

Fig.S1. LDI-TOF spectra of SmL¹₃ (above), EuL¹₃ (middle) and GdL¹₃ (below)

Fig.S2. LDI-TOF spectra of DyL¹₃ (above), TmL¹₃ (middle) and YbL¹₃ (below)

Fig.S3. LDI-TOF spectra of LuL¹₃

Fig. S4. Luminescence spectrum of EuL¹₃ (above) and low-frequency IR spectrum of the same sample (below)

Fig. S5. P 2p photoelectron spectra of TPPO, HL¹ and TbL¹₃

Fig. S6. Luminescence excitation spectrum of TbL¹₃ in toluene.

Sparkle PM3 calculations for EuL¹₃

Table S1: Spherical Atomic Coordinates for the Sparkle/PM3 Coordination Polyhedron of monomeric complex EuL_{3}^{1} , Charge Factors (g) and the Polarizability (α) of the Coordinated Atom

Atom	R∕Å	θ/ ^o	φ/ ^o	g^a	α^{a}
O (Ligand 1)	2.42154	75.305	143.746	0.0101	3.4640 x 10 ⁻²⁴
O (Ligand 1)	2.39837	53.831	217.024	0.0101	3.4640 x 10 ⁻²⁴
O (Ligand 2)	2.42407	107.924	47.329	0.0101	3.4640 x 10 ⁻²⁴
O (Ligand 2)	2.39866	44.171	19.932	0.0101	3.4640 x 10 ⁻²⁴
O (Ligand 3)	2.42240	111.168	300.280	0.0101	3.4640 x 10 ⁻²⁴
O (Ligand 3)	2.39648	161.624	215.132	0.0101	3.4640 x 10 ⁻²⁴

^a Obtained using a nonlinear minimization technique.

Table S2: Spherical Atomic Coordinates for the Sparkle/PM3 Coordination Polyhedron of dimeric complex EuL_{3}^{1} , Charge Factors (g) and the Polarizability (α) of the Coordinated Atom

Atom	R/Å	θ/°	ф/ ^о	g^a	α^{a}
O (Ligand 1)	2.41271	80.716	121.674	0.0142	4.1236 x 10 ⁻²⁴
O (Ligand 1)	2.43465	122.602	66.263	0.0142	4.1236 x 10 ⁻²⁴
O (Ligand 2)	2.41926	141.641	216.443	0.0142	4.1236 x 10 ⁻²⁴
O (Ligand 2)	2.43605	77.344	205.992	0.0142	4.1236 x 10 ⁻²⁴
O (Ligand 3)	2.41735	19.676	280.456	0.0142	4.1236 x 10 ⁻²⁴
O (Ligand 3)	2.48857	60.321	23.278	0.0103	6.4998 x 10 ⁻²⁴
O (Ligand 4)	2.47074	108.337	326.986	0.0103	6.4998 x 10 ⁻²⁴

Table S3. Calculated values of intramolecular energy transfer and back-transfer rates for Europium EuL¹3 compounds. The RL value is the distance from the donor state located at the organic ligands and the Eu³⁺ ion nucleus

(s ⁻¹)
2.16 x 10 ⁻¹¹
$5.48 \ge 10^2$
7.79 x 10 ⁻²
7.63 x 10 ⁻²⁰
3.27 x 10 ⁻¹
3.47 x 10 ⁻⁵
_

Fig.S7 Energy level diagram for EuL¹₃ monomeric species showing the most probable channels for the intramolecular energy transfer process

Sparkle PM3 calculations for EuL²₃

Fig.S8. Calculated ground state geometries of the monomeric molecular structure of EuL²₃ using the Sparkle/PM3 model

Table S4: Spherical Atomic Coordinates for the Sparkle/PM3 Coordination Polyhedron of monomeric complex EuL_{3}^{2} , Charge Factors (g) and the Polarizability (α) of the Coordinated Atom

Atom	R/Å	θ/º	ф/ ^о	g^a	α ^a
O (Ligand 1)	2.42129	73.135	144.292	0.0104	3.2505 x 10 ⁻²⁴
O (Ligand 1)	2.39847	53.863	218.943	0.0104	3.2505 x 10 ⁻²⁴
O (Ligand 2)	2.42390	107.042	47.912	0.0104	3.2505 x 10 ⁻²⁴
O (Ligand 2)	2.39884	44.714	16.853	0.0104	3.2505 x 10 ⁻²⁴
O (Ligand 3)	2.42239	113.690	300.227	0.0104	3.2505 x 10 ⁻²⁴
O (Ligand 3)	2.39656	162.042	207.343	0.0104	3.2505 x 10 ⁻²⁴

^a Obtained using a nonlinear minimization technique.

Fig.S9. Calculated ground state geometries of the dimeric molecular structure of EuL²₃ using the Sparkle/PM3 model

Table S5: Spherical Atomic Coordinates for the Sparkle/PM3 Coordination Polyhedron of dimeric complex ${\rm EuL}^2_3$, Charge Factors (g) and the Polarizability (α) of the Coordinated Atom

Atom	R/Å	θ/°	ф/ ^о	g^a	α^{a}
O (Ligand 1)	2.40794	71.991	117.928	0.0137	4.0736 x 10 ⁻²⁴
O (Ligand 1)	2.43179	119.449	66.997	0.0137	4.0736 x 10 ⁻²⁴
O (Ligand 2)	2.41539	149.746	217.591	0.0137	4.0736 x 10 ⁻²⁴
O (Ligand 2)	2.43891	86.292	197.720	0.0137	4.0736 x 10 ⁻²⁴
O (Ligand 3)	2.41085	38.127	267.857	0.0137	4.0736 x 10 ⁻²⁴
O (Ligand 3)	2.47745	51.240	14.036	0.0101	6.4995 x 10 ⁻²⁴
O (Ligand 4)	2.47714	105.933	329.812	0.0101	6.4995 x 10 ⁻²⁴

Table S6. Calculated values of intramolecular energy transfer and back-transfer rates for Europium ${\rm EuL}^2_3$ compounds. The RL value is the distance from the donor state located at the organic ligands and the Eu³⁺ ion nucleus

	Ligand State		$\frac{4f - State}{(cm^{-1})}$	R _L (Å)	Transfer Rate (s ⁻¹)	Back- Transfer Rate
	(cm ⁻¹)					(s^{-1})
	Singlet	\rightarrow	$^{5}D_{4}(27586)$	5.2752	$4.49 \ge 10^3$	1.99 x 10 ⁻⁸
Sparkle/PM3 Monomeric Structure	(33037.8)					
	Triplet	\rightarrow	$^{5}D_{1}(19027)$	5.0543	$1.07 \mathrm{x} 10^{10}$	1.34 x 10 ⁵
	(21417.3)					
	Triplet	\rightarrow	$^{5}D_{0}(17293)$	5.0543	9.68 x 10 ⁹	24.60
	(21417.3)					
	Singlet	\rightarrow	⁵ D ₄ (27586)	4.7630	5.07	9.96 x 10 ⁻²⁶
Sparkle/PM3 Dimeric Structure	(39914.2)		_			
	Triplet	\rightarrow	${}^{5}D_{1}(19027)$	5.4132	3.45 x 10 ⁹	3.47
	(23379.7)		_			
	Triplet	\rightarrow	$^{5}D_{0}(17293)$	5.4132	1.98 x 10 ⁹	4.02 x 10 ⁻⁴
	(23379.7)					

Fig.S10 Energy level diagram for EuL²₃ monomeric species showing the most probable channels for the intramolecular energy transfer process

Fig.S11 Energy level diagram for EuL²₃ dimeric species showing the most probable channels for the intramolecular energy transfer process

Fig.S12. Excitation luminescence spectra taken at 298 K (solid line) and 77 K (dotted line)