5

Structural relationships among LiNaMg[PO₄]F and Na₂*M*[PO₄]F (*M* = Mn-Ni, and Mg), and the magnetic structure of LiNaNi[PO₄]F

Hamdi Ben Yahia^a,*, Masahiro Shikano^a,*, Hironori Kobayashi^a, Maxim Avdeev^b, Samuel Liu^c, Chris D. Ling^c

Supplementary information

Fig. S1. Final observed, calculated and difference plots for XRPD (Cu- $K_{\alpha 1-\alpha 2}$ radiation) refinement of LiNaMg[PO₄]F. The asterisk *s* corresponds to non-identified impurities.

Fig. S2. Orientation of the PO₄ tetrahedra in Na₂Co[PO₄]F (a, c) and LiNaNi[PO₄]F (b, d), and superposition of P2O₄ and P2cO₄, and P3O₄ and P3CO₄ tetrahedra (e). P2c and P3c correspond to the P atomic positions in the cobalt phase and the arrows indicate the direction of the tetrahedra tilts (e).

Fig. S3. Geometrical relations between the orthorhombic subcell1 of LiNaNi[PO₄]F and the monoclinic supercell of Na₂Ni[PO₄]F.

10

Fig. S4. Comparison of the crystal structures of $P\overline{1}$ -Na₂Mn[PO₄]F (a), $P\overline{1}$ -Na₂Ni[PO₄]F (b), and $P\overline{1}$ -LiNaNi[PO₄]F (c). The main difference consists in the arrangement of the transition metal and alkali metal atoms and the orientation of the PO₄ tetrahedra.

⁵ **Fig. S5.** Orientation of the PO₄ tetrahedra in Na₂Ni[PO₄]F (a, c) and LiNaNi[PO₄]F (b, d), and superposition of P2O₄ and P2lO₄, and P4O₄ and P4lO₄ tetrahedra (e). P2l and P3l correspond to the P atomic positions in the LiNaNi[PO₄]F phase and the arrows indicate the direction of the tetrahedra tilts (e).

This journal is © The Royal Society of Chemistry [year]

3.3. Structural relationship of $A_2M[PO_4]F$ (A = Li and Na; M = Mn-Ni, and Mg) to other known oxides.

3.3.1. LiNaM[PO₄]F (M = Mg, Ni) - Ca₂Na[SiO₄]F - Ca₂Ca[SiO₄]O structural relationship

- ⁵ The crystal structure of LiNaNi[PO₄]F ($P2_1/c$, a = 6.772(4), b = 11.154(6), c = 5.021(3) Å, $\beta = 90$ °) is strongly related to Ca₂Na[SiO₄]F (*Pnma*, a = 5.335, b = 7.144, c = 12.438 Å)²⁵ and Ca₂Ca[SiO₄]O ($P6_3/mmc$, a = b = 7.099, c = 5.687 Å)²⁶ structures, although a clear difference in the symmetry of these
- ¹⁰ compounds. The difference in symmetry is mainly due to the difference of the chemical compositions (For more details see section 3.4. of ref. 12).

3.3.2. $LiNaM[PO_4]F$ (M = Mg and Ni) – $Na_2M[PO_4]F$ (M = Fe, Co, and Mg) structural relationship

- ¹⁵ Several transformations are required in order to determine the phase transition mechanism from the LiNaNi[PO₄]F-type ($P2_1/c$, $a_0 = 6.772$, $b_0 = 11.154$, $c_0 = 5.021$ Å, $\beta = 90^\circ$) to the Na₂Co[PO₄]F-type structure (*Pbcn*, a = 5.2475, b = 13.7950, c = 11.6890 Å).²⁷⁻²⁹ For LiNaNi[PO₄]F, we have first performed an
- ²⁰ isomorphic enlargement of the original unit cell ($P2_1/c$, $a_1 = 2 \times a_0 = 13.545$, $b_1 = b_0 = 11.154$, $c_1 = c_0 = 5.021$ Å, $\beta = 90^\circ$) then reduced the symmetry to $P\overline{1}$ (*translationengleiche* of index 2). For Na₂Co[PO₄]F, we transformed the cell parameters to $a_2 = b = 13.7950$, $b_2 = c = 11.6890$, and $c_2 = a = 5.2475$ Å (*S.G.: Pbna*)
- ²⁵ then reduced the symmetry to $P\overline{\mathbf{1}}$. The final atomic positions, after origin shift, are listed in Table S⁴. The deviation of the atomic coordinates, Δx , Δy , and Δz , indicates no significant change of atomic positions of the cations. However, the anionic framework is strongly distorted. Indeed, the highest deviation is
- ³⁰ observed for O6, O12, and O16, forming the P2O₄ tetrahedron and O7, O9, and O13, forming the P3O₄ tetrahedron (Fig. S2 and Table S4). It worth noting that these deviations occur mainly in the (100) plane, since for these atoms the Δy and Δz values are very high and the Δx values are negligible. Therefore, we can
- ³⁵ conclude that the structural transition from the LiNaNi[PO₄]Ftype to the Na₂Co[PO₄]F-type structure is mainly due to tilting of the PO₄ tetrahedra (Fig. S2e and video1). **3.3.3.** LiNaM[PO₄]F (M = Mg and Ni) - Na₂Ni[PO₄]F

S.S.S. Livem $[I O_4]I$ (M = Mg and NI) - $Na_2NIIO_4]I$ structural relationship

- ⁴⁰ The Na₂Ni[PO₄]F cell may be described as a supercell of the LiNaNi[PO₄]F subcell (Fig. S³). It should therefore be possible, starting from the LiNaNi[PO₄]F structure ($P2_1/c$, $a_0 = 6.772$, $b_0 = 11.154$, $c_0 = 5.021$ Å, $\beta = 90$ °), to build a superstructure similar to Na₂Ni[PO₄]F ($P2_1/c$, a = 13.4581, b = 5.1991, c = 13.6978 Å,
- $_{45}\beta = 120.58$ °). This can be done using the following transformations:

-Isomorphic enlargement of the unit cell of LiNaNi[PO₄]F using the matrix (200, 010, 001) ($P2_1/c$, $a_1 = 2 \times a_0 = 13.554$, $b_1 = b_0$ =11.154, $c_1 = c_0 = 5.021$ Å, $\beta = 90$ °) followed by symmetry so reduction from $P2_1/c$ to P1;

- -Cell transformation using the matrix (100, 00 $\overline{\mathbf{1}}$, 010) (*P*1, $a_2 = a_1$ = 13.554, $b_2 = c_1 = 5.021$, $c_2 = b_1 = 11.154$ Å) followed by a second cell transformation using the matrix (100, 010, $\overline{\mathbf{1}}/201$) (*P*1, $a_3 = 13.5448$, $b_3 = 5.021$, $c_3 = 13.0488$ Å, $\beta_3 = 121.26$ °);
- ⁵⁵ -Origin shift (1/2b+1/2c) followed by transformation of the space group from P1 to $P\overline{1}$ (Fig. S4c).

-Symmetry reduction from $P2_1/c$ -Na₂Ni[PO₄]F to $P\overline{1}$ followed by transformation of the unit cell using the matrix (001, $0\overline{1}0$, 100)

 $(a_4 = c = 13.6978, b_4 = b = 5.1991, c_4 = a = 13.4581\text{\AA}, \beta = 120.58$ ⁶⁰ °) (Fig. S4b).

The final atomic positions of the transformed structures of Na₂Ni[PO₄]F and LiNaNi[PO₄]F are listed in Table S5. The highest deviations (Δy and Δz) are observed for O6, O11, and O15, forming the P2O₄ tetrahedra and O8, O9, and O14, forming ⁶⁵ the P4O₄ tetrahedra (Fig. S5 and Table S5). Therefore, we can conclude that the structural transition from the LiNaNi[PO₄]F-type to the Na₂Ni[PO₄]F-type structure is due to tilting of the PO₄ tetrahedra (Fig. S5e and video2). This is very similar to the mechanism of structural transition from the LiNaNi[PO₄]F-type to the Na₂Co[PO₄]F-type structure. However, it should be noted

that for these two transitions, it is different tetrahedra that have been tilted (Video1 and 2).

3.3.4. $LiNaM[PO_4]F$ (M = Mg and Ni) – $Na_2Mn[PO_4]F$ structural relationship

- ⁷⁵ The crystal structure of Na₂Mn[PO₄]F is usually described as a 3D-Mn[PO₄]F framework with channels filled with sodium atoms (Fig. S6a),³⁰ whereas LiNaNi[PO₄]F is described as a layered structure (Fig. 3). These conventional descriptions indicate a huge difference between the structures, despite the strong similarity
- so between them. When the LiNaNi[PO₄]F subcell ($P2_1/c$, $a_0 = 6.772$, $b_0 = 11.154$, $c_0 = 5.021$ Å, $\beta = 90^{\circ}$) is transformed to LiNaNi[PO₄]F supercell ($P\overline{1}$, $a_3 = 13.5448$, $b_3 = 5.021$, $c_3 = 13.0488$ Å, $\beta_3 = 121.26^{\circ}$), as described in section 3.3.3., and the symmetry is lowered from $P2_1/c$ to $P\overline{1}$ (a = 13.6830, b = 5.3170,
- ss c = 13.7683Å, $\beta = 120.04$ °, and V = 867.10Å³) for Na₂Mn[PO₄]F, the structural relationship between both compounds becomes evident. The transformed structures of Na₂Mn[PO₄]F and LiNaNi[PO₄]F are listed in Table S6 and the crystal structures are depicted on Fig. S4a and c. One can see
- ⁹⁰ clearly that, in Na₂Mn[PO₄]F, the Mn1, Mn2, Mn3, Na6, Na7, and Na8 atoms fill the atomic positions corresponding to Na4, Li1, Li4, Ni1, Ni3, and Ni4, respectively, and the P2O₄ and P4O₄ tetrahedra are tilted in the same manner as in Na₂Ni[PO₄]F. This indicates that the structural transition from LiNaNi[PO₄]F to 95 Na₂Mn[PO₄]F is due to the PO₄ tilts and the permutation of atomic positions between the transition-metal and alkali-metal atoms.

3.3.5. Na₂Mn[PO₄]F-Na₂Ni[PO₄]F structural relationship

The structural transformations of Na2Ni[PO4]F and Na2Mn[PO4]F 100 described in sections 3.3.3. and 3.3.4., respectively, confirm that the atomic positions in both structures are the same (Fig. S4a, b and Table S7). By comparison to Na₂Ni[PO₄]F, the Na₂Mn[PO₄]F formula can be rewritten as (Na,Mn)₂(Mn,Na)[PO₄]F, since 3/4 of the transition metal atoms 105 permute their atomic positions with those of sodium atoms (these atoms are highlighted in green on Table S7). This permutation is at the origin of the symmetry change from P21/a-Na2Ni[PO4]F $(P2_1/a, a = 13.6978, b = 5.1991, c = 13.4581\text{\AA}, \beta = 120.58^\circ)$ to $P2_1/c$ -Na₂Mn[PO₄]F ($P2_1/c$, a = 13.6830, b = 5.3170, c =110 13.7683Å, $\beta = 120.04^{\circ}$ and the transformation of the infinite chains of corner sharing dimer units (Fig. S6d) to corner-sharing octahedra (Fig. S6a). Given these close relationships to their crystal structures, (Na,Mn)₂(Mn,Na)[PO₄]F can be viewed as a layered structure (Fig. S6b) similar to Na₂Ni[PO₄]F (Fig. S6d) ¹¹⁵ and (Na,Ni)₂(Ni,Na)[PO₄]F as a 3D-structure (Fig. S6c) similar to Na₂Mn[PO₄]F (Fig. S6a).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Table S1. Crystallographic data	and structure refinements for LiNaMg[PO ₄]F.
Chemical formula	LiNaMg[PO ₄]F
Crystal color	colorless needle
Crystal size mm	0.280×0.065×0.058
M, g mol ⁻¹	168.2
Crystal system	monoclinic (twinned)
Space group	$P2_{1}/c$
<i>a</i> , Å	6.8179(7)
b, Å	11.2234(12)
<i>c</i> , Å	5.0222(5)
β, °	90.00(1)
$V, Å^3$	384.30(7)
Ζ	4
Density calcd., g cm ⁻³	2.91
Temperature, K	293 (1)
F(000), e	328
Diffractometer	SMART APEX
Monochromator	graphite
Radiation Å	ΜοΚα, 0.71069
Scan mode	multi-scan
<i>h k l</i> range	$\pm 8, -14 \le k \le 13, \pm 6$
$ heta_{\min}, heta_{\max}, \circ$	2.99, 27.9
Linear absorption coeff., mm ⁻¹	0.911
Absorption correction	Gaussian
$T_{\rm min}/T_{\rm max}$	0.8429 / 0.9592
No. of reflections	3026
No. of independent reflections	850
Reflections used	all
$R_{ m int}$	0.03
Refinement	F^2
No. of refined parameters	83
<i>R</i> factors $R(F) / wR(F^2)$ $[I \ge 0\sigma(I)]$	0.0298 / 0.0797
g. o. f.	1.19
Weighting scheme	$w = 1/(\sigma^2(I) + 0.001156I^2)$
Twin ratio	0.434(3)
Diff. Fourier residues, e^{-} Å ⁻³	-0.21/ +0.26

Table S2. Anisotropic ADPs (Å²) for LiNaMg[PO₄]F. The anisotropic ADP factor exponent takes the form: – $5 2\pi^2 [(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}]$.

Atom	$\overline{U_{11}}$	U_{22}	U ₃₃	U_{12}	U ₁₃	U_{23}
Li	0.0089(19)	0.007(2)	0.0041(19)	0.0000(13)	0.001(2)	-0.0031(12)
Na	0.0203(6)	0.0204(7)	0.0189(7)	-0.0026(4)	0.0013(8)	-0.0003(6)
Mg	0.0091(4)	0.0089(5)	0.0066(4)	0.0001(3)	-0.0004(5)	0.0009(4)
Р	0.0070(3)	0.0076(3)	0.0079(3)	-0.0004(2)	0.0004(4)	0.00062(18)
01	0.0100(8)	0.0145(9)	0.0184(9)	0.0014(7)	0.0003(9)	-0.0015(7)
O2	0.0176(9)	0.0152(9)	0.0102(9)	-0.0056(7)	0.0038(7)	0.0003(7)
03	0.0136(9)	0.0166(9)	0.0076(9)	-0.0017(7)	0.0007(8)	0.0000(6)
O4	0.0132(8)	0.0118(8)	0.0106(8)	0.0009(7)	-0.0003(7)	-0.0013(7)
F	0.0132(7)	0.0179(8)	0.0100(7)	-0.0028(6)	0.0026(6)	-0.0034(5)

Table S3. Cry	ystallographic data o	f the $A_2 M[TO_4] X$ cor	npounds classifie	ed by structural type.	The transformations	of the original unit	t cells

into orthorhombic sub	nto orthorhombic subcells have been carried out using the geometric relationships given in Fig. 5q.										
		Original	cells					Transf	ormation to	orthorhomb	ic subcells
Chemical formula	S. G.	a	b	с	β (°)	$V(\text{\AA}^3)$	Ref.	a' s	b'	<i>c'</i>	$V(\text{\AA}^3)$
Na ₂ Co[PO ₄]F-type											
Na ₂ Co[PO ₄]F	Pbcn	5.2475	13.795	11.6890		846.16	<mark>29</mark>	6.8975	5.2475	11.689	423.08
Na ₂ Mg[PO ₄]F	Pbcn	5.2230	13.818	11.7490		847.94	<mark>23</mark>	6.909	5.2230	11.7490	423.97
Na ₂ Fe[PO ₄]OH	Pbcn	5.2270	13.861	11.7740		853.04	<mark>31</mark>	6.9305	5.227	11.774	426.52
Na ₂ Fe[PO ₄]F	Pbcn	5.2200	13.854	11.7792		851.85	<mark>32</mark>	6.927	5.22	11.7792	425.92
Na ₂ Mn[PO ₄]F-type											
Na ₂ Mn[PO ₄]F	$P2_{1}/c$	13.6830	5.3170	13.7683	120.04	867.10	<mark>30</mark>	6.8415	5.317	11.918	433.55
Li ₂ Mn[PO ₄]F	$P2_{1}/c$	13.21	5.10	13.37	121.43	768.59	9	6.605	5.1	11.4083	384.30
Na ₂ Zr[GeO ₄]O	$P2_{1}/c$	13.9913	5.5600	13.8800	119.22	942.35	<mark>33</mark>	6.9956	5.56	12.1138	471.17
Na ₂ Zr[SiO ₄]O	$P2_{1}/c$	13.8113	5.4600	13.7000	119.21	901.74	<mark>34</mark>	6.9056	5.46	11.9578	450.87
β - \Box_2 Nb[PO ₄]O	$P2_{1}/c$	13.0900	5.2890	13.2560	120.68	789.30	<mark>35</mark>	6.545	5.289	11.4000	394.65
β - \Box_2 Ta[PO ₄]O	$P2_{1}/c$	13.0700	5.2810	13.2400	120.42	788.06	<mark>35</mark>	6.535	5.281	11.4173	394.03
Na ₂ Ni[PO ₄]F	$P2_1/a$	13.6978	5.1991	13.4581	120.58	825.14	12	6.8489	5.1991	11.5863	412.57
$\Box_2 Nb[PO_4]O$	Pnma	11.3040	5.3160	6.6400		399.01	<mark>36</mark>	6.6400	5.3160	11.3040	399.01
$\Box_2 Nb[VO_4]O$	Pnma	11.8860	5.5290	6.9340		455.69	<mark>39</mark>	6.9340	5.5290	11.8860	455.69
\Box_2 Ta[VO ₄]O	Pnma	11.8940	5.5296	6.9529		457.29	<mark>39</mark>	6.9529	5.5296	11.8940	457.29
β - \Box_2 Ta[AsO ₄]O	Pnma	11.5700	5.3100	6.6600		409.17	<mark>38</mark>	6.6600	5.3100	11.5700	409.17
□ ₂ Ti[SO ₄]O	Pnma	10.9530	5.1520	6.4260		362.62	<mark>40</mark>	6.4260	5.1520	10.9530	362.62
$\Box_2 W[PO_4]O$	$Pna2_1$	11.1740	6.5500	5.2280		382.64	<mark>41</mark>	6.5500	5.2280	11.1740	382.64
$\Box_2 Nb[PO_4]O$	$Pna2_1$	11.2875	6.6296	5.2871		395.64	<mark>37</mark>	6.6296	5.2871	11.2875	395.64
Ca2Na[SiO4]F-type											
Ca2Ca[SiO4]O	P6 ₃ /mmc	7.0990	7.0990	5.6870		248.20	<mark>26</mark>	7.099	5.687	12.296	496.40
Ca ₂ Na[SiO ₄]F	Pnma	5.3388	7.1542	12.4116		474.05	<mark>44</mark>	7.1542	5.3388	12.4166	474.05
Ca ₂ Na[GeO ₄]F	Pnma	5.3620	7.3280	12.6810		498.27	<mark>42</mark>	7.3280	5.3620	12.6810	498.27
LiNaNi[PO ₄]F	$P2_{1}/c^{*}$	6.772	11.154	5.021	90.00	379.26	12	6.772	5.021	11.154	379.26
LiNaMg[PO ₄]F	$P2_{1}/c^{*}$	6.8179	11.223	5.0222	90.00	384.30		6.8179	5.0222	11.223	384.30
Na ₂ Sc[GeO ₄]OH-type											
Na ₂ Sc[GeO ₄]OH	$Pca2_1$	13.7800	5.5300	12.3400		940.35	<mark>43</mark>				

*: pseudomerohedrally twinned LiNaNi[PO₄]F structures

5

Table S4.	The atomic positions	of Na ₂ Co[PO ₄]F	$(P\overline{1}, a_2 = 13.795)$	$b_1, b_2 = 11.6890,$	and $c_2 = 5.2475$	Å, $\alpha = \beta = \gamma =$	= 90 °) and
LiNaNi[PO	D_4]F ($P\overline{1}$, $a_1 = 13.545$, $a_2 = 13.545$, $a_3 = 13.545$, $a_4 = 13.545$, $a_5 = 13.5$	$b_1 = 11.154, c_1 = 5.0$	021 Å, $\alpha = \beta = \gamma = 9$	90°) after the tran	nsformations.		

En tur til		o[PO4]F	[= 11.15 1, 0]	- 5.021 11	LiNaN	vi[PO₄]F	e transformat	ions.		
Atom	x2	y2	z2	Atom	x1	y1	z1	x2-x1	y2-y1	z2-z1
Na1	0.25480	0.17130	0.73790	Na1	0.25493	0.16529	0.74795	-0.00013	0.00601	-0.01005
Na2	0.75480	0.17130	0.76210	Na2	0.75493	0.16529	0.74795	-0.00013	0.00601	0.01415
Na3	0.74520	0.67130	0.73790	Na3	0.74507	0.66529	0.75205	0.00013	0.00601	-0.01415
Na4	0.24520	0.67130	0.76210	Na4	0.24507	0.66529	0.75205	0.00013	0.00601	0.01005
Na5	0.87630	0.08310	0.25540	Lil	0.87314	0.08225	0.23437	0.00316	0.00085	0.02103
Na6	0.37630	0.08310	0.24460	Li2	0.37314	0.08225	0.23437	0.00316	0.00085	0.01023
Na7	0.12370	0.58310	0.25540	Li3	0.12686	0.58225	0.26563	-0.00316	0.00085	-0.01023
Na8	0.62370	0.58310	0.24460	Li4	0.62686	0.58225	0.26563	-0.00316	0.00085	-0.02103
Co1	0.98880	0.17440	0.72180	Ni1	0.99018	0.17231	0.76617	-0.00138	0.00209	-0.04437
Co2	0.48880	0.17440	0.77820	Ni2	0.49018	0.17231	0.76617	-0.00138	0.00209	0.01203
Co3	0.01120	0.67440	0.72180	Ni3	0.00982	0.67231	0.73383	0.00138	0.00209	-0.01203
Co4	0.51120	0.67440	0.77820	Ni4	0.50982	0.67231	0.73383	0.00138	0.00209	0.04437
P1	0.11810	0.41210	0.79480	P1	0.12106	0.41794	0.77416	-0.00296	-0.00584	0.02064
P2	0.61810	0.41210	0.70520	P2	0.62106	0.41794	0.77416	-0.00296	-0.00584	-0.06896
P3	0.88190	0.91210	0.79480	P3	0.87894	0.91794	0.72584	0.00296	-0.00584	0.06896
P4	0.38190	0.91210	0.70520	P4	0.37894	0.91794	0.72584	0.00296	-0.00584	-0.02064
01	0.71610	0.13100	0.20880	01	0.72694	0.12388	0.23717	-0.01084	0.00712	-0.02837
O2	0.21610	0.13100	0.29120	O2	0.22694	0.12388	0.23717	-0.01084	0.00712	0.05403
O 3	0.28390	0.63100	0.20880	O 3	0.27306	0.62388	0.26283	0.01084	0.00712	-0.05403
O4	0.78390	0.63100	0.29120	O4	0.77306	0.62388	0.26283	0.01084	0.00712	0.02837
O5	0.03620	0.34730	0.64990	05	0.05146	0.32913	0.63644	-0.01526	0.01817	0.01346
O 6	0.53620	0.34730	0.85010	06	0.55146	0.32913	0.63644	-0.01526	0.01817	0.21366
O 7	0.96380	0.84730	0.64990	O 7	0.94854	0.82913	0.86356	0.01526	0.01817	-0.21366
08	0.46380	0.84730	0.85010	08	0.44854	0.82913	0.86356	0.01526	0.01817	-0.01346
O 9	0.10890	0.96020	0.26730	O 9	0.09685	0.07442	0.57453	0.01205	0.88578	-0.30723
O10	0.60370	0.10630	0.58630	O10	0.59685	0.07442	0.57453	0.00685	0.03188	0.01177
011	0.89630	0.60630	0.91370	O11	0.90315	0.57442	0.92547	-0.00685	0.03188	-0.01177
O12	0.39110	0.46020	0.23270	O12	0.40315	0.57442	0.92547	-0.01205	-0.11422	-0.69277
O 13	0.10370	0.10630	0.91370	O13	0.10800	0.95895	0.14449	-0.0043	-0.85265	0.76921
O14	0.60890	0.96020	0.23270	O14	0.60800	0.95895	0.14449	0.0009	0.00125	0.08821
015	0.89110	0.46020	0.26730	015	0.89200	0.45895	0.35551	-0.0009	0.00125	-0.08821
O 16	0.39630	0.60630	0.58630	016	0.39200	0.45895	0.35551	0.0043	0.14735	0.23079
F1	0.87460	0.25000	0.50000	F1	0.89521	0.21364	0.46517	-0.02061	0.03636	0.03483
F2	0.40380	0.25000	0.50000	F2	0.39521	0.21364	0.46517	0.00859	0.03636	0.03483
F3	0.09620	0.75000	0.00000	F3	0.10479	0.71364	0.03483	-0.00859	0.03636	-0.03483
F4	0.62540	0.75000	0.00000	F4	0.60479	0.71364	0.03483	0.02061	0.03636	-0.03483

Table S5. The atomic positions of Na₂Ni[PO₄]F ($P\overline{1}$, a = 13.6978(16) Å, b = 5.1991(3) Å, c = 13.4581(8) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 120.58(1)^{\circ}$ or and LiNaNi[PO₄]F ($P\overline{1}$, a = 13.545(7) Å, b = 5.021(3) Å, c = 13.049(5) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 121.27(3)^{\circ}$ or after the transformations.

/	Na ₂ N	i[PO ₄]F		,	LiNaN	i[PO ₄]F		1	() /	
Atom	x2	y2	z2	Atom	x1	y1	z1	x2-x1	y2-y1	z2-z1
Na1	0.3385	0.7602	0.67	Na1	0.33755	0.752	0.6653	0.00095	0.0082	0.0047
Na2	0.8385	0.7398	0.67	Na2	0.83755	0.752	0.6653	0.00095	-0.0122	0.0047
Na3	0.0806	0.7387	0.1704	Na3	0.07775	0.748	0.1653	0.00285	-0.0093	0.0051
Na4	0.5806	0.7613	0.1704	Na4	0.57775	0.748	0.1653	0.00285	0.0133	0.0051
Na5	0.9176	0.2421	0.5811	Li1	0.91425	0.2656	0.5823	0.00335	-0.0235	-0.0012
Na6	0.4176	0.2579	0.5811	Li2	0.41425	0.2656	0.5823	0.00335	-0.0077	-0.0012
Na7	0.4118	0.2296	0.0812	Li3	0.41805	0.2344	0.0823	-0.00625	-0.0048	-0.0011
Na8	0.9118	0.2704	0.0812	Li4	0.91805	0.2344	0.0823	-0.00625	0.036	-0.0011
Ni1	0.07515	0.77672	0.67689	Ni1	0.07635	0.7338	0.6723	-0.0012	0.04292	0.00459
Ni2	0.57515	0.72328	0.67689	Ni2	0.57635	0.7338	0.6723	-0.0012	-0.01052	0.00459
Ni3	0.85096	0.78356	0.17655	Ni3	0.84595	0.7662	0.1723	0.00501	0.01736	0.00425
Ni4	0.64904	0.28356	0.82345	Ni4	0.65405	0.2338	0.8277	-0.00501	0.04976	-0.00425
P1	0.323	0.7015	0.9126	P1	0.33005	0.7258	0.9179	-0.00705	-0.0243	-0.0053
P2	0.823	0.7985	0.9126	P2	0.83005	0.7258	0.9179	-0.00705	0.0727	-0.0053
P3	0.3385	0.7919	0.4117	P3	0.33785	0.7742	0.4179	0.00065	0.0177	-0.0062
P4	0.8385	0.7081	0.4117	P4	0.83785	0.7742	0.4179	0.00065	-0.0661	-0.0062
01	0.7812	0.2835	0.6311	01	0.78885	0.2628	0.6239	-0.00765	0.0207	0.0072
O2	0.2812	0.2165	0.6311	O 2	0.28885	0.2628	0.6239	-0.00765	-0.0463	0.0072
O3	0.5964	0.2172	0.1303	O3	0.58505	0.2372	0.1239	0.01135	-0.02	0.0064
O 4	0.0964	0.2828	0.1303	O4	0.08505	0.2372	0.1239	0.01135	0.0456	0.0064
05	0.2081	0.8422	0.8461	O5	0.21605	0.8636	0.8291	-0.00795	-0.0214	0.017
O 6	0.7081	0.6578	0.8461	O 6	0.71605	0.8636	0.8291	-0.00795	-0.2058	0.017
07	0.3862	0.6489	0.3452	07	0.36305	0.6364	0.3291	0.02315	0.0125	0.0161
O 8	0.8862	0.8511	0.3452	O 8	0.86305	0.6364	0.3291	0.02315	0.2147	0.0161
O 9	0.0884	0.2314	0.4589	O 9	0.1341	-0.0745	0.5744	-0.0457	0.3059	-0.1155
O10	0.654	0.9148	0.6059	O10	0.6341	0.9255	0.5744	0.0199	-0.0107	0.0315
011	0.8767	0.7378	1.0416	011	0.8097	0.4255	0.9256	0.067	0.3123	0.116
012	0.7016	0.5922	0.1076	O12	0.6903	0.5745	0.0744	0.0113	0.0177	0.0332
013	0.5884	0.2686	0.4589	013	0.58745	0.3555	0.4589	0.00095	-0.0869	0
O 14	0.154	0.5852	0.6059	O 14	0.08745	0.3555	0.4589	0.06655	0.2297	0.147
015	0.7984	1.0922	0.8924	015	0.8785	0.8555	1.041	-0.0801	0.2367	-0.1486
016	0.6233	0.2378	0.9584	016	0.6215	0.1445	0.959	0.0018	0.0933	-0.0006
F1	0.0019	-0.0043	0.7527	F1	0.002	0.0348	0.7136	-0.0001	-0.0391	0.0391
F2	0.5296	0.0047	0.7484	F2	0.502	0.0348	0.7136	0.0276	-0.0301	0.0348
F3	0.4981	0.4957	0.2473	F3	0.4616	0.4652	0.2136	0.0365	0.0305	0.0337
F4	0.9704	0.5047	0.2516	F4	0.9616	0.4652	0.2136	0.0088	0.0395	0.038

_

_

a = 13.545(7) Å, $b = 5.021(3)$ Å, $c = 13.049(5)$ Å	Å, $\alpha = \gamma = 90^{\circ}$, and $\beta = 121.27(3)^{\circ}$) after	the transformations.
Table S6. The atomic positions of Na ₂ Mn[PO ₄]F	F $(P\overline{1}, a = 13.6830, b = 5.3170, c = 13.76)$	583Å, and β = 120.04 °) and LiNaNi[PO ₄]F ($P\overline{1}$,

	Na ₂ Mn[PO ₄]F				LiNaNi[PO ₄]F					
Atom	x2	y2	z2	Atom	x1	y1	z1	x2-x1	y2-y1	z2-z1
Na1	0.33392	0.7586	0.6632	Na1	0.33755	0.752	0.6653	-0.00363	0.0066	-0.0021
Na2	0.83455	0.737	0.67191	Na2	0.83755	0.752	0.6653	-0.003	-0.015	0.00661
Na3	0.07984	0.7383	0.1665	Na3	0.07775	0.748	0.1653	0.00209	-0.0097	0.0012
Mn1	0.5761	0.77224	0.17666	Na4	0.57775	0.748	0.1653	-0.00165	0.02424	0.01136
Mn2	0.92356	0.22901	0.60041	Li1	0.91425	0.2656	0.5823	0.00931	-0.03659	0.01811
Na4	0.41977	0.2562	0.58675	Li2	0.41425	0.2656	0.5823	0.00552	-0.0094	0.00445
Na5	0.41977	0.2438	0.08675	Li3	0.41805	0.2344	0.0823	0.00172	0.0094	0.00445
Mn3	0.92356	0.27099	0.10041	Li4	0.91805	0.2344	0.0823	0.00551	0.03659	0.01811
Na6	0.07984	0.7617	0.6665	Ni1	0.07635	0.7338	0.6723	0.00349	0.0279	-0.0058
Mn4	0.5761	0.72776	0.67666	Ni2	0.57635	0.7338	0.6723	-0.00025	-0.00604	0.00436
Na7	0.83455	0.763	0.17191	Ni3	0.84595	0.7662	0.1723	-0.0114	-0.0032	-0.00039
Na8	0.66608	0.2586	0.8368	Ni4	0.65405	0.2338	0.8277	0.01203	0.0248	0.0091
P1	0.33795	0.7144	0.91529	P1	0.33005	0.7258	0.9179	0.0079	-0.0114	-0.00261
P2	0.83782	0.7835	0.92335	P2	0.83005	0.7258	0.9179	0.00777	0.0577	0.00545
P3	0.33795	0.7856	0.41529	P3	0.33785	0.7742	0.4179	1E-04	0.0114	-0.00261
P4	0.83782	0.7165	0.42335	P4	0.83785	0.7742	0.4179	-3E-05	-0.0577	0.00545
01	0.7875	0.2799	0.6352	01	0.78885	0.2628	0.6239	-0.00135	0.0171	0.0113
O2	0.2881	0.2214	0.6517	O2	0.28885	0.2628	0.6239	-0.00075	-0.0414	0.0278
03	0.614	0.1466	0.149	03	0.58505	0.2372	0.1239	0.02895	-0.0906	0.0251
O4	0.0963	0.2981	0.1348	O4	0.08505	0.2372	0.1239	0.01125	0.0609	0.0109
05	0.2125	0.7799	0.8648	05	0.21605	0.8636	0.8291	-0.00355	-0.0837	0.0357
O 6	0.7119	0.7214	0.8483	06	0.71605	0.8636	0.8291	-0.00415	-0.1422	0.0192
O7	0.386	0.6466	0.351	07	0.36305	0.6364	0.3291	0.02295	0.0102	0.0219
O 8	0.9037	0.7981	0.3652	O 8	0.86305	0.6364	0.3291	0.04065	0.1617	0.0361
O 9	0.1166	0.1465	0.4638	O 9	0.1341	-0.0745	0.5744	-0.0175	0.221	-0.1106
O10	0.6515	0.9261	0.5963	O10	0.6341	0.9255	0.5744	0.0174	0.0006	0.0219
011	0.8834	0.6465	1.0362	011	0.8097	0.4255	0.9256	0.0737	0.221	0.1106
012	0.6515	0.5739	0.0963	O12	0.6903	0.5745	0.0744	-0.0388	-0.0006	0.0219
013	0.5973	0.2855	0.4601	013	0.58745	0.3555	0.4589	0.00985	-0.07	0.0012
O 14	0.1489	0.5717	0.5558	O14	0.08745	0.3555	0.4589	0.06145	0.2162	0.0969
015	0.8511	1.0717	0.9442	O15	0.8785	0.8555	1.041	-0.0274	0.2162	-0.0968
016	0.5973	0.2145	0.9601	O16	0.6215	0.1445	0.959	-0.0242	0.07	0.0011
F1	-0.0003	-0.0004	0.7632	F1	0.002	0.0348	0.7136	-0.0023	-0.0352	0.0496
F2	0.5073	0.0016	0.7414	F2	0.502	0.0348	0.7136	0.0053	-0.0332	0.0278
F3	0.5073	0.4984	0.2414	F3	0.4616	0.4652	0.2136	0.0457	0.0332	0.0278
F4	0.9997	0.5004	0.2632	F4	0.9616	0.4652	0.2136	0.0381	0.0352	0.0496

Table S7. The atomic positions of Na₂Mn[PO₄]F ($P\overline{1}$, a = 13.6830, b = 5.3170, c = 13.7683Å, and $\beta = 120.04$ °) and Na₂Ni[PO₄]F ($P\overline{1}$, a = 13.6978(16) Å, b = 5.1991(3) Å, c = 13.4581(8) Å, $\alpha = \gamma = 90$ °, $\beta = 120.58(1)$ °) after the transformations.

	Na ₂ M	n[PO4]F			Na ₂ Ni	i[PO₄]F				
Atom	x2	y2	z2	Atom	x2	y2	z2	x2-x1	y2-y1	z2-z1
Na1	0.33392	0.7586	0.6632	Na1	0.3385	0.7602	0.67	-0.00458	-0.0016	-0.0068
Na2	0.83455	0.737	0.67191	Na2	0.8385	0.7398	0.67	-0.00395	-0.0028	0.00191
Na3	0.07984	0.7383	0.1665	Na3	0.0806	0.7387	0.1704	-0.00076	-0.0004	-0.0039
Mn1	0.5761	0.77224	0.17666	Na4	0.5806	0.7613	0.1704	-0.0045	0.01094	0.00626
Mn2	0.92356	0.22901	0.60041	Na5	0.9176	0.2421	0.5811	0.00596	-0.01309	0.01931
Na4	0.41977	0.2562	0.58675	Na6	0.4176	0.2579	0.5811	0.00217	-0.0017	0.00565
Na5	0.41977	0.2438	0.08675	Na7	0.4118	0.2296	0.0812	0.00797	0.0142	0.00555
Mn3	0.92356	0.27099	0.10041	Na8	0.9118	0.2704	0.0812	0.01176	0.00059	0.01921
Na6	0.07984	0.7617	0.6665	Ni1	0.07515	0.77672	0.67689	0.00469	-0.01502	-0.01039
Mn4	0.5761	0.72776	0.67666	Ni2	0.57515	0.72328	0.67689	0.00095	0.00448	-0.00023
Na7	0.83455	0.763	0.17191	Ni3	0.85096	0.78356	0.17655	-0.01641	-0.02056	-0.00464
Na8	0.66608	0.2586	0.8368	Ni4	0.64904	0.28356	0.82345	0.01704	-0.02496	0.01335
P1	0.33795	0.7144	0.91529	P1	0.323	0.7015	0.9126	0.01495	0.0129	0.00269
P2	0.83782	0.7835	0.92335	P2	0.823	0.7985	0.9126	0.01482	-0.015	0.01075
P3	0.33795	0.7856	0.41529	P3	0.3385	0.7919	0.4117	-0.00055	-0.0063	0.00359
P4	0.83782	0.7165	0.42335	P4	0.8385	0.7081	0.4117	-0.00068	0.0084	0.01165
01	0.7875	0.2799	0.6352	01	0.7812	0.2835	0.6311	0.0063	-0.0036	0.0041
O2	0.2881	0.2214	0.6517	O2	0.2812	0.2165	0.6311	0.0069	0.0049	0.0206
03	0.614	0.1466	0.149	O3	0.5964	0.2172	0.1303	0.0176	-0.0706	0.0187
O4	0.0963	0.2981	0.1348	O4	0.0964	0.2828	0.1303	-0.0001	0.0153	0.0045
05	0.2125	0.7799	0.8648	O5	0.2081	0.8422	0.8461	0.0044	-0.0623	0.0187
O6	0.7119	0.7214	0.8483	O6	0.7081	0.6578	0.8461	0.0038	0.0636	0.0022
O7	0.386	0.6466	0.351	O7	0.3862	0.6489	0.3452	-0.0002	-0.0023	0.0058
08	0.9037	0.7981	0.3652	08	0.8862	0.8511	0.3452	0.0175	-0.053	0.02
09	0.1166	0.1465	0.4638	O9	0.0884	0.2314	0.4589	0.0282	-0.0849	0.0049
O10	0.6515	0.9261	0.5963	O10	0.654	0.9148	0.6059	-0.0025	0.0113	-0.0096
011	0.8834	0.6465	1.0362	O11	0.8767	0.7378	1.0416	0.0067	-0.0913	-0.0054
O12	0.6515	0.5739	0.0963	O12	0.7016	0.5922	0.1076	-0.0501	-0.0183	-0.0113
013	0.5973	0.2855	0.4601	O13	0.5884	0.2686	0.4589	0.0089	0.0169	0.0012
O14	0.1489	0.5717	0.5558	O14	0.154	0.5852	0.6059	-0.0051	-0.0135	-0.0501
015	0.8511	1.0717	0.9442	O15	0.7984	1.0922	0.8924	0.0527	-0.0205	0.0518
O16	0.5973	0.2145	0.9601	O16	0.6233	0.2378	0.9584	-0.026	-0.0233	0.0017
F1	-0.0003	-0.0004	0.7632	F1	0.0019	-0.0043	0.7527	-0.0022	0.0039	0.0105
F2	0.5073	0.0016	0.7414	F2	0.5296	0.0047	0.7484	-0.0223	-0.0031	-0.007
F3	0.5073	0.4984	0.2414	F3	0.4981	0.4957	0.2473	0.0092	0.0027	-0.0059
F4	0.9997	0.5004	0.2632	F4	0.9704	0.5047	0.2516	0.0293	-0.0043	0.0116

_

_

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

Table S8. Basis vectors for the 4e(x,y,z) site of the $P2_1/c(14)$ space group and the propagation vector k=(1/2,0,0). The atomic positions are Ni1 (x,y,z), Ni2 (-x,y+1/2,-z+1/2), Ni3(-x,-y,-z), and Ni4(x,-y+1/2,z+1/2). The ordering modes are A(+--+), C(++--), F(++++), and G(+-+-). The model providing the best agreement with the experimental NPD data is highlighted in bold font.

IR	Basis vectors	Shubnikov group
Г1	GxFyGz	P2 ₁ '/c
Г2	AxCyAz	$P2_1/c$
Г3	FxGyFz	P21'/c'
Г4	CxAyCz	$P2_1/c$

Table S9.

5

Crystal structural parameters for LiNaNi[PO₄]F based on the Rietveld refinement against NPD data collected at 3 K. Space group $P2_{1/c}(\#14)$, a = 6.7788(2) Å, b = 11.1702(3) Å, c = 5.01886(16) Å, $\beta = 89.736(2)$, V = 380.03(2) Å³, $B_{nv} = 0.14(8)$ Å².

$p \in (m + 1), \alpha = 0$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-(0)11,0 010100	, o(10)11, p 0)	.,	···(=), 200
Atom	Wyckoff site	Х	У	Z	BVS
Li	4e	-0.250(5)	0.082(2)	0.269(6)	0.93(4)
Na	4e	0.516(2)	0.1674(13)	0.749(4)	1.01(2)
Ni	4e	-0.0200(10)	0.1720(5)	0.7624(13)	2.08(3)
Р	4e	0.2494(16)	0.4194(9)	0.762(2)	5.01(3)
01	4e	-0.5461(12)	0.1248(6)	0.237(2)	2.12(6)
O2	4e	0.0904(14)	0.3269(10)	0.6397(19)	1.78(4)
O3	4e	0.1961(14)	0.0731(8)	0.5688(18)	1.82(5)
O4	4e	0.2125(14)	-0.0395(9)	0.1477(15)	2.17(6)
F	4e	-0.2033(16)	0.2143(7)	0.4594(20)	1.16(3)