Synthesis and Structural Characterization of a Single-Crystal to Single-Crystal Transformable Coordination Polymer

Yuyang Tian ${ }^{a}$, Phoebe K. Allan ${ }^{a}$, Catherine L. Renouf ${ }^{\boldsymbol{a}}$, Xiang He ${ }^{b}$, and Russell E. Morris* ${ }^{*}$

Supporting Information

Elemental Analysis of CHNS

The elemental analysis on $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and S of the products was taken place on a Carlo Erba CHNS analyser. The weight contents of $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and S are $35.94 \%, 2.51 \%, 3.65 \%$ and 7.05%. The calculated values are 34.49%, $2.43 \%, 3.10 \%$ and 7.08%.

Thermal Stability

The TGA curve of compound 1 was shown in Fig S1. An obvious weight loss of 7.42% ranging from 473 K to 513 K in air atmosphere can be referred to the removal of the coordinated molecules (calculated weight loss from the complete removal of water is 7.96%).

Fig. S1, TGA curve for hydrated sample of compound $\mathbf{1}$ in air atmosphere at the heating rate of $10 \mathrm{Kmin}^{-1}$.

Compound 1 was put in a tube furnace, heated under air at a $10 \mathrm{Kmin}^{-1}$ rate. After calcined at $520 \mathrm{~K}, 540 \mathrm{~K}, 580 \mathrm{~K}$ and 600 K for 10 min respectively, the residuals were recovered to room temperature. Powder XRD was carried on these residuals. The patterns are shown in Fig S2.

Coordination geometry of $\mathrm{Cu}-\mathrm{BPy}-\mathrm{Cu}$ chain

The coordination geometry of Cu 2 in compound $\mathbf{1}$ is shown in Fig. S3a. It is 6-coordinated by two STP molecules and two Bpy molecules in an inverse way. The changes of Cu 2 after dehydration are shown in fig. S 3 b . The coordination geometry of copper atoms remains 6 -coordinated but the $\mathrm{Cu}-\mathrm{Bpy}-\mathrm{Cu}$ chain has a torsion angle of $19.131(821)^{0}$.

b

Fig. S3. Coordination environment of Cu 2 atoms in hydrated structure (a) and the changes after dehydration (b). (Cu: turquoise, O: red, S: yellow, C: grey, N : blue. H is not shown for clarity.)

Crystallographic data

The crystal data and structure refinements of compound $\mathbf{1}$ and compound $\mathbf{2}$ are shown in table S1.
Table S1. Crystal data and structure refinements of compounds $\mathbf{1}$ and compound 2

Compound	$\mathbf{1}$	$\mathbf{2}$
Formula	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{Cu}_{3} \mathrm{~N}_{2} \mathrm{O}_{18} \mathrm{~S}_{2}$	$\mathrm{C}_{26} \mathrm{H}_{14.5} \mathrm{Cu}_{3} \mathrm{~N}_{2} \mathrm{O}_{14.25} \mathrm{~S}_{2}$
Formula weight	905.20	837.64
Crystal system	Monoclinic	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$	$\mathrm{P} 21 / \mathrm{c}$
$a(\AA)$	$11.017(5)$	$10.075(5)$
$b(\AA \AA)$	$11.814(5)$	$12.806(5)$
$c(\AA)$	$12.135(5)$	$19.502(5)$
$\alpha(\mathrm{O})$	$90.000(5)$	$90.000(5)$
$\beta(\mathrm{O})$	$109.701(5)$	$95.342(5)$
$\gamma(\mathrm{O})$	$90.000(5)$	$90.000(5)$
$V\left(\AA^{3}\right)$	$1487.0(11)$	$2505.2(17)$

Z	2	4
$D_{\mathrm{c}}\left(\mathrm{g} / \mathrm{cm}^{-3}\right)$	2.022	2.221
$F(000)$	910	1670
$\mu\left(\mathrm{~mm}^{-1}\right)$	2.890	3.411
ϑ for data collection $\left({ }^{\circ}\right)$	2.85 to 34.65	2.96 to 22.79
Reflections collected	21375	23264
Unique reflections	4736	2610
$R_{\text {int }}$	0.0578	0.0959
Data/restraints $/$ parameters	$4736 / 6 / 244$	$2610 / 0 / 412$
Goodness-of-fit on F^{2}	1.023	1.045
$R_{1}, \mathrm{w} R_{2}[I>2 \sigma(\mathrm{I})]$	$0.0327,0.0904$	$0.1038,0.2118$
$R_{1}, \mathrm{w} R_{2}($ all data $)$	$0.0378,0.0938$	$0.0713,0.1854$
$\mathrm{R}_{1}=\sum\left(\left\|\mathrm{F}_{\mathrm{o}}\right\|-\left\|\mathrm{F}_{\mathrm{c}}\right\|\right) / \sum\left\|\mathrm{F}_{\mathrm{o}}\right\|, \mathrm{w} R_{2}=\left[\sum \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} / \sum \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}$.		

Table S2. Selected Bond lengths $[\AA]$ for mor20.

$\mathrm{Cu}(1)-\mathrm{O}(3)$	$1.9321(17)$
$\mathrm{Cu}(1)-\mathrm{O}(1 \mathrm{~W})$	$1.9757(16)$
$\mathrm{Cu}(1)-\mathrm{O}(2 \mathrm{~W})$	$1.9909(16)$
$\mathrm{Cu}(1)-\mathrm{O}(5) \# 1$	$1.9913(16)$
$\mathrm{Cu}(1)-\mathrm{O}(9) \# 2$	$2.2895(16)$
$\mathrm{Cu}(2)-\mathrm{N}(1) \# 3$	$1.9744(18)$
$\mathrm{Cu}(2)-\mathrm{N}(1)$	$1.9744(18)$
$\mathrm{Cu}(2)-\mathrm{O}(6)$	$2.0435(16)$
$\mathrm{Cu}(2)-\mathrm{O}(6) \# 3$	$2.0435(16)$
$\mathrm{Cu}(2)-\mathrm{O}(7)$	$2.2887(17)$
$\mathrm{Cu}(2)-\mathrm{O}(7) \# 3$	$2.2887(17)$

Symmetry transformations used to generate equivalent atoms:
\#1 $x-1,-y+3 / 2, z-1 / 2 \quad \# 2-x+2,-y+2,-z+1 \quad \# 3-x+3,-y+2,-z+2$
$\# 4 x+1,-y+3 / 2, z+1 / 2 \quad \# 5-x+2,-y+2,-z+2$

Table S3. Selected Bond lengths $[\AA]$ for mor21.

$\mathrm{Cu}(1)-\mathrm{O}(13)$	$1.825(8)$
$\mathrm{Cu}(1)-\mathrm{O}(11) \# 1$	$1.907(10)$
$\mathrm{Cu}(1)-\mathrm{O}(12) \# 1$	$1.948(9)$
$\mathrm{Cu}(1)-\mathrm{O}(1)$	$1.960(9)$
$\mathrm{Cu}(1)-\mathrm{C}(15) \# 1$	$2.253(15)$
$\mathrm{Cu}(1)-\mathrm{S}(1)$	$2.769(4)$
$\mathrm{Cu}(2)-\mathrm{O}(5) \# 2$	$1.856(9)$
$\mathrm{Cu}(2)-\mathrm{O}(7) \# 3$	$1.869(12)$
$\mathrm{Cu}(2)-\mathrm{O}(10)$	$1.975(10)$
$\mathrm{Cu}(2)-\mathrm{O}(6) \# 3$	$2.121(14)$
$\mathrm{Cu}(2)-\mathrm{O}(9) \# 4$	$2.193(10)$
$\mathrm{Cu}(2)-\mathrm{C}(8) \# 3$	$2.29(2)$
$\mathrm{Cu}(3)-\mathrm{N}(2) \# 5$	$1.889(12)$
$\mathrm{Cu}(3)-\mathrm{N}(2)$	$1.889(12)$
$\mathrm{Cu}(3)-\mathrm{O}(14)$	$2.027(9)$
$\mathrm{Cu}(3)-\mathrm{O}(14) \# 5$	$2.027(9)$
$\mathrm{Cu}(3)-\mathrm{O}(8)$	$2.334(10)$
$\mathrm{Cu}(3)-\mathrm{O}(8) \# 5$	$2.335(10)$
$\mathrm{Cu}(4)-\mathrm{N}(1) \# 2$	$1.895(13)$
$\mathrm{Cu}(4)-\mathrm{N}(1)$	$1.895(13)$
$\mathrm{Cu}(4)-\mathrm{O}(4)$	$1.923(9)$
$\mathrm{Cu}(4)-\mathrm{O}(4) \# 2$	$1.923(9)$

Symmetry transformations used to generate equivalent atoms:

```
#1 x,-y+1/2,z+1/2 #2 -x,-y+1,-z+1 #3 -x,y-1/2,-z+3/2
#4 -x,-y,-z+1 #5 -x-1,-y,-z+1 #6 -x,y+1/2,-z+3/2
#7 x,-y+1/2,z-1/2 #8 -x-1,y+1/2,-z+1/2 #9 -x-1,y-1/2,-z+1/2
```

