Electronic Supplementary Information

Dynamics of H-atom exchange in stable *cis*-dihydrogen/hydride complexes of ruthenium(II) bearing phosphine and N–N bidentate ligands

Barun Bera, Yogesh P. Patil, Munirathinam Nethaji and Balaji R. Jagirdar*

Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore 560012, India

E-mail: jagirdar@ipc.iisc.ernet.in

Contents

Figure 1. ¹H NMR spectrum of *cis, trans*-[$RuH_2(PPh_3)_2(bpm)$] (2) in CD₂Cl₂ at room temperature

Figure 2. ³¹P{¹H} NMR spectrum of *cis, trans*-[RuH₂(PPh₃)₂(bpm)] (2) in CD₂Cl₂ at room temperature

Figure 3. ¹³C{¹H} NMR spectrum of *cis, trans*-[RuH₂(PPh₃)₂(bpm)] (**2**) in CD₂Cl₂ at room temperature

Figure 4. ¹H NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpy)][OTf] (**1a**) in CD₂Cl₂ at room temperature

Figure 5. ³¹P{¹H} NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpy)][OTf] (1a) in CD₂Cl₂ at room temperature

Figure 6. ¹³C{¹H} NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpy)][OTf] (1a) in CD₂Cl₂ at room temperature

Figure 7. ¹⁹F NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpy)][OTf] (**1a**) in CD₂Cl₂ at room temperature

Figure 8. ¹H NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) in CD₂Cl₂ at room temperature

Figure 9. ³¹P{¹H} NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) in CD₂Cl₂ at room temperature

Figure 10. ¹³C{¹H} NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) in CD₂Cl₂ at room temperature

Figure 11. ¹⁹F NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) in CD₂Cl₂ at room temperature

Figure 12. Variable temperature ¹H NMR spectral stack plot (hydride region) of *cis, trans*- $[RuH(\eta^2-H_2)(PPh_3)_2(bpy)][OTf]$ (**1a**) in CDCl₂F/CDClF₂.

Figure 13. Variable temperature ¹H NMR spectral stack plot (hydride region) of *cis, trans*- $[\text{RuH}(\eta^2-\text{H}_2)(\text{PPh}_3)_2(\text{bpm})][\text{OTf}]$ (**2a**) in CD₂Cl₂.

Figure 14. Variable temperature T_1 measurements of *cis, trans*-[RuH₂(PPh₃)₂(bpy)] (1) in CD₂Cl₂ at 400 MHz.

Figure 15. Variable temperature T_1 measurements of *cis, trans*-[RuH₂(PPh₃)₂(bpm)] (2) (right) in CD₂Cl₂ at 400 MHz.

Figure 16. ¹H NMR spectra (hydride region) of the isotopomers of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpy)][OTf] (**1a**) in CD₂Cl₂ at 296 K; acquired using a 500 MHz instrument

Figure 17. ¹H NMR spectra (hydride region) of the isotopomers of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) in CD₂Cl₂ at 296 K; acquired using a 500 MHz instrument.

Figure 18. ¹H NMR spectrum of *cis, trans*-[RuH(CO)(PPh₃)₂(bpm)][OTf] (**2b**) in CDCl₃ at room temperature

Figure 19. ³¹P{¹H} NMR spectrum of *cis, trans*-[RuH(CO)(PPh₃)₂(bpm)][OTf] (**2b**) in CDCl₃ at room temperature

Figure 20. ¹³C{¹H} NMR spectrum of *cis, trans*-[RuH(CO)(PPh₃)₂(bpm)][OTf] (**2b**) in CDCl₃ at room temperature

Figure 21. ¹⁹F NMR spectrum of *cis, trans*-[RuH(CO)(PPh₃)₂(bpm)][OTf] (**2b**) in CDCl₃ at room temperature

Figure 22. IR spectrum of *cis, trans*-[RuH(CO)(PPh₃)₂(bpm)][OTf] (2b)

Figure 23. ¹H NMR spectral stack plot of the reaction between *cis, trans*- $[RuH_2(PPh_3)_2(bpm)][OTf]$ (2) and CH₃OTf in CD₂Cl₂ at 203 K.

Figure 24. ³¹P{¹H} NMR spectral stack plot of the reaction between *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) and Et₃N (2 equiv) in CH₂Cl₂ (CDCl₃ external lock) at room temperature

Figure 25. ¹H NMR spectral stack plot of the reaction between *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) and Et₃N (2 equiv) in CH₂Cl₂ (CDCl₃ external lock) at room temperature

Calculation of ΔG^{\neq} of the exchange process in **1a** and **2a**

Figure 26. $\ln (W_{\frac{1}{2}} - 30)$ vs 1/T plot of **1a**

Figure 27. ln ($W_{\frac{1}{2}}$ – 30) vs 1/*T* plot of **2a**

Calculation of $T_1(\min)$ of the H₂ ligand of **1a** and **2a**

Figure 1. ¹H NMR spectrum of *cis, trans*-[$RuH_2(PPh_3)_2(bpm)$] (2) in CD_2Cl_2 at room temperature

Figure 2. ³¹P{¹H} NMR spectrum of *cis, trans*-[RuH₂(PPh₃)₂(bpm)] (**2**) in CD₂Cl₂ at room temperature

Figure 3. ¹³C{¹H} NMR spectrum of *cis, trans*-[RuH₂(PPh₃)₂(bpm)] (**2**) in CD₂Cl₂ at room temperature

Figure 4. ¹H NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpy)][OTf] (**1a**) in CD₂Cl₂ at room temperature

Figure 5. ³¹P{¹H} NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpy)][OTf] (1a) in CD₂Cl₂ at room temperature

Figure 6. ¹³C{¹H} NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpy)][OTf] (1a) in CD₂Cl₂ at room temperature

Figure 7. ¹⁹F NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpy)][OTf] (**1a**) in CD₂Cl₂ at room temperature

Figure 8. ¹H NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) in CD₂Cl₂ at room temperature

Figure 9. ³¹P{¹H} NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) in CD₂Cl₂ at room temperature

Figure 10. ¹³C{¹H} NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) in CD₂Cl₂ at room temperature

Figure 11. ¹⁹F NMR spectrum of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) in CD₂Cl₂ at room temperature

Figure 12. Variable temperature ¹H NMR spectral stack plot (hydride region) of *cis, trans*- $[RuH(\eta^2-H_2)(PPh_3)_2(bpy)][OTf]$ (**1a**) in CDCl₂F/CDClF₂.

Figure 13. Variable temperature ¹H NMR spectral stack plot (hydride region) of *cis, trans*- $[RuH(\eta^2-H_2)(PPh_3)_2(bpm)][OTf]$ (**2a**) in CD₂Cl₂.

Figure 14. Variable temperature T_1 measurements of *cis, trans*-[RuH₂(PPh₃)₂(bpy)] (1) in CD₂Cl₂ at 400 MHz.

Figure 15. Variable temperature T_1 measurements of *cis, trans*-[RuH₂(PPh₃)₂(bpm)] (2) (right) in CD₂Cl₂ at 400 MHz.

Figure 16. ¹H NMR spectra (hydride region) of the isotopomers of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpy)][OTf] (**1a**) in CD₂Cl₂ at 296 K; acquired using a 500 MHz instrument.

Figure 17. ¹H NMR spectra (hydride region) of the isotopomers of *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) in CD₂Cl₂ at 296 K; acquired using a 500 MHz instrument.

Figure 18. ¹H NMR spectrum of *cis, trans*-[RuH(CO)(PPh₃)₂(bpm)][OTf] (**2b**) in CDCl₃ at room temperature

Figure 19. ³¹P{¹H} NMR spectrum of *cis, trans*-[RuH(CO)(PPh₃)₂(bpm)][OTf] (**2b**) in CDCl₃ at room temperature

Figure 20. ¹³C{¹H} NMR spectrum of *cis, trans*-[RuH(CO)(PPh₃)₂(bpm)][OTf] (2b) in CDCl₃ at room temperature

Figure 21. ¹⁹F NMR spectrum of *cis, trans*-[RuH(CO)(PPh₃)₂(bpm)][OTf] (**2b**) in CDCl₃ at room temperature

Figure 22. IR spectrum of *cis, trans*-[RuH(CO)(PPh₃)₂(bpm)][OTf] (2b)

Figure 23. ¹H NMR spectral stack plot of the reaction between *cis, trans*- $[RuH_2(PPh_3)_2(bpm)][OTf]$ (2) and CH₃OTf in CD₂Cl₂ at 203 K.

Figure 24. ³¹P{¹H} NMR spectral stack plot of the reaction between *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) and Et₃N (2 equiv) in CH₂Cl₂ (CDCl₃ external lock) at room temperature

Figure 25. ¹H NMR spectral stack plot of the reaction between *cis, trans*-[RuH(η^2 -H₂)(PPh₃)₂(bpm)][OTf] (**2a**) and Et₃N (2 equiv) in CH₂Cl₂ (CDCl₃ external lock) at room temperature

Calculation of ΔG^{\neq} of the exchange process in 1a and 2a

Rate constant of the exchange process above $T_{\rm C}$ is written as

$$K_{\rm a} = [\pi (\Delta v)^2] / 2 (W_{\frac{1}{2}} - W^0_{\frac{1}{2}})$$

Ref: Belci, M. Basic ¹H and ¹³C NMR Spectroscopy, Elsevier 2005, p213.

where,

K = Rate constant of the scrambling process

 Δv = Chemical shift difference between dihydrogen and hydride in Hz

 $W_{\frac{1}{2}}$ = Full width at half maxima of the scrambling system

 $W_{\frac{1}{2}}^{0} = W_{\frac{1}{2}}$ when there is no scrambling (reference)

 $T_{\rm C}$ = Coalescence temperature

 $K_{\rm a} = [\pi (\Delta v)^2] / 2 (W_{\frac{1}{2}} - W_{\frac{1}{2}}^0)$

=
$$A e^{-(\Delta G^{\mp})/RT}$$
 [Arrhenius equation, A = Frequency factor]

Simplification gives

ln $(W_{\frac{1}{2}} - W^{0}_{\frac{1}{2}}) = (\Delta G^{\neq}/R)(1/T) + C$ [C = Constant]

We assume that $W_{1/2}^0$ of the hydride signal of **1a** and **2a** are same as that of **1** and **2** respectively in their ¹H NMR spectrum.

 $W_{\frac{1}{2}}^{0}$ = 30 Hz (FWHM of hydride signal of 1 or 2)

The above assumption is required since we did not observe decoalescence of the RuH_3 signal of **1a** and **2a**.

 $\ln (W_{\frac{1}{2}} - 30) = [\Delta G^{\neq} (\text{approx})/R][1/T] + C$

Slope of ln $(W_{\frac{1}{2}} - 30)$ vs 1/T plot will give ΔG^{\neq} (approx)

Assumptions:

- 1. Free energy of activation does not change with temperature
- 2. Change in line broadening is a measure of change in rate of the exchange process

Figure 26. ln ($W_{\frac{1}{2}}$ - 30) vs 1/*T* plot of **1a**

Figure 27. ln ($W_{\frac{1}{2}}$ - 30) vs 1/*T* plot of **2a**

Calculation of $T_1(\min)$ of the H₂ ligand of 1a and 2a

The relaxation rate (R_{H3}) of the RuH₃ moieties of complexes **1a** and **2a** could be written as the weighted average of that of the individual hydride and η^2 -H₂ ligands i.e.,

$$R_{\rm H3} = (R_{\rm H} + 2R_{\rm H2})/3$$

where, $R_{\rm H}$ = relaxation rate of the hydride ligand caused by rest of the molecule, and $R_{\rm H2}$ = relaxation rate of the η^2 -H₂ ligand. $R_{\rm H2}$ has two components: (i) $R_{\rm M}$ i.e., mutual relaxation of the two H-atoms of the η^2 -H₂ ligand and (ii) $R_{\rm R}$ i.e., relaxation of the η^2 -H₂ ligand caused by rest of the molecule. Among these two components, $R_{\rm M}$ is actually related to T_1 (min) of the η^2 -H₂ ligand, i.e., T_1 (H₂).

Therefore, $R_{\rm H3} = \{R_{\rm H} + 2(R_{\rm M} + R_{\rm R})\}/3$

Or, $R_{\rm H3} = (3R_{\rm H} + 2R_{\rm M})/3$ [since, $R_{\rm R} \sim R_{\rm H}$]

Now, we know that $T_1 = (1/R)$, therefore, the above equation can be written in terms of $T_1(\min)$ of the η^2 -H₂ ligand as,

 $1/T_1(H_2) = (3/2) \{ 1/T_1(RuH_3) - 1/T_1(RuH_2) \}$

where, $T_1(\text{RuH}_3)$ is the $T_1(\text{min})$ of complexes **1a** and **2a**, $T_1(\text{RuH}_2)$ is the T_1 of complexes **1** and **2** at respective temperatures (183 K for **1a** and 191 K for **2a**).