.00355$ Å). Only some of Li₂NH is consumed in the reaction with Al forming Li_{4-x}Al_x(NH)_{2-2x}N_{2x} in contrast to **s2** and **s3**, where all Li₂NH reacts with Al. Symbols: \mathbf{V} Li₂NH; \mathbf{V} Li_{4-x}Al_x(NH)_{2-2x}N_{2x}; \mathbf{V} Al; \Box Li₃AlN₂; \circ Li₂O

Figure S8 An expansion of the *in situ* SR-PXD data for LiAlH₄—LiNH₂ (1:2.5, **s3**) heated from RT to 500 °C (5 °C/min, dynamic vacuum, $\lambda = 1.00355$ Å). All Li₂NH is consumed in the reaction with Al forming Li_{4-x}Al_x(NH)_{2-2x}N_{2x} in contrast to s1. Symbols: $\mathbf{\nabla}$ Li₂NH; $\mathbf{\nabla}$ Li_{4-x}Al_x(NH)_{2-2x}N_{2x}; $\mathbf{\nabla}$ Al; \Box Li₃AlN₂.

Figure S9²⁷Al MAS NMR spectra for (a, b) **s2**_465 and (c) **s2**_345, acquired at (a) 14.09 T and (b, c) 9.39 T using spinning speeds of $v_R = 13.0$ kHz and 12.0 kHz, respectively. The spectrum in part (a) is the same spectrum as shown in Figure 4. The ²⁷Al chemical shift and line broadening for the centerband from $Li_{4-x}Al_x(NH)_{2-2x}N_{2x}$ are almost independent of the magnetic field. The intensity in part (c) is multiplied by a factor of four as compared to the intensity in part (b). The asterisks indicate a static background signal from the 5 mm CP/MAS NMR probe used for the experiments in parts (b, c).

Figure S10 FTIR data obtained for LiNH₂, Li₂NH and s2_465.

Figure S11 Upper: TGA (solid) and DSC (dotted) for LiAlH₄ heated from RT to 550 °C (5 °C/min). Lower: MS signal detecting H_2 .

Figure S12 Upper: TGA (solid) and DSC (dotted) for LiNH₂ heated from RT to 550 °C (5 °C/min). Lower: MS signal detecting NH_3 (red) and H_2 (green).

Figure S13 SR-PXD data for **s0** heated from RT to 500 °C under dynamic vacuum, and subsequently heated to 425 °C $p(H_2) = 100$ bar and finally cooled to RT, $\lambda = 1.10205$ Å. Symbols: ∇ Al; $Alin; OLi_2O; Alinit: LiNH_2$.