Supporting information for

Catalyst Design for Iron-Promoted Reductions: An Iron Disilyl-dicarbonyl Complex Bearing Weakly Coordinating η²-(H-Si) Moieties

Yusuke Sunada, Hironori Tsutsumi, Keisuke Shigeta, Ryota Yoshida, Toru Hashimoto

and Hideo Nagashima

Institute for Materials Chemistry and Engineering and Graduate School of Engineering Sciences, Kyushu University, and

CREST, Japan Science and Technology Agency (JST), Kasuga, Fukuoka 816-8580, Japan.

Experimental details

Figure S-1. ORTEP drawing of 1 (50% probability of the thermal ellipsoids).

Table S1. X-ray Crystallographic Data of 1.

Figure S-2. ORTEP drawing of 6 (50% probability of the thermal ellipsoids).

Table S2. X-ray Crystallographic Data of 6.

Actual NMR charts of the products

General. Manipulation of air and moisture sensitive compounds was carried out under a dry nitrogen atmosphere using standard Schlenk tube techniques associated with a high-vacuum line or in the glove box which was filled with dry nitrogen. All solvents were distilled over appropriate drying reagents prior to use (benzene, toluene, pentane; Ph₂CO/Na). ¹H, ¹³C and ²⁹Si NMR spectra were recorded on a JEOL Lambda 600 or a Lambda 400 spectrometer at ambient temperature. ¹H, ¹³C and ²⁹Si NMR chemical shifts (δ values) were given in ppm relative to the solvent signal (¹H, ¹³C) or standard resonances (²⁹Si; external tetramethylsilane). Elemental analyses were performed by a Perkin Elmer 2400II/CHN analyzer. IR spectra were recorded on a JASCO FT/IR-550 spectrometer. Photo-irradiation was carried out by an Ushio high-pressure mercury lamp UM-453B-A (450 W). Starting materials, 1,2-bis(dimethylsily)benzene¹ and $(\eta^4-C_6H_8)Fe(CO)_3^2$ were synthesized by the method reported in the literature.

Preparation of Fe(Me₂SiC₆H₄SiMe₂){Me₂Si(H)C₆H₄Si(H)Me₂}₂(CO)₂ (1). In a 100 mL Schlenk tube, (\eta^4-C_6H_8)Fe(CO)_3 (1.0 g, 4.50 mmol) was dissolved in pentane (50 mL), and 1,2-bis(dimethylsilyl)benzene (1.92 g, 9.88 mmol) was added to this solution at room temperature. After mixing this solution for 24 hrs at room temperature under irradiation by a high-pressure mercury lamp, the solvent was evaporated *in vacuo***. This crude product was dissolved in pentane (40 mL), and centrifuged to remove the small amount of insoluble materials. The supernatant was collected, concentrated to ca. 10 mL, and cooled at -35 °C to give 1** as coorless crystals (1.05 g, 2.11 mmol, 47 %). ¹H NMR (600 MHz, r.t., C₆D₆): δ = -10.2 (s, 2H, H-Si, with a satellite signal due to the coupling with ²⁹Si, *J*_{Si-H} = 13.2 Hz), 0.74 (s, 24H, SiMe₂), 7.23-7.29 (m, 4H, C₆H₄) 7.51-7.56 (m, 4H, C₆H₄). ¹³C NMR (150 MHz, r.t., C₆D₆): δ = 9.5 (s, SiMe₂), 128.9, 131.7, 153.5 (s, C₆H₄), 2108. (CO). ²⁹Si NMR (119 MHz, r.t., C₆D₆); δ = 35.5 (s, *Si*Me₂). IR (KBr, pellet): v_{Si-H} = 1981 cm⁻¹, v_{CO} = 1929 cm⁻¹. Anal calcd for C₂₂H₃₄O₂FeSi₄; C 52.99, H 6.87; found: C 52.84, H 6.77.

Preparation of Fe(Me₂SiC₆H₄SiMe₂)(MeSCH₂CH₂CH₂SMe)(CO)₂ (6). In a 20 mL schlenk tube, complex **1** (200 mg, 0.40 mmol) was dissolved in toluene (20 mL), and 2,6-dithiaheptane (55 mg, 0.40 mmol) was added. After stirring this solution for 12 hrs at room temperature, the solvent was removed in vacuo. The resulting solid was dissolved in ether (10 mL), concentrated to ca. 5 mL, and cooled at -35 °C to give **6** as yellow crystals (163 mg, 0.37 mmol, 93 %). ¹H NMR (600 MHz, r.t., C₆D₆): δ = 0.88 (s, 12H, SiMe₂), 1.13-1.19 (m, 2H, -CH₂-), 1.76-1.81 (m, 4H, SCH₂-), 1.80 (s, 6H, SMe), 7.28-7.32 (m, 2H, C₆H₄) 7.73-7.73 (m, 2H, C₆H₄). ¹³C NMR (150 MHz, r.t., C₆D₆): δ = 5.15 (s, SiMe₂), 19.49 (s, -CH₂-), 23.78 (s, SMe), 35.11 (s, SCH₂-), 127.4, 131.4, 155.8 (s, C₆H₄), 209.4 (s, CO). ²⁹Si NMR (119 MHz, r.t., C₆D₆): δ = 40.8 (s, SiMe₂). IR (KBr): v_{C=0} = 1892, 1874 cm⁻¹; Anal calcd for C₁₇H₂₈O₂FeSi₂; C 46.35, H 6.41; found: C 46.21, H 6.38.

X-ray data collection and reduction

X-ray crystallography was performed on a Rigaku Saturn CCD area detector with graphite monochromated Mo-K α radiation ($\lambda = 0.71070$ A). The data were collected at 123(2) K using \Box scan in the θ range of $3.2 \le \theta \le 27.5$ deg (1) and $3.3 \le \theta \le 27.5$ deg (6). The data obtained were processed using Crystal-Clear (Rigaku) on a Pentium computer, and were corrected for Lorentz and polarization effects. The structures were solved by direct methods³, and expanded using Fourier techniques.⁴ Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F^2 was based on 5,780 observed reflections and 262 variable parameters for 1, 4,220 observed reflections and 217 variable parameters for 6. Neutral atom scattering factors were taken from Cromer and Waber.⁵ All calculations were performed using SHELXL-97⁷. Details of final refinement as well as the bond lengths and angles are summarized in Table S1 and S2, and the numbering scheme employed is also shown in Figure S-1 and S-2, which were drawn with ORTEP at 50% probability ellipsoid.

Deposited crystallographic data

CCDC 947204 (1) and 947205 (6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

General Procedure for the hydrogenation of alkenes:

In a 50 mL Schlenk tube, **1** [1.2 mg (0.0025 mmol) (for 1-octene), 5 mg (0.01 mmol) (for methyl 10-undecenoate) or 25 mg (0.05 mmol) (for other alkenes)] and alkene (1 mmol) was dissolved in toluene (0.5 mL), and the atmosphere was replaced by 1 atm of hydrogen. The resulting mixture was stirred at room temperature, then anisole (108 μ L, 1.0 mmol, internal standard) was added at room temperature. The yield of the product was determined by GC analysis.

Spectral Data of the products

n-Octane

¹H NMR (400 MHz, r.t., CDCl₃): δ = 0.88 (t, *J*_{H-H} = 7.2 Hz, 6H, CH₃), 1.16-1.36 (m, 12H, -(CH₂)₆-). ¹³C NMR (100 MHz, r.t., CDCl₃): δ = 14.27, 22.86, 29.48, 32.10.

methyl 10-undecanoate

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 0.88$ (t, 3H, $J_{\text{H-H}} = 7.4$ Hz, -CH₃), 1.17-1.35 (m, 14H, -CH₂-), 1.53-1.67 (m, 2H, -CH₂-), 2.30 (t, 2H, $J_{\text{H-H}} = 7.7$ Hz, -CH₂C(=O)-), 3.66 (s, 3H, OMe). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = 14.25$, 22.83, 25.12, 29.31, 29.40, 29.45, 29.60, 29.70, 32.04, 34.28, 51.57, 174.50

Ethylbenzene

¹H NMR (400 MHz, r.t., CDCl₃): δ = 1.26 (t, 2H, *J*_{H-H} = 7.7 Hz, CH₃), 2.67 (q, 2H, *J*_{H-H} = 7.7 Hz, CH₂), 7.16-7.24 (m, 3H, C₆H₅), 7.27-7.33 (m, 2H, C₆H₅). ¹³C NMR (100 MHz, r.t., CDCl₃): δ = 15.75, 29.03, 125.73, 128.00, 128.45, 144.40.

Bibenzyl

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 2.93$ (s, 4H, CH₂), 7.12-7.23 (m, 6H, C₆H₅), 7.24-7.32 (m, 4H, C₆H₅). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = 37.9$, 125.9, 128.3, 128.5, 141.8.

Norbornane

¹H NMR (400 MHz, r.t., CDCl₃): δ = 1.12-1.20 (m, 6H, CH₂), 1.43-1.51 (m, 4H, CH₂), 2.16-2.22 (m, 2H, CH). ¹³C NMR (100 MHz, r.t., CDCl₃): δ = 29.9, 36.5, 38.5.

Cyclopentane

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 1.52$ (s, 10H, CH₂). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = 25.9$.

Cyclohexane

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 1.43$ (s, 12H, CH₂). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = 27.0$.

Methylcyclohexane

¹H NMR (400 MHz, r.t., CDCl₃): δ = 0.86 (d, *J*_{H-H} = 5.8 Hz, 3H, CH₃), 1.04-1.28 (m, 4H, CH₂), 1.28-1.39 (m, 1H, CH), 1.54-1.72 (m, 6H, CH₂). ¹³C NMR (100 MHz, r.t., CDCl₃): δ = 22.9, 26.3, 26.4, 32.7, 35.4.

2,3-Dimethyl-2-butane

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 0.84$ (d, $J_{\text{H-H}} = 6.7$ Hz, 12H, CH₃), 1.40 (septet, $J_{\text{H-H}} = 6.7$ Hz, 12H, CH). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = 19.4$, 33.7.

Hydrosilylation of alkenes:

Hydrosilylation of ethylene with dimethylphenylsilane catalyzed by 1

In a 50 mL Schlenk tube, **1** (5 mg, 0.01 mmol) was dissolved in dimethylphenylsilane (136 mg, 1.0 mmol) in toluene (0.5 mL), and the atmosphere was replaced by 1 atm of ethylene. The resulting mixture was stirred at room temperature for 5 hrs. After removal of the solvent, the product **3a** was isolated by distillation (5 Pa, r.t). Isolated yield: 95 % (156 mg, 0.95 mmol)

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 0.25$ (s, 6H, Si(CH₃)₂), 0.73 (q, 2H, $J_{\text{H-H}} = 8.2$ Hz, SiCH₂), 0.96 (t, 2H, $J_{\text{H-H}} = 8.2$ Hz, CH₂CH₃), 7.31-7.38 (m, 3H, C₆H₅), 7.48-7.54 (m, 2H, C₆H₅). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = -3.0$, 7.9, 30.2, 128.2, 129.2, 134.1, 140.0.

Hydrosilylation of ethylene with triethylsilane catalyzed by 1

In a 50 mL Schlenk tube, **1** (25 mg, 0.05 mmol) was dissolved in triethylsilane (116 mg, 1.0 mmol) in toluene (0.5 mL), and the atmosphere was replaced by 1 atm of ethylene. The resulting mixture was stirred at room temperature for 5 hrs. After the reaction was completed, the product **3b** was isolated by distillation (5 Pa, r.t). Isolated yield: 92 % (133 mg, 0.92 mmol)

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 0.50$ (q, 8H, $J_{\text{H-H}} = 8.2$ Hz, CH_2CH_3), 0.93 (t, 12H, $J_{\text{H-H}} = 8.2$ Hz, CH₂CH₃). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = 3.11$, 7.58.

Hydrosilylation of ethylene with triethoxysilane catalyzed by 1

In a 50 mL Schlenk tube, **1** (50 mg, 0.1 mmol) was dissolved in triethoxysilane (164 mg, 1.0 mmol) in toluene (0.5 mL), and the atmosphere was replaced by 1 atm of ethylene. The resulting mixture was stirred at room temperature for 5 hrs. After the reaction was completed, the product **3c** was isolated by distillation (5 Pa, r.t). Isolated yield: 96 % (184 mg, 0.95 mmol)

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 0.63$ (q, 2H, $J_{\text{H-H}} = 7.7$ Hz, CH_2CH_3), 1.00 (t, 3H, $J_{\text{H-H}} = 7.7$ Hz, CH₂CH₃), 1.23 (t, 9H, $J_{\text{H-H}} = 6.8$ Hz, OCH₂CH₃), 3.82 (q, 6H, $J_{\text{H-H}} = 6.8$ Hz, OCH₂CH₃). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = 2.40$, 6.62, 18.45, 58.47.

Hydrosilylation of ethylene with 1,1,1,3,3-pentamethyldisiloxane catalyzed by 1

In a 50 mL Schlenk tube, **1** (5 mg, 0.01 mmol) was dissolved in 1,1,1,3,3-pentamethyldisiloxane (195 μ L, 1.0 mmol) in toluene (0.5 mL), and the atmosphere was replaced by 1 atm of ethylene. The resulting mixture was stirred at room temperature for 5 hrs. After the reaction was completed, the product **3d** was isolated by distillation (5 Pa, r.t). Isolated yield: 91 % (160 mg, 0.91 mmol)

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 0.03$ (s, 6H, Si(CH₃)₂), 0.06 (s, 9H, Si(CH₃)₃), 0.49 (q, 2H, *J*_{H-H} = 8.2 Hz, SiCH₂), 0.92 (t, 3H, *J*_{H-H} = 8.2 Hz, CH₂CH₃). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = -0.28$, 1.93, 6.72, 10.03. ²⁹Si NMR (119 MHz, r.t., CDCl₃): $\delta = 7.05$, 8.60. HRMS (EI) calcd for [C₇H₂₀OSi₂]: 176.1053, found 176.1058.

Hydrosilylation of ethylene with 1,1,1,3,5,5,5-heptamethyltrisiloxane catalyzed by 1

In a 50 mL Schlenk tube, **1** (5 mg, 0.01 mmol) was dissolved in 1,1,1,3,5,5,5-heptamethyltrisiloxane (271 μ L, 1.0 mmol) in toluene (0.5 mL), and the atmosphere was replaced by 1 atm of ethylene. The resulting mixture was stirred at room temperature for 5 hrs. After the reaction was completed, the product **3e** was isolated by distillation (5 Pa, r.t). Isolated yield: 93 % (234 mg, 0.93 mmol)

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 0.00$ (s, 3H, SiCH₃), 0.09 (s, 18H, Si(CH₃)₃), 0.43 (q, 2H, $J_{\text{H-H}} = 7.7 \text{ Hz}$, SiCH₂), 0.91 (t, 3H, $J_{\text{H-H}} = 7.7 \text{ Hz}$, CH₂CH₃). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = -0.96$, 1.82, 6.59, 9.31. ²⁹Si NMR (119 MHz, r.t., CDCl₃): $\delta = -20.55$, 6.98. HRMS (EI) calcd for [C₉H₂₆O₂Si₃]-Me: 235.1006, found 235.1004.

Hydrosilylation of 1-octene with 1,1,1,3,3-pentamethyldisiloxane catalyzed by 1

In a 20 mL Schlenk tube, **1** (15 mg, 0.03 mmol) was dissolved in the mixture of 1-octene (156 μ L, 1.0 mmol) and 1,1,1,3,3-pentamethyldisiloxane (195 μ L, 1.0 mmol). The resulting mixture was stirred at 80 °C for 3 hrs. After the reaction, the product **3f** was isolated by distillation (8Pa, 70 °C). Isolated yield: 75 % (195 mg, 0.75 mmol). The reaction of 2-octene with 1,1,1,3,3-pentamethyldisiloxane was performed in the same manner to produce **3f** in 80 % yield.

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 0.03$ (s, 6H, Si(CH₃)₂), 0.06 (s, 9H, Si(CH₃)₃), 0.45-0.55 (m, 2H, SiCH₂-), 0.88 (t, *J*_{H-H} = 7.2 Hz, 3H, -(CH₂)₆CH₃), 1.20-1.34 (m, 12H, -(CH₂)₆-). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta \Box = 0.34$, 1.98, 14.09, 18.42, 22.65, 23.23, 29.29, 29.36, 31.94, 33.37. ²⁹Si NMR (119 MHz, r.t., CDCl₃): $\delta = 6.98$, 7.63. HRMS (EI) calcd for [C₁₃H₃₂OSi₂]-Me: 245.1757, found 245.1759.

Hydrosilylation of 1-octene with 1,1,1,3,5,5,5-heptamethyltrisiloxane catalyzed by 1

In a 20 mL Schlenk tube, **1** (15 mg, 0.03 mmol) was dissolved in the mixture of 1-octene (156 μ L, 1.0 mmol) and 1,1,1,3,5,5,5-heptamethyltrisiloxane (271 μ L, 1.0 mmol). The resulting mixture was stirred at 80 °C for 3 hrs. After the reaction, the product **3g** was isolated by distillation (5 Pa, 70 °C). Isolated yield: 73 % (244 mg, 0.73 mmol). The reaction of 2-octene with 1,1,1,3,5,5,5-heptamethyltrisiloxane was performed in the same manner to produce **3g** in 82 % yield.

¹H NMR (400 MHz, r.t., CDCl₃): δ = -0.01 (s, 3H, SiCH₃), 0.09 (s, 18H, Si(CH₃)₃), 0.42-0.47 (m, 2H, SiCH₂-), 0.88 (t, *J*_{H-H} = 6.8 Hz, 3H, -(CH₂)₆-CH₃), 1.23-1.33 (m, 12H, -(CH₂)₆-). ¹³C NMR (100 MHz, r.t., CDCl₃): δ = -0.26, 1.86, 14.11, 17.64, 22.67, 23.06, 29.25, 29.34, 31.93, 33.25. ²⁹Si NMR (119 MHz, r.t., CDCl₃): δ = -21.12, 6.78. HRMS (EI) calcd for [C₁₆H₃₈O₂Si₃]-Me: 319.1945, found 319.1941.

Hydrosilylation of cyclopentene with 1,1,1,3,3-pentamethyldisiloxane catalyzed by 1

In a 20 mL Schlenk tube, **1** (50 mg, 0.10 mmol) was dissolved in the mixture of cyclopentene (88 μ L, 1.0 mmol) and 1,1,1,3,3-pentamethyldisiloxane (196 μ L, 1.0 mmol). The resulting mixture was stirred at 80 °C for 3 hrs. After the reaction, the product **3h** was isolated by distillation (5 Pa, r.t). Isolated yield: 73 % (158 mg, 0.73 mmol)

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 0.02$ (s, 6H, Si(CH₃)₂), 0.06 (s, 9H, Si(CH₃)₃), 0.86 (tt, *J*_{H-H} = 8.2, 10.6 Hz, 1H, SiC*H*-), 1.20-1.36 (m, 2H, -CH₂-), 1.44-1.62 (m, 4H, -CH₂-), 1.65-1.78 (m, 2H, -CH₂-). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = -0.91$, 2.12, 27.31, 27.55, 27.63. ²⁹Si NMR (119 MHz, r.t., CDCl₃): $\delta = -6.67$, 7.52.

Hydrosilylation of cyclopentene with 1,1,1,3,5,5,5-heptamethyltrisiloxane catalyzed by 1

In a 20 mL Schlenk tube, **1** (50 mg, 0.1 mmol) was dissolved in the mixture of cyclopentene (88 μ L, 1.0 mmol) and 1,1,1,3,5,5,5-heptamethyltrisiloxane (271 μ L, 1.0 mmol). The resulting mixture was stirred at 80 °C for 3 hrs. After the reaction, the product **3i** was isolated by distillation (5 Pa, r.t). Isolated yield: 78 % (226 mg, 0.78 mmol)

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 0.23$ (s, 3H, SiCH₃), 0.28 (s, 18H, Si(CH₃)₃), 0.96-1.05 (m, 1H, SiCH), 1.54-1.65 (m, 4H, -CH₂-), 1.69-1.75 (m, 2H, -CH₂-), 1.86-1.92 (m, 2H, -CH₂-). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = -1.39$, 2.19, 27.46, 27.66, 27.92. ²⁹Si NMR (119 MHz, r.t., CDCl₃): $\delta = -21.70$, 6.59. HRMS (EI) calcd for [C₁₂H₃₀O₂Si₃]-Me: 275.1319, found 275.1319.

Hydrosilylation of styrene with 1,1,1,3,3-pentamethyldisiloxane catalyzed by 1

In a 20 mL Schlenk tube, **1** (50 mg, 0.1 mmol) was dissolved in the mixture of styrene (104 mg, 1 mmol) and 1,1,1,3,3-pentamethyldisiloxane (195 μ L, 1.0 mmol). The resulting mixture was stirred at 80 °C for 3 hrs. After the reaction, the product (*E*)-[1-(phenyl)-2-(1,1,3,3,3-pentamethyldisiloxane)]ethene was isolated by silica-gel column chromatography with hexane as the eluent. Isolated yield: 42 % (104 mg, 0.42 mmol)

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 0.11$ (s, 6H, Si(CH₃)₂), 0.22 (s, 9H, Si(CH₃)₃), 6.42 (d, *J*_{H-H} = 19.3 Hz, 1H, -CH=CH-), 7.24-7.29 (m, 1H, C₆H₅), 7.31-7.39 (m, 2H, C₆H₅), 7.43-7.47 (m, 2H, C₆H₅). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = 0.95$, 2.18, 126.66, 128.27, 128.67, 128.91, 138.40, 144.27. ²⁹Si NMR (119 MHz, r.t., CDCl₃): $\delta = -3.05$, 8.48. HRMS (EI) calcd for [C₁₃H₂₂OSi₂]: 250.1209, found 250.1207.

General Procedure for the Reduction of Carboxamides:^{8,9}

In a 20 mL Schlenk tube, 1 (1.0 mg, 2.0 x 10^{-3} mmol) was dissolved in the mixture of toluene (0.5 mL) and carboxamide **4a-f** (1 mmol), and 1,2-bis(dimethylsilyl)benzene (BDSB: 475 µL, 2.2 mmo) was added to this solution. The solution was stirred at 80 °C for 30 min. After complete consumption of **4** was confirmed by TLC analysis, the reaction mixture was passed through a Florisil[®] column with Celite putting on the head. After removal of the solvent, purification of the residue by alumina column chromatography gave the amine **5a-f**.

Spectral Data of Amines

N,*N*-Dimethyl-(*p*-methoxybenzyl)amine (5a)

¹H NMR (400 MHz, CDCl₃): $\delta = 2.22$ (s, 6H), 3.34 (s, 2H), 3.80 (s, 3H), 6.86 (d, J = 8.8 Hz, 2H), 7.22 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 45.0$, 55.1, 63.6, 113.5, 130.1, 130.7, 158.6. IR (neat): v = 2941, 2813, 2768, 1613, 1511, 1456, 1300, 1177, 1038, 854, 810 cm⁻¹.

N,*N*-Dimethyl-(*p*-bromobenzyl)amine (5b)

¹H NMR (400 MHz, CDCl₃): $\delta = 2.22$ (s, 6H), 3.36 (s, 2H), 7.18 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 45.4$, 63.7, 120.9, 130.7, 131.4, 138.1. IR (neat): v = 2941, 2815, 1487, 1361, 1259, 1173, 1070, 1011, 856, 796 cm⁻¹.

N,*N*-Dimethyl-(*p*-methoxycarbonyl)amine (5c)

¹H NMR (400 MHz, CDCl₃): $\delta = 2.21$ (s, 6H), 3.46 (s, 2H), 3.91 (s, 3H), 7.38 (d, J = 8.2 Hz, 2H), 8.00 (d, J = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 45.4$, 51.9, 63.9, 128.8, 128.9, 129.5, 144.3, 166.9. IR (neat): v = 2948, 2816, 2769, 1726, 1611, 1435, 1414, 1361, 1280, 1173, 1146, 1110, 1019, 968, 865, 757, 700 cm⁻¹.

N-Methylbenzylamine (5d)

¹H NMR (600 MHz, CDCl₃) δ : 2.40 (s, 3H), 3.70 (s, 2H), 7.16-7.34 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ : 36.5, 61.0, 127.4, 128.7, 128.9, 140.5. IR (neat): v = 3321, 3284, 3084, 3062, 2968, 2932, 2843, 2788, 1603, 1494, 1473, 1453, 1356, 1128, 1104, 1073, 1028, 824, 735, 698 cm⁻¹.

N,*N*-Dimethyl-3-phenylpropylamine (5e)

¹H NMR (400 MHz, CDCl₃): $\delta = 1.80$ (tt, J = 8.2, 7.7 Hz, 2H), 2.23 (s, 6H), 2.30 (t, J = 7.7 Hz, 2H), 2.63 (t, J = 8.2 Hz, 2H), 7.15–7.23 (m, 3H), 7.25–7.32 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 29.5$, 33.6, 45.5, 59.3, 125.7, 128.3, 128.4, 142.3. IR (neat): v = 3062, 3026, 2942, 2764, 1603, 1496, 1454, 1265, 1030 cm⁻¹.

1-Benzylazepane (5f)

¹H NMR (400 MHz, CDCl₃): $\delta = 1.53-1.73$ (m, 8H), 2.51–2.68 (m, 4H), 3.64 (s, 2H), 7.19–7.38 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 27.1$, 28.3, 55.7, 62.8, 126.7, 128.1, 128.88, 140.2. IR (neat): v = 2925, 2852, 1453, 1354, 1153, 1071, 961, 745, 697 cm⁻¹.

Reduction of various carbonyl compounds

Reduction of 3-phenylpropanal catalyzed by 1

In a 20 mL Schlenk tube, 3-phenylpropanal (**4g**) (135 mg, 1.0 mmol) and 1,1,3,3-tetramethyldisiloxane (202 mg, 1.5 mmol) were added, then **1** (5 mg, 0.01 mmol) was added to the reaction mixture. The mixture was stirred at room temperature for 3 hrs. After complete conversion of the starting material, the reaction mixture was cooled to 0 °C, and quenched by addition of TBAF (2.0 mL, 1 M in THF) and stirred at room temperature for 1 hr. The residue was purified by silica-gel column chromatography to give the desired alcohol **5g**. Isolated yield: 92 % (125 mg, 0.92 mmol)

¹H NMR (400 MHz, r.t., CDCl₃): δ = 1.27 (br, 1H, OH), 1.87-1.94 (m, 2H, -CH₂-), 2.72 (t, *J*_{H-H} = 7.3 Hz, 2H, -CH₂C₆H₅), 3.66-3.71 (m, 2H, -CH₂OH), 7.17-7.21 (m, 3H, C₆H₅), 7.27-7.31 (m, 2H, C₆H₅). ¹³C NMR (100 MHz, r.t., CDCl₃): δ = 32.1, 34.2, 62.3, 125.9, 128.40, 128.42, 141.8.

Reduction of 4-methoxybenzaldehyde catalyzed by 1

In a 20 mL Schlenk tube, 4-methoxybenzaldehyde (**4h**) (138 mg, 1.0 mmol) and 1,1,3,3-tetramethyldisiloxane (202 mg, 1.5 mmol) were added, then **1** (5 mg, 0.01 mmol) was added to the reaction mixture. The mixture was stirred at room temperature for 3 hrs. After complete conversion of the starting material, the reaction mixture was cooled to 0 $^{\circ}$ C, and quenched by addition of TBAF (2.0

mL, 1 M in THF) and stirred at room temperature for 1 hr. The residue was purified by silica-gel column chromatography to give the desired alcohol **5h**. Isolated yield: 97 % (134 mg, 0.97 mmol)

¹H NMR (400 MHz, r.t., CDCl₃): $\delta = 1.74$ (br, 1H, OH), 3.81 (s, 3H, CH₃O), 4.62 (s, 2H, CH₂), 6.89-6.91 (m, 2H, C₆H₄), 7.26-7.31 (m, 2H, C₆H₄). ¹³C NMR (100 MHz, r.t., CDCl₃): $\delta = 55.2$, 64.8, 113.9, 128.5, 133.1, 159.1.

Reduction of 1-(4-methoxyphenyl)ethanone catalyzed by 1

In a 20 mL Schlenk tube, 1-(4-methoxyphenyl)ethanone (**4i**) (151 mg, 1.0 mmol) and 1,1,3,3-tetramethyldisiloxane (202 mg, 1.5 mmol) were added, then **1** (5 mg, 0.01 mmol) was added to the reaction mixture. The mixture was stirred at room temperature for 6 hrs. After complete conversion of the starting material, the reaction mixture was cooled to 0 °C, and quenched by addition of TBAF (2.0 mL, 1 M in THF) and stirred at room temperature for 1 hr. The residue was purified by silica-gel column chromatography to give the desired alcohol **5i**. Isolated yield: 96 % (146 mg, 0.96 mmol)

¹H NMR (400 MHz, r.t., CDCl₃): δ = 1.49 (d, *J*_{H-H} = 6.8 Hz, 3H, -CH₃), 1.70 (br, 1H, OH), 3.81 (s, 3H, CH₃O), 4.87 (q, *J*_{H-H} = 6.3 Hz, 1H, -CH-), 6.87-6.90 (m, 2H, C₆H₄), 7.29-7.32 (m, 2H, C₆H₄). ¹³C NMR (100 MHz, r.t., CDCl₃): δ = 25.0, 55.3, 70.0, 113.9, 126.6, 138.0, 159.0.

Reduction of ethyl 3-phenylpropanoate catalyzed by 1

In a 20 mL Schlenk tube, ethyl 3-phenylpropanoate (**4j**) (178 mg, 1.0 mmol) and 1,1,3,3-tetramethyldisiloxane (336 mg, 2.5 mmol) were added, then **1** (15 mg, 0.03 mmol) was added to the reaction mixture. The mixture was stirred at room temperature for 3 hrs. After complete conversion of the starting material, the reaction mixture was cooled to 0 $^{\circ}$ C, and quenched by addition of TBAF (2.0 mL, 1 M in THF) and stirred at room temperature for 1 hr. The residue was purified by silica-gel column chromatography to give the desired alcohol **5g**. Isolated yield: 96 % (131 mg, 0.96 mmol)

References:

(1) H. Nagashima, K. Tatebe, I. Ishibashi, A. Nakaoka, J. Sakakibara, K. Itoh, *Organometallics* 1995, 14, 2868.

(2) A. Weisz, A. Mandelbaum, J. Org. Chem. 1988, 58, 5812.

(3) SIR2008: M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna, 2007

(4) DIRDIF99: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, J. M. M. Smits, The DIRDIF-99 program system; *Technical Report of the Crystallography Laboratory*; University of Nijmegen, Nijmegen, The Netherlands, 1999.

(5) D. T. Cromer, J. T. Waber, *International Tables for X-ray Crystallography*; Kynoch Press: Birmingham, U.K., 1974 *Vol. 4*.

(6) CrystalStructure 4.0: Crystal Structure Analysis Package, Rigaku Corporation (2000-2010). Tokyo 196-8666, Japan.

(7) SHELX97: G. M. Sheldrick, Acta Cryst. 2008, A64, 112.

- (8) H. Tsutsumi, Y. Sunada and H. Nagashima, Chem. Commun., 2011, 47, 6581.
- (9) Y. Sunada, H. Kawakami, T. Imaoka, Y. Motoyama and H. Nagashima, *Angew. Chem., Int. Ed.*, 2009, **48**, 9511.

Figure S-1. ORTEP drawing of 1 (50% probability of the thermal ellipsoids).

Table S1-1. Crystal data and structure refinement for 1

Empirical Formula Formula Weight Crystal Color, Habit **Crystal Dimensions** Crystal System Lattice Type Lattice Parameters Space Group Z value Dcalc F000 μ (MoK α) Temperature **Detector Aperture** Data Images ω oscillation Range **Exposure Rate Detector Swing Angle Detector Position Pixel Size** $2\theta_{max}$ No. of Reflections Measured Corrections No. Observations (All reflections) No. Variables **Reflection/Parameter Ratio** Residuals: R1 (I>2.00 σ (I)) Residuals: R (All reflections) Residuals: wR2 (All reflections) Goodness of Fit Indicator Flack Parameter (Friedel pairs = 2613) Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map $-0.69 \text{ e}^{-}/\text{Å}^{3}$ Minimum peak in Final Diff. Map

C22H32FeO2Si4 496.68 colorless, plate 0.120 X 0.100 X 0.030 mm orthorhombic Primitive a = 17.122(3) Åb = 16.141(2) Åc = 9.4508(12) Å $V = 2611.9(6) Å^3$ Pna21 (#33) 4 1.263 g/cm^3 1048.00 7.753 cm⁻¹ -150.0°C 70 x 70 mm 720 exposures -110.0 - 70.00 48.0 sec./0 -19.930 42.96 mm 0.137 mm 55.00 Total: 20986 Unique: 5780 ($R_{int} = 0.1369$) Friedel pairs: 2613 Lorentz-polarization Absorption (trans. factors: 0.849 - 0.977) 5780 262 22.06 0.0558 0.0600 0.1434 1.067 -0.03(3)0.001 $0.78 \text{ e}^{-}/\text{Å}^{3}$

Table S1-2. Atomic coordinates and	d B _{iso} /B _{eq} and	occupancy
--	---	-----------

atom	Х	У	Z	Beq
Fe1	0.75557(3)	0.96929(3)	0.38970(7)	1.393(11)
Si1	0.81740(6)	0.87067(6)	0.54196(11)	1.80(2)
Si2	0.88121(6)	0.98314(7)	0.27388(11)	1.92(2)
Si3	0.64484(6)	1.00156(7)	0.24194(12)	1.90(2)
Si4	0.73414(6)	1.10301(6)	0.49963(11)	1.60(2)
01	0.6302(2)	0.9301(2)	0.5877(4)	2.79(6)
O2	0.7564(2)	0.8249(3)	0.2045(4)	3.26(7)
C1	0.6794(2)	0.9468(3)	0.5090(5)	1.94(6)
C2	0.7569(2)	0.8833(3)	0.2753(5)	2.12(7)
C3	0.9161(3)	0.8501(3)	0.4624(5)	1.99(6)
C4	0.9638(3)	0.7873(3)	0.5187(5)	2.83(8)
C5	1.0366(3)	0.7708(3)	0.4613(6)	3.14(9)
C6	1.0619(3)	0.8152(3)	0.3449(6)	3.20(9)
C7	1.0165(3)	0.8778(3)	0.2879(5)	2.65(8)
C8	0.9422(2)	0.8955(3)	0.3450(5)	2.00(6)
C9	0.8291(3)	0.9034(3)	0.7307(5)	2.61(7)
C10	0.7632(3)	0.7694(3)	0.5512(6)	2.68(8)
C11	0.9403(3)	1.0788(3)	0.3062(6)	3.10(9)
C12	0.8765(3)	0.9743(4)	0.0771(5)	3.67(11)
C13	0.5959(2)	1.0917(3)	0.3293(5)	1.89(6)
C14	0.5206(3)	1.1157(3)	0.2889(5)	2.61(7)
C15	0.4830(3)	1.1811(3)	0.3562(5)	2.93(9)
C16	0.5200(3)	1.2233(3)	0.4661(6)	2.85(8)
C17	0.5941(3)	1.2006(3)	0.5066(5)	2.53(7)
C18	0.6331(2)	1.1344(3)	0.4409(4)	1.82(6)
C19	0.5731(3)	0.9149(3)	0.2328(6)	3.01(8)
C20	0.6683(3)	1.0268(3)	0.0530(5)	2.81(8)
C21	0.7343(3)	1.0998(3)	0.6973(5)	2.35(7)
C22	0.7999(3)	1.1908(3)	0.4490(5)	2.39(7)

 $B_{eq} = \frac{8}{3} \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

Table S1-3. Anisotropic displacement parameters

atom	U11	U22	U33	U12	U13	U23
Fe1	0.0208(3)	0.0156(3)	0.0165(3)	0.0001(2)	-0.0001(2)	-0.0018(2)
Si1	0.0260(5)	0.0215(5)	0.0209(5)	0.0018(4)	-0.0011(4)	0.0019(4)
Si2	0.0236(5)	0.0269(5)	0.0226(6)	0.0021(4)	0.0043(4)	0.0001(4)
Si3	0.0256(5)	0.0230(5)	0.0238(5)	-0.0010(4)	-0.0058(4)	-0.0029(4)
Si4	0.0207(5)	0.0191(5)	0.0209(5)	-0.0012(4)	-0.0002(4)	-0.0046(4)
01	0.031(2)	0.036(2)	0.039(2)	-0.0082(13)	0.0102(13)	0.004(2)
O2	0.057(2)	0.029(2)	0.038(2)	0.007(2)	-0.007(2)	-0.017(2)
C1	0.025(2)	0.019(2)	0.030(2)	-0.001(2)	-0.005(2)	-0.003(2)
C2	0.027(2)	0.027(3)	0.026(2)	0.002(2)	-0.001(2)	-0.002(2)
C3	0.025(2)	0.022(2)	0.029(2)	0.003(2)	-0.004(2)	-0.004(2)
C4	0.038(3)	0.029(2)	0.040(3)	0.009(2)	-0.004(2)	0.001(2)
C5	0.032(2)	0.032(3)	0.056(3)	0.009(2)	-0.005(2)	-0.004(2)
C6	0.030(2)	0.032(3)	0.060(3)	0.007(2)	0.002(2)	-0.010(2)
C7	0.026(2)	0.031(2)	0.043(3)	0.004(2)	0.007(2)	-0.008(2)
C8	0.024(2)	0.025(2)	0.027(2)	0.001(2)	-0.002(2)	-0.005(2)
C9	0.036(2)	0.044(3)	0.019(2)	0.005(2)	-0.002(2)	0.002(2)
C10	0.041(3)	0.023(2)	0.039(3)	-0.004(2)	-0.000(2)	0.008(2)
C11	0.024(2)	0.029(3)	0.065(4)	0.001(2)	0.014(2)	0.006(2)
C12	0.044(3)	0.072(4)	0.024(3)	0.011(3)	0.011(2)	0.003(3)
C13	0.021(2)	0.024(2)	0.026(2)	-0.001(2)	-0.004(2)	0.004(2)
C14	0.024(2)	0.036(3)	0.039(3)	0.004(2)	-0.006(2)	0.002(2)
C15	0.024(2)	0.044(3)	0.044(3)	0.015(2)	0.001(2)	0.010(2)
C16	0.036(3)	0.029(2)	0.043(3)	0.009(2)	0.010(2)	0.004(2)
C17	0.033(2)	0.025(2)	0.039(3)	0.004(2)	0.005(2)	0.000(2)
C18	0.023(2)	0.020(2)	0.026(2)	-0.002(2)	0.002(2)	0.002(2)
C19	0.033(2)	0.034(3)	0.048(3)	-0.008(2)	-0.013(2)	-0.003(2)
C20	0.048(3)	0.038(3)	0.021(2)	0.004(2)	-0.005(2)	-0.001(2)
C21	0.035(2)	0.032(3)	0.022(2)	0.001(2)	-0.001(2)	-0.008(2)
C22	0.026(2)	0.025(2)	0.040(3)	-0.005(2)	0.005(2)	-0.007(2)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table S1-4. Bond lengths (Å)

atom	distance	atom	atom	distance
Si1	2.3928(12)	Fe1	Si2	2.4240(12)
Si3	2.4116(13)	Fe1	Si4	2.4233(12)
C1	1.762(4)	Fe1	C2	1.760(5)
C3	1.879(4)	Si1	C9	1.871(5)
C10	1.882(5)	Si2	C8	1.882(4)
C11	1.870(5)	Si2	C12	1.867(5)
C13	1.871(4)	Si3	C19	1.864(5)
C20	1.875(5)	Si4	C18	1.887(4)
C21	1.868(5)	Si4	C22	1.872(4)
C1	1.155(5)	O2	C2	1.156(6)
C4	1.406(6)	C3	C8	1.403(6)
C5	1.385(7)	C5	C6	1.383(8)
C7	1.384(7)	C7	C8	1.411(6)
C14	1.400(6)	C13	C18	1.412(6)
C15	1.391(7)	C15	C16	1.393(7)
C17	1.376(6)	C17	C18	1.404(6)
	atom Si1 Si3 C1 C3 C10 C11 C13 C20 C21 C1 C1 C4 C5 C7 C14 C15 C17	$\begin{array}{llllllllllllllllllllllllllllllllllll$	atomdistanceatomSi1 $2.3928(12)$ Fe1Si3 $2.4116(13)$ Fe1C1 $1.762(4)$ Fe1C3 $1.879(4)$ Si1C10 $1.882(5)$ Si2C11 $1.870(5)$ Si2C13 $1.871(4)$ Si3C20 $1.875(5)$ Si4C21 $1.868(5)$ Si4C1 $1.155(5)$ O2C4 $1.406(6)$ C3C5 $1.385(7)$ C5C7 $1.384(7)$ C7C14 $1.400(6)$ C13C15 $1.391(7)$ C15C17 $1.376(6)$ C17	atomdistanceatomatomSi1 $2.3928(12)$ Fe1Si2Si3 $2.4116(13)$ Fe1Si4C1 $1.762(4)$ Fe1C2C3 $1.879(4)$ Si1C9C10 $1.882(5)$ Si2C8C11 $1.870(5)$ Si2C12C13 $1.871(4)$ Si3C19C20 $1.875(5)$ Si4C22C1 $1.155(5)$ O2C2C4 $1.406(6)$ C3C8C5 $1.385(7)$ C5C6C7 $1.384(7)$ C7C8C14 $1.400(6)$ C13C18C15 $1.391(7)$ C15C16C17 $1.376(6)$ C17C18

Table S1-5. Bond angles (0)

atom	atom	atom	angle	atom	atom	atom	angle
Si1	Fe1	Si2	86.58(4)	Si1	Fe1	Si3	147.11(5)
Si1	Fe1	Si4	113.68(5)	Si1	Fe1	C1	78.80(13)
Si1	Fe1	C2	80.75(15)	Si2	Fe1	Si3	114.60(5)
Si2	Fe1	Si4	104.23(4)	Si2	Fe1	C1	164.79(13)
Si2	Fe1	C2	77.54(13)	Si3	Fe1	Si4	86.38(4)
Si3	Fe1	C1	80.38(13)	Si3	Fe1	C2	79.88(14)
Si4	Fe1	C1	78.30(13)	Si4	Fe1	C2	165.45(15)
C1	Fe1	C2	103.87(18)	Fe1	Si1	C3	105.95(13)
Fe1	Si1	C9	115.65(15)	Fe1	Si1	C10	112.81(16)
C3	Sil	C9	109.56(19)	C3	Si1	C10	107.98(19)
C9	Si1	C10	104.7(3)	Fe1	Si2	C8	105.17(13)
Fe1	Si2	C11	118.83(16)	Fe1	Si2	C12	113.84(17)
C8	Si2	C11	105.16(19)	C8	Si2	C12	108.8(3)
C11	Si2	C12	104.4(3)	Fe1	Si3	C13	105.35(13)
Fe1	Si3	C19	112.50(16)	Fe1	Si3	C20	115.48(16)
C13	Si3	C19	108.01(19)	C13	Si3	C20	110.3(2)
C19	Si3	C20	105.1(3)	Fe1	Si4	C18	104.60(13)
Fe1	Si4	C21	113.82(15)	Fe1	Si4	C22	118.25(14)
C18	Si4	C21	107.63(18)	C18	Si4	C22	105.86(18)
C21	Si4	C22	106.0(2)	Fe1	C1	01	178.3(4)
Fe1	C2	O2	177.2(4)	Si1	C3	C4	119.9(3)
Si1	C3	C8	120.7(3)	C4	C3	C8	119.4(4)
C3	C4	C5	120.9(5)	C4	C5	C6	119.6(5)
C5	C6	C7	120.8(5)	C6	C7	C8	120.4(5)
Si2	C8	C3	119.9(3)	Si2	C8	C7	121.1(3)
C3	C8	C7	118.9(4)	Si3	C13	C14	120.5(3)
Si3	C13	C18	120.5(3)	C14	C13	C18	118.9(4)
C13	C14	C15	120.8(4)	C14	C15	C16	120.1(4)
C15	C16	C17	119.8(5)	C16	C17	C18	121.2(4)
Si4	C18	C13	120.1(3)	Si4	C18	C17	120.7(3)
C13	C18	C17	119.2(4)				

Table S	5 1-6 . Toi	rsion An	gles(0) (Those having bor	nd angles	s > 160 c	or < 20 d	egrees a	re excluded.)
atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
Sil	Fe1	Si2	C8	11.35(5)	Si1	Fe1	Si2	C11	-105.95(6)
Si1	Fe1	Si2	C12	130.39(6)	Si2	Fe1	Si1	C3	-9.69(5)
Si2	Fe1	Si1	C9	111.88(6)	Si2	Fe1	Si1	C10	-127.63(6)
Sil	Fe1	Si3	C13	115.81(8)	Si1	Fe1	Si3	C19	-1.62(12)
Si1	Fe1	Si3	C20	-122.23(8)	Si3	Fe1	Si1	C3	122.80(8)
Si3	Fe1	Si1	C9	-115.63(8)	Si3	Fe1	Si1	C10	4.87(11)
Sil	Fe1	Si4	C18	-138 14(5)	Si1	Fe1	Si4	C21	-20.94(7)
Sil	Fe1	Si4	C22	104 43(6)	Si4	Fe1	Si1	C3	-113 74(5)
Si4	Fe1	Si1	C9	7 83(7)	Si4	Fe1	Si1	C10	128 33(5)
C1	Fe1	Si1	C3	174 48(14)	C1	Fe1	Si1	C9	-63.95(14)
C1	Fe1	Sil	C10	56 55(14)	C^2	Fe1	Si1	C3	68.23(14)
C^2	Fe1	Sil	C9	$-170\ 20(14)$	C^2	Fe1	Sil	C10	-4971(14)
Si2	Fel	Si3	C13	-11824(6)	C2 Si2	Fe1	Si3	C10	124 33(6)
Si2	Fe1	Si3	C_{20}	372(8)	Si2 Si3	Fe1	Si2	C8	-14252(5)
Si2	Fel	Si2	C11	100.18(7)	Si3	Fel	Si2	C12	-1+2.52(5) -23.48(8)
515	Fol	512 Si4	C12	100.10(7) 120.24(5)	515	Fol	S12 Si4	C12	-23.46(0)
S12 Si2	Fol	S14 S14	C_{10}	129.34(3) 11.01(7)	S12 Si4	Fol	S14 Si2	C_{21}	-113.40(0) 124.02(5)
S12 Si4	Fol	S14 Si2	C22 C11	11.91(7)	S14 Si4	Fol	S12 Si2	C_{0}	124.93(3) 116.02(6)
C^{2}	FCI Fol	S12 S:2	C^{0}	7.03(7)	S14 C2	FCI Fol	S12 Si2	C12	-110.03(0) 172.78(16)
C_2	Fel Eal	S12 Si2	C_{0}	-09.92(13)	C2 S:2	Fel Eal	SIZ S:4	C11	1/2.78(10) 1/2.6(5)
C2 G:2	Fel Eal	SIZ S:4	C12 C21	49.12(10)	515	Fel Eal	514 C:4	C_{10}	14.80(3)
515	Fel	514 G:2	C21	152.07(0)	515	Fel	514 G:2	C22	-102.30(0)
S14	Fel	513	C13	-14.24(5)	514	Fel	513	C19 C12	-131.0/(0)
S14	Fel	S13	C20	10/./2(6)	CI	Fel	S13	C13	64.50(13)
CI	Fel	S13	C19 C12	-52.93(14)		Fel	S13	C20	-1/3.55(14)
C2	Fel	S13	C13	1/0.59(15)	C2	Fel	S13	C19	53.16(15)
C2	Fel	S13	C20	-6/.45(15)	CI	Fel	S14	C18	-66.05(14)
	Fel	S14	C21	51.15(14)		Fel	S14	C22	1/6.52(14)
Fel	S11	C3	C4	-1/2.8(3)	Fel	S11	C3	C8	5.7(3)
C9	S11	C3	C4	61.8(4)	C9	S11	C3	C8	-119./(3)
	S11 G.2	C3	C4	-51./(4)		S11	C3	C8	126.8(3)
Fel	S12	C8	C3	-12.0(3)	Fel	S12	C8	C7	1/2.1(3)
	S12	C8	C3	114.3(3)		S12	C8	C7	-61./(4)
	S12	C8	C3	-134.3(3)	C12	S12	C8	C/	49./(4)
Fel	S13	C13	C14	-166.5(3)	Fel	S13	C13	C18	10.9(3)
C19 C20	S13	C13	C14	-46.0(4)	C19 C20	S13	C13	C18	131.3(3)
C20	S13	C13	C14	68.3(4)	C20	S13	C13	C18	-114.4(3)
Fel	S14	C18	C13	-13.6(3)	Fel	S14	C18	CI/	166.9(3)
C21 C22	S14		C13	-135.0(3)	C21 C22	514	C18	C17	45.5(4)
C22	S14		C13	112.0(3)	C22	514		C1/	-6/.5(3)
S11	C3	C4	07	1/9./(3)	511	C3	C8	S12	4.4(5)
S11	C3	C8	C7	-1/9.6(3)	C4	C3	C8	S12	-1//.1(3)
C4	C3	C8	C7	-1.1(6)	C8	C3	C4	C5	1.2(6)
C3	C4	C5	C6	-1./(/)	C4	05	C6	C/	2.2(7)
05	C6	C/	C8	-2.1(/)	C6	C/	C8	S12	1//.5(4)
C6	C/	C8	C3	1.5(6)	S13	C13	CI4	C15	1/8.1(3)
S13	C13	C18	S14	1.9(5)	S13	C13	C18	C17	-1/8.5(3)
C14	C13	C18	S14	1/9.3(3)	C14	C13	C18	CI/	-1.1(6)
	C15	C14	C15	U./(0)	C15	C14	C13	C10	-0.5(7)
C14	C15	C10	C1/	U./(/)		C10	C1/		-1.2(/)
U16	UI/	U18	514	-1/9.1(4)	U10	UI/	U18	U13	1.4(6)

Figure S-2. ORTEP drawing of 6 (50% probability of the thermal ellipsoids).

Table S2-1. Crystal data and structure refinement for 6

Empirical Formula	C ₁₇ H ₂₈ FeO ₂ S ₂ Si ₂
Formula Weight	440.54
Crystal Color, Habit	yellow, block
Crystal Dimensions	0.130 X 0.120 X 0.090 mm
Crystal System	monoclinic
Lattice Type	C-centered
Lattice Parameters	a = 16.522(4) Å
	b = 9.045(2) Å
	c = 15.932(4) Å
	$\beta = 116.341(3)$ °
	$V = 2133.7(8) Å^3$
Space Group	Cc (#9)
Z value	4
D _{calc}	1.371 g/cm ³
F000	928.00
μ(ΜοΚα)	10.212 cm ⁻¹
Temperature	-150.0°C
Detector Aperture	70 x 70 mm
Data Images	720 exposures
ω oscillation Range	-110.0 - 70.0 ^o
Exposure Rate	32.0 sec./0
Detector Swing Angle	-19.910
Detector Position	43.03 mm
Pixel Size	0.137 mm
20 _{max}	54.90
No. of Reflections Measured	Total: 8514
	Unique: $4220 (R_{int} = 0.0287)$
	Friedel pairs: 1777
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: 0.799 - 0.912)
No. Observations (All reflections)	4220
No. Variables	217
Reflection/Parameter Ratio	19.45
Residuals: R1 ($I \ge 2.00\sigma(I)$)	0.0272
Residuals: R (All reflections)	0.0290
Residuals: wR2 (All reflections)	0.0652
Goodness of Fit Indicator	1.080
Flack Parameter (Friedel pairs = 1777)	-0.006(12)
Max Shift/Error in Final Cycle	0.001
Maximum peak in Final Diff. Map	$0.41 \text{ e}^{-}/\text{Å}^{-3}$
Minimum peak in Final Diff. Map	-0.22 e ⁻ /Å ³

atom	Х	у	Z	Beq
Fe1	0.06046(2)	1.03949(4)	0.14362(2)	1.386(7)
S1	0.18103(4)	1.19654(7)	0.20856(4)	2.045(11)
S2	-0.03816(4)	1.17740(6)	0.17634(4)	1.699(11)
Si1	0.15255(4)	0.88442(8)	0.10564(4)	1.715(11)
Si2	-0.05648(4)	0.86872(7)	0.06884(5)	1.632(11)
01	0.1120(2)	0.8274(2)	0.29773(13)	2.51(4)
O2	-0.0014(2)	1.1274(3)	-0.05207(13)	2.93(4)
C1	0.0918(2)	0.9139(3)	0.2373(2)	1.71(4)
C2	0.0240(2)	1.0968(3)	0.0267(2)	1.96(5)
C3	0.0804(2)	0.7227(3)	0.0365(2)	1.52(4)
C4	0.1152(2)	0.6114(3)	-0.0004(2)	1.84(4)
C5	0.0608(2)	0.4962(3)	-0.0533(2)	2.22(5)
C6	-0.0293(2)	0.4912(3)	-0.0704(2)	2.15(5)
C7	-0.0640(2)	0.5999(3)	-0.0338(2)	1.88(4)
C8	-0.0100(2)	0.7165(3)	0.0206(2)	1.58(4)
C9	0.2544(2)	0.8036(4)	0.2080(2)	3.18(6)
C10	0.2037(3)	0.9709(4)	0.0326(3)	3.15(6)
C11	-0.1032(2)	0.7841(4)	0.1465(3)	2.98(6)
C12	-0.1614(2)	0.9411(4)	-0.0337(3)	3.07(6)
C13	0.2378(2)	1.1784(4)	0.3343(2)	2.57(5)
C14	0.1467(2)	1.3892(3)	0.1988(2)	2.73(6)
C15	0.0789(3)	1.4290(3)	0.2359(2)	2.82(6)
C16	-0.0179(2)	1.3746(3)	0.1766(2)	2.73(6)
C17	-0.0166(2)	1.1496(3)	0.2970(2)	1.90(4)

Table S2-2. Atomic coordinates and $\mathrm{B}_{iSO}/\mathrm{B}_{eq}$

 $B_{eq} = \frac{8}{3} \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

Table S2-3.	Anisotrop	oic disp	olacement	parameters
-------------	-----------	----------	-----------	------------

atom	U11	U22	U33	U12	U13	U23
Fe1	0.0215(2)	0.0166(2)	0.0162(2)	-0.00175(12)	0.00981(13)	-0.00189(12)
S 1	0.0313(4)	0.0266(4)	0.0243(3)	-0.0119(3)	0.0164(3)	-0.0085(3)
S2	0.0269(4)	0.0196(3)	0.0177(3)	0.0052(3)	0.0096(3)	0.0006(3)
Si1	0.0185(4)	0.0284(4)	0.0198(4)	-0.0028(3)	0.0100(3)	-0.0076(3)
Si2	0.0176(4)	0.0199(4)	0.0234(4)	-0.0010(3)	0.0081(3)	-0.0036(3)
01	0.0398(12)	0.0262(10)	0.0303(11)	0.0074(9)	0.0163(10)	0.0089(8)
02	0.060(2)	0.0297(11)	0.0226(10)	0.0027(9)	0.0193(10)	0.0007(8)
C1	0.0195(12)	0.0231(13)	0.0227(12)	0.0012(10)	0.0096(11)	-0.0048(10)
C2	0.033(2)	0.0203(12)	0.025(2)	-0.0032(11)	0.0159(13)	-0.0051(11)
C3	0.0249(13)	0.0186(11)	0.0135(11)	0.0015(10)	0.0080(10)	0.0017(9)
C4	0.031(2)	0.0226(13)	0.0186(12)	0.0028(10)	0.0134(11)	0.0025(10)
C5	0.048(2)	0.0191(12)	0.0203(13)	0.0069(12)	0.0175(13)	0.0023(10)
C6	0.041(2)	0.0165(11)	0.0235(13)	-0.0036(11)	0.0131(12)	-0.0011(10)
C7	0.027(2)	0.0212(12)	0.0204(12)	-0.0044(10)	0.0083(11)	0.0011(10)
C8	0.0266(13)	0.0162(11)	0.0145(11)	-0.0003(10)	0.0068(11)	0.0013(9)
C9	0.023(2)	0.061(2)	0.030(2)	0.011(2)	0.0062(13)	-0.014(2)
C10	0.043(2)	0.049(2)	0.041(2)	-0.023(2)	0.030(2)	-0.023(2)
C11	0.035(2)	0.040(2)	0.047(2)	-0.0157(13)	0.026(2)	-0.015(2)
C12	0.023(2)	0.038(2)	0.043(2)	0.0061(12)	0.003(2)	-0.010(2)
C13	0.029(2)	0.033(2)	0.027(2)	-0.0043(12)	0.0043(12)	-0.0051(11)
C14	0.054(2)	0.025(2)	0.027(2)	-0.0136(13)	0.020(2)	-0.0010(11)
C15	0.059(2)	0.0178(13)	0.032(2)	-0.0019(13)	0.023(2)	-0.0020(11)
C16	0.053(2)	0.0198(13)	0.033(2)	0.0100(12)	0.021(2)	0.0057(11)
C17	0.030(2)	0.0255(13)	0.0197(12)	0.0057(11)	0.0133(11)	0.0027(10)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table S2-4. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
Fe1	S1	2.2864(8)	Fe1	S2	2.2883(9)
Fe1	Si1	2.3378(9)	Fe1	Si2	2.3442(8)
Fe1	C1	1.761(3)	Fe1	C2	1.763(3)
S1	C13	1.803(3)	S1	C14	1.818(3)
S2	C16	1.814(3)	S2	C17	1.811(3)
Si1	C3	1.900(3)	Si1	C9	1.895(3)
Si1	C10	1.885(5)	Si2	C8	1.897(3)
Si2	C11	1.887(4)	Si2	C12	1.895(3)
01	C1	1.169(4)	O2	C2	1.165(4)
C3	C4	1.411(4)	C3	C8	1.402(4)
C4	C5	1.390(4)	C5	C6	1.390(5)
C6	C7	1.390(5)	C7	C8	1.406(4)
C14	C15	1.524(6)	C15	C16	1.533(5)

Table S2-5. Bond angles (0)

atom	atom	atom	angle	atom	atom	atom	angle
S 1	Fe1	S2	97.11(3)	S1	Fe1	Si1	87.33(4)
S 1	Fe1	Si2	174.54(4)	S1	Fe1	C1	98.49(8)
S1	Fe1	C2	96.67(9)	S2	Fe1	Si1	175.55(3)
S2	Fe1	Si2	88.02(3)	S2	Fe1	C1	97.46(11)
S2	Fe1	C2	97.86(10)	Si1	Fe1	Si2	87.56(4)
Si1	Fe1	C1	81.49(10)	Si1	Fe1	C2	81.90(10)
Si2	Fe1	C1	82.64(8)	Si2	Fe1	C2	80.71(9)
C1	Fe1	C2	156.89(12)	Fe1	S 1	C13	111.44(11)
Fe1	S1	C14	112.36(10)	C13	S 1	C14	99.84(14)
Fe1	S2	C16	112.78(13)	Fe1	S2	C17	109.99(10)
C16	S2	C17	100.66(14)	Fe1	Si1	C3	107.41(10)
Fe1	Si1	C9	116.12(12)	Fe1	Si1	C10	115.62(11)
C3	Si1	C9	106.90(12)	C3	Si1	C10	107.44(13)
C9	Si1	C10	102.77(15)	Fe1	Si2	C8	107.08(9)
Fe1	Si2	C11	114.77(10)	Fe1	Si2	C12	116.31(10)
C8	Si2	C11	109.13(14)	C8	Si2	C12	106.33(13)
C11	Si2	C12	102.80(15)	Fe1	C1	01	178.1(3)
Fe1	C2	O2	176.6(3)	Si1	C3	C4	121.6(2)
Si1	C3	C8	118.66(19)	C4	C3	C8	119.7(2)
C3	C4	C5	120.9(3)	C4	C5	C6	119.4(3)
C5	C6	C7	120.1(3)	C6	C7	C8	121.5(3)
Si2	C8	C3	119.26(17)	Si2	C8	C7	122.3(3)
C3	C8	C7	118.4(3)	S1	C14	C15	116.7(3)
C14	C15	C16	115.5(3)	S2	C16	C15	117.26(19)

atom1	atom2	atom3	atom4	angle	atom 1	atom2	atom3	atom4	angle
S 1	Fe1	S2	C16	31.21(4)	S 1	Fe1	S2	C17	-80.27(4)
S2	Fe1	S 1	C13	78.96(4)	S2	Fe1	S1	C14	-32.15(4)
S 1	Fe1	Si1	C3	-176.38(3)	S 1	Fe1	Si1	C9	64.08(4)
S 1	Fe1	Si1	C10	-56.46(3)	Si1	Fe1	S1	C13	-100.70(4)
Si1	Fe1	S 1	C14	148.19(4)	C1	Fe1	S 1	C13	-19.72(11)
C1	Fe1	S 1	C14	-130.82(11)	C2	Fe1	S1	C13	177.78(10)
C2	Fe1	S 1	C14	66.67(11)	S2	Fe1	Si2	C8	178.69(4)
S2	Fe1	Si2	C11	-60.03(4)	S2	Fe1	Si2	C12	59.99(5)
Si2	Fe1	S2	C16	-146.90(3)	Si2	Fe1	S2	C17	101.62(4)
C1	Fe1	S2	C16	130.79(8)	C1	Fe1	S2	C17	19.31(8)
C2	Fe1	S2	C16	-66.57(9)	C2	Fe1	S2	C17	-178.05(9)
Si1	Fe1	Si2	C8	-1.80(4)	Si1	Fe1	Si2	C11	119.49(4)
Si1	Fe1	Si2	C12	-120.49(5)	Si2	Fe1	Si1	C3	1.70(4)
Si2	Fe1	Si1	C9	-117.84(4)	Si2	Fe1	Si1	C10	121.62(4)
C1	Fe1	Si1	C3	84.62(8)	C1	Fe1	Si1	C9	-34.92(8)
C1	Fe1	Si1	C10	-155.46(8)	C2	Fe1	Si1	C3	-79.25(9)
C2	Fe1	Si1	C9	161.21(10)	C2	Fe1	Si1	C10	40.67(9)
C1	Fe1	Si2	C8	-83.53(11)	C1	Fe1	Si2	C11	37.75(11)
C1	Fe1	Si2	C12	157.78(11)	C2	Fe1	Si2	C8	80.39(11)
C2	Fe1	Si2	C11	-158.33(11)	C2	Fe1	Si2	C12	-38.31(11)
Fe1	S 1	C14	C15	53.54(17)	C13	S 1	C14	C15	-64.66(19)
Fe1	S2	C16	C15	-51.0(3)	C17	S2	C16	C15	66.1(3)
Fe1	Si1	C3	C4	177.35(13)	Fe1	Si1	C3	C8	-1.26(17)
C9	Si1	C3	C4	-57.4(3)	C9	Si1	C3	C8	124.01(18)
C10	Si1	C3	C4	52.36(19)	C10	Si1	C3	C8	-126.25(18)
Fe1	Si2	C8	C3	1.63(18)	Fe1	Si2	C8	C7	-175.90(15)
C11	Si2	C8	C3	-123.15(18)	C11	Si2	C8	C7	59.3(2)
C12	Si2	C8	C3	126.60(18)	C12	Si2	C8	C7	-50.9(3)
Si1	C3	C4	C5	-177.95(15)	Si1	C3	C8	Si2	-0.3(3)
Si1	C3	C8	C7	177.38(14)	C4	C3	C8	Si2	-178.89(18)
C4	C3	C8	C7	-1.3(4)	C8	C3	C4	C5	0.6(4)
C3	C4	C5	C6	0.3(4)	C4	C5	C6	C7	-0.6(4)
C5	C6	C7	C8	0.0(4)	C6	C7	C8	Si2	178.5(2)
C6	C7	C8	C3	1.0(4)	S 1	C14	C15	C16	-72.1(3)
C14	C15	C16	S2	70.8(4)					

Table S2-6. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

¹H NMR spectrum of $\mathbf{1}$ (C₆D₆, r.t.)

 13 C NMR spectrum of **1** (C₆D₆, r.t.)

²⁹Si NMR spectrum of 1 (C₆D₆, r.t.)

 13 C NMR spectrum of **6** (C₆D₆, r.t.)

²⁹Si NMR spectrum of **6** (C_6D_6 , r.t.)

¹³C NMR spectrum of **3a** (CDCl₃, r.t.)

¹³C NMR spectrum of **3c** (CDCl₃, r.t.)

 ^{29}Si NMR spectrum of 3i (CDCl_3, r.t.)

¹³C NMR spectrum of **5h** (CDCl₃, r.t.)

