Supporting Information Dalton Trans.

Synthesis and characterisation of chelated cationic Re^I(CO)₃*bis*(NHC)(WCA) complexes.

Sebastian J. Hock, Lars-Arne Schaper, Alexander Pöthig, Markus Drees, Eberhardt Herdtweck, Oliver Hiltner, Wolfgang A. Herrmann* and Fritz E. Kühn*

Chair of Inorganic Chemistry / Molecular Catalysis, Catalysis Research Center Technische Universität München Ernst-Otto-Fischer-Str. 1, D-85747 Garching (Germany) Fax: +49 89 289 13473 E-mail: wolfgangherrmann@ch.tum.de, fritz.kuehn@ch.tum.de

Table of Contents

1.	Detailed Crystallographic Information	2
2.	Details of DFT Calculations	.13
3.	NMR Spectra of Complex 3b	.23
4.	¹ H and ¹³ C NMR Spectra of Complexes 1a, 1b, 1c, 2a, 2b, 3a, 3c, 4, 5a, 5b and 5c	.33
5.	References	.55

1. Detailed Crystallographic Information

Single Crystal X-Ray Structure Determination of Compound 1a (CCDC 933791), Compound 1b (CCDC 933792), Compound 3b (CCDC 933793), Compound 3c (CCDC 933794).

General:

Data were collected on an X-ray single crystal diffractometer equipped with a CCD detector (APEX II, K-CCD), a rotating anode (Bruker AXS, FR591) with MoK_g radiation ($\lambda = 0.71073$ Å) and a MONTEL-type focusing optic (compounds 1a, 1b) or a fine-focussed sealed tube respectively (compounds 3b, 3c) and a graphite monochromator by using the SMART software package.^[1] The measurements were performed on single crystals coated with perfluorinated ether. The crystals were fixed on the top of a glass fiber and transferred to the diffractometer. Crystals were frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT.^[2] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS.^[2] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using WinGX^[7] based on SIR-92^[3] (compound 1a) or the APEX 2 software^[1] in conjunction with SHELXL-97^[5] and SHELXLE.^[8] Unless otherwise noticed, methyl hydrogen atoms were refined as part of rigid rotating groups, with a C-H distance of 0.98 Å and $U_{iso(H)} = 1.5 \cdot U_{eq(C)}$. Other H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic C-H distances of 0.99 and 0.95 Å, respectively, and U_{iso(H)} = 1.2·U_{eq(C)}. If not mentioned otherwise, non-hydrogen atoms were refined with anisotropic displacement parameters. Fullmatrix least-squares refinements were carried out by minimizing $\Sigma w(F_0^2 - F_c^2)^2$ with SHELXL-97^[5] weighting scheme. Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography.^[4] Images of the crystal structures were generated by PLATON.^[6]

Special:

1a: Full refinement was possible without running into problems.

1b: Full refinement was possible without running into problems.

3b: The PF6- anion is heavily disordered and could not be modeled adequately by split-position refinement (which is applied) or application of restraints (which had been tried intensively but due to non-improvement were not applied for the final refinement). Therefore A- alerts still remain.

3c: The unit cell contains 8 diethylether molecules which have been treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON.^[6].

5a: Full refinement was possible without running into problems.

5d: Full refinement was possible without running into problems.

Compound 1a

Figure S1 – Ortep drawing with 50% ellipsoids for complex 1a.⁶

Operator:	*** Herdtweck ***				
Molecular Formula:	$C_{19} H_{25} F_6 N_5 O_4 P Re$				
$[(C_{15} H_{17} N_5 O_3 Re)^+], [(P F_6)^-], C_4 H_8 O$					
Crystal Color / Shape	Colorless fragment				
Crystal Size	Approximate size of crystal fragment used for data collection:				
	$0.18 \times 0.36 \times 0.43 \text{ mm}$				
Molecular Weight:	718.62 a.m.u.				
F ₀₀₀ :	1400				
Systematic Absences:	$0kl: k+l\neq 2n; h0l: h\neq 2n; 00l: l\neq 2n$				
Space Group:	Orthorhombic $P na2_1$ (I.TNo.: 33)				
Cell Constants:	Least-squares refinement of 9833 reflections with the programs "APEX suite" and "SAINT"				
	[1,2]; theta range $1.92^{\circ} < \theta < 25.34^{\circ}$; Mo(K α); $\lambda = 71.073$ pm				
	a = 1767.69(7) pm				
	b = 1330.06(5) pm				
	c = 1099.01(4) pm				
	$V = 2583.92(17) \cdot 10^{\circ} \text{ pm}^3$; $Z = 4$; $D_{\text{calc}} = 1.847 \text{ g cm}^{-3}$; Mos. = 0.69				
Diffractometer:	Kappa APEX II (Area Diffraction System; BRUKER AXS); rotating anode; graphite				
	monochromator; 50 kV; 40 mA; $\lambda = 71.073$ pm; Mo(K α)				
Temperature:	(-100±1) °C; (173±1) K				
Measurement Range:	$1.92^{\circ} < \theta < 25.34^{\circ}$; h: -21/21, k: -16/16, l: -13/12				
Measurement Time:	2×5 s per film				
Measurement Mode:	measured: 9 runs; 2274 films / scaled: 9 runs; 2274 films				
	φ - and ω -movement; Increment: $\Delta \varphi / \Delta \omega = 1.00^{\circ}$; dx = 40.0 mm				
LP - Correction:	Yes [2]				
Intensity Correction	No/Yes; during scaling [2]				
Absorption Correction:	Multi-scan; during scaling; $\mu = 4.842 \text{ mm}^{-1}$ [2]				
	Correction Factors: $T_{min} = 0.3761$ $T_{max} = 0.7452$				
Reflection Data:	100127 reflections were integrated and scaled				
	4586 reflections systematic absent and rejected				

		95541	reflections to be merged			
		4700	independent reflections			
		0.051	R_{int} : (basis F_o^2)			
		4700	independent reflections (all) were used in re-	efinements		
		4521	independent reflections with $I_o > 2\sigma(I_o)$			
		99.3 %	completeness of the data set			
		329	parameter full-matrix refinement			
		14.3	reflections per parameter			
Solution:		Direct Methods [3]; Difference Fourier syntheses			
Refinement Param	neters:	In the asymmetric	unit:			
TT 1 4/		36 N	on-hydrogen atoms with anisotropic displace	ement parameters		
Hydrogen Atoms:		In the difference i	map(s) calculated from the model containing	g all non-hydrogen atoms, not all		
		budragan atama	were placed in calculated positions (d	= 05 08 00 nm) Lastronia		
		nyurogen atoms were placed in calculated positions ($a_{C-H} = 95$, 98, 99 pm). Isotropic displacement parameters were calculated from the parent eacher atom ($H_{-} = 1.2/1.5$ H). The				
		hydrogen atoms w	vere included in the structure factor calculation	on atom $(O_{\rm H} = 1.2/1.5 \ O_{\rm C})$. The		
Atomic Form Fact	ors.	For neutral atoms	and anomalous dispersion [4]	shis but not refined.		
Extinction Correct	tion:					
Weighting Scheme	e:	$w^{-1} = \sigma^2 (F_0^2) + (a*P)^2 + b*P$				
		with a: 0.0167; b: 5.5662; P: [Maximum(0 or F_0^2)+2* F_c^2]/3				
Shift/Err:		Less than 0.001 in the last cycle of refinement:				
Resid. Electron De	ensity:	$+0.99 e_{0.5}^{-7}/Å^{3}; -0.9$	91 $e_{0}^{-}/Å^{3}$			
R1:		$\Sigma(F_0 - F_c) / \Sigma F_0 $				
$[F_{o} > 4\sigma(F_{o});$	N=4521]:			= 0.0210		
[all refletns;]	N=4700]:			= 0.0229		
wR2:	-	$\left[\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w\right]$	$(F_0^2)^2$] ^{1/2}			
$[F_{o} > 4\sigma(F_{o});$ 1	N=4521]:	-		= 0.0515		
[all reflctns;]	N=4700]:			= 0.0530		
Goodness of fit:		$[\Sigma w (F_0^2 - F_c^2)^2 / (N_0^2 - F_c^2)^2]$	(O-NV)] ^{1/2}	= 1.142		
Flack's Parameter	:	x = 0.240(8)				
Remarks:		Refinement expre	ssion $\Sigma w (F_o^2 - F_c^2)^2$			
		The correct enanti	omere is proved by Flack's Parameter.			

Compound 1b

Table S2. Crystal data and details of the structure determination of complex 1b.

```
Crystal Data
```

Formula C16 H19 N5 O3 Re, F6 P Formula Weight 660.54 Triclinic Crystal System Space group P-1 (No. 2) a, b, c [Angstrom] 11.6963(4) 12.6367(4) 15.3154(5)alpha, beta, gamma [deg] 98.234(2) 98.282(2) 90.816(2) V [Ang**3] 2215.55(13) Ζ 4 D(calc) [g/cm**3] 1.980 Mu(MoKa) [/mm] 5.635 F(000) 1272 Crystal Size [mm] 0.04 x 0.09 x 0.13 Data Collection 100 Temperature (K) Radiation [Angstrom] МоКа 0.71073 Theta Min-Max [Deg] 1.4, 25.4 Dataset -14: 14 ; -15: 15 ; -18: 18 Tot., Uniq. Data, R(int) 91463, 8099, 0.031 7397 Observed data [I > 2.0 sigma(I)]Refinement Nref, Npar 8099, 583 0.0206, 0.0481, 1.04 R, wR2, S $w = 1/[(s^{2}(Fo^{2})+(0.0175P)^{2}+8.0068P]]$ where $P=(Fo^{2}+2Fc^{2})/3$ 0.00, 0.00 Max. and Av. Shift/Error -0.94, 1.72 Min. and Max. Resd. Dens. [e/Ang^3]

Compound 3b

Figure S3. Ortep drawing with 50% ellipsoids for complex 3b.⁶

Table S3. Crystal data and details of the structure determination of complex 3b.

Crystal Data

Formula 2(C32 H35 N5 O3 Re), 2(F6 P), C2 H3 N 1778.71 Formula Weight Crystal System Monoclinic Space group P21/n (No. 14) a, b, c [Angstrom] 9.8542(1) 24.3821(3) 29.5971(4) alpha, beta, gamma [deg] 90 96.311(1) 90 V [Ang**3] 7068.08(15) Ζ 4 D(calc) [g/cm**3]1.671 Mu(MoKa) [/mm] 3.557 F(000) 3528 Crystal Size [mm] 0.08 x 0.22 x 0.55 Data Collection Temperature (K) 123 Radiation [Angstrom] 0.71073 MoKa Theta Min-Max [Deg] 1.4, 25.5 -11: 11 ; -29: 29 ; -35: 35 Dataset Tot., Uniq. Data, R(int) 189575, 13124, 0.057 Observed data [I > 2.0 sigma(I)]11348 Refinement Nref, Npar 13124, 962 0.0219, 0.0461, 1.03 R, wR2, S $w = 1/[(s^{2}(Fo^{2})+(0.0175P)^{2}+8.6376P]]$ where $P=(Fo^{2}+2Fc^{2})/3$ Max. and Av. Shift/Error 0.05, 0.00 Min. and Max. Resd. Dens. [e/Ang^3] -0.48, 0.94

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2014

Table S4. Crystal data and details of the structure determination of complex 3c.

```
Crystal Data
```

Formula C33 H37 N5 O3 Re, F6 P Formula Weight 882.86 Crystal System Monoclinic C2/c Space group (No. 15) a, b, c [Angstrom] 33.2454(9) 8.9066(2) 27.3469(8) alpha, beta, gamma [deg] 90 101.758(1)90 V [Ang**3] 7927.6(4) Ζ 8 D(calc) [g/cm**3]1.479 Mu(MoKa) [/mm] 3.170 F(000) 3504 Crystal Size [mm] 0.40 x 0.40 x 0.55 Data Collection Temperature (K) 123 Radiation [Angstrom] МоКа 0.71073 Theta Min-Max [Deg] 1.5, 25.5 Dataset -39: 37 ; -10: 10 ; -32: 32 Tot., Uniq. Data, R(int) 48269, 7320, 0.034 Observed data [I > 2.0 sigma(I)] 6969 Refinement 7320, Nref, Npar 449 R, wR2, S 0.0437, 0.0841, 1.29 $w = 1/[\s^2^{(Fo^2^)} + (0.0029P)^2^+93.1056P]$ where $P = (Fo^2^+2Fc^2^)/$ Max. and Av. Shift/Error 0.00, 0.00 -1.87, 1.88 Min. and Max. Resd. Dens. [e/Ang^3]

Compound 5a

Figure S5 – Ortep drawing with 50% ellipsoids for complex 5a.⁶

Operator:	*** Herdtweck ***						
Molecular Formula: $C_{52} H_{45} Al F_{36} N_5 O_7 Re$							
$[(C_{31} H_{33} N_5 O_3 Re)^+], [(C_{16} Al F_{36} O_4)^-], (C_5 H_{12})$							
Crystal Color / Shape	Colorless fragment						
Crystal Size	Approximate size of crystal fragment used for data collection:						
	$0.20 \times 0.38 \times 0.41$ mm						
Molecular Weight:	1749.12 a.m.u.						
F ₀₀₀ :	3440						
Systematic Absences:	h0l: $l\neq 2n$; 0k0: $k\neq 2n$						
Space Group:	Monoclinic $P 2_1/c$ (I.TNo.: 14)						
Cell Constants:	Least-squares refinement of 9873 reflections with the programs "APEX suite" and "SAINT"						
	[1,2]; theta range $1.35^{\circ} \le \theta \le 25.37^{\circ}$; Mo(K α); $\lambda = 71.073$ pm						
	a = 1548.58(4) pm						
	$b = 2816.84(8) \text{ pm}$ $\beta = 103.6769(10)^{\circ}$						
	c = 1524.05(4) pm						
	$V = 6459.6(3) \cdot 10^6 \text{ pm}^3$; $Z = 4$; $D_{\text{calc}} = 1.799 \text{ g cm}^{-3}$; Mos. = 0.66						
Diffractometer:	Kappa APEX II (Area Diffraction System; BRUKER AXS); rotating anode; graphite						
	monochromator; 50 kV; 40 mA; $\lambda = 71.073$ pm; Mo(K α)						
Temperature:	(-150±1) °C; (123±1) K						
Measurement Range:	$1.35^{\circ} < \theta < 25.37^{\circ}$; h: -18/18, k: -33/33, l: -18/18						
Measurement Time:	2×5 s per film						
Measurement Mode:	measured: 9 runs; 3579 films / scaled: 9 runs; 3579 films						
	φ - and ω -movement; Increment: $\Delta \varphi / \Delta \omega = 0.50^{\circ}$; dx = 60.0 mm						
LP - Correction:	Yes [2]						
Intensity Correction	No/Yes; during scaling [2]						

Compound 5d

Absorption Correction:	Multi-scan; during scaling; $\mu = 2.052 \text{ mm}^{-1}$ [2] Correction Factors: T _{min} = 0.5442 T _{min} = 0.7452				
Reflection Data:	107191reflections were integrated and scaled1380reflections systematic absent and rejected105811reflections to be merged11853independent reflections0.026 R_{int} : (basis F_o^2)11853independent reflections (all) were used in refinements11086independent reflections with $I_o > 2\sigma(I_o)$ 99.9 %completeness of the data set928parameter full-matrix refinement				
Solution	12.8 reflections per parameter Direct Methods [3]: Difference Fourier syntheses				
Refinement Parameters	In the asymmetric unit				
remement i urumeters.	102 Non-hydrogen atoms with anisotropic displacement parameters				
Hydrogen Atoms: Atomic Form Factors: Extinction Correction: Weighting Scheme:	In the difference map(s) calculated from the model containing all non-hydrogen atoms, not all of the hydrogen positions could be determined from the highest peaks. For this reason, the hydrogen atoms were placed in calculated positions ($d_{C-H} = 95$, 98, 99 pm). Isotropic displacement parameters were calculated from the parent carbon atom ($U_H = 1.2/1.5 U_C$). The hydrogen atoms were included in the structure factor calculations but not refined. For neutral atoms and anomalous dispersion [4] no $w^{-1} = \sigma^2 (F_o^2) + (a*P)^2 + b*P$				
01 : A /E	with a: 0.0275 ; b: 22.3170 ; P: [Maximum(0 or F_0^2)+2* F_c^2]/3				
Shift/Err:	Less than 0.001 in the last cycle of refinement:				
Resid. Electron Density: R1:	+1.38 $e_{0;}^{-}/Å^{3};$ -1.05 $e_{0;}^{-}/Å^{3}$ $\mathcal{L}(F_{0} - F_{c})/\Sigma F_{0} $				
$[F_o > 4\sigma(F_o);$ N=1108 [all reflctns; N=1185 wR2:	b]: = 0.0310 b]: = 0.0337 $[\Sigma w (F_{2}^{2} - F_{2}^{2})^{2} / \Sigma w (F_{2}^{2})^{2}]^{1/2}$				
$[F_{o} > 4\sigma(F_{o}):$ N=1108	= 0.0721				
[all refletns; N=1185]	= 0.0743				
Goodness of fit:	$[\Sigma w (F_o^2 - F_c^2)^2 / (\text{NO-NV})]^{1/2} = 1.032$				
Remarks:	Refinement expression $\Sigma w (F_o^2 - F_c^2)^2$				

C10 С8 С9 С7 NЗ 03 C12 02 СЗ C2 C13 N2 Re1 C6 C11 N4 C4 C20 С5 C1 🗍 C15 C23 (Ν1 C31 C14 01 C29 C28 C16 C19 C24 C17 C27 C22 C18 C25 C21 C26 C30

Figure S6 – Ortep drawing with 50% ellipsoids for complex 5d.⁶

Operator:	*** Herdtweck ***					
Molecular Formula:	$C_{31} H_{33} N_4 O_3 Re$					
Crystal Color / Shape	Colorless fragment					
Crystal Size	Approximate size of crystal fragment used for data collection:					
	$0.18 \times 0.30 \times 0.48 \text{ mm}$					
Molecular Weight:	695.82 a.m.u.					
F ₀₀₀ :	2768					
Systematic Absences:	hkl: $h+k\neq 2n$; h0l: $l\neq 2n$					
Space Group:	Monoclinic $C 2/c$ (I.TNo.: 15)					
Cell Constants:	Least-squares refinement of 9321 reflections with the programs "APEX suite" and "SAINT"					
	[1,2]; theta range $1.21^{\circ} < \theta < 25.47^{\circ}$; Mo(K α); $\lambda = 71.073$ pm					
	a = 3687.60(8) pm					
	$b = 851.27(2) \text{ pm}$ $\beta = 114.3982(8)^{\circ}$					
	c = 2002.87(5) pm					
	$V = 5725.8(2) \cdot 10^6 \text{ pm}^3$; $Z = 8$; $D_{\text{calc}} = 1.614 \text{ g cm}^{-3}$; Mos. = 0.64					
Diffractometer:	Kappa APEX II (Area Diffraction System; BRUKER AXS); rotating anode; graphite					
	monochromator; 50 kV; 40 mA; $\lambda = 71.073$ pm; Mo(K α)					
Temperature:	(-150 ± 1) °C; (123 ± 1) K					
Measurement Range:	$1.21^{\circ} < \theta < 25.47^{\circ}$; h: -44/44, k: -10/10, l: -24/24					
Measurement Time:	2×5.0 s per film					
Measurement Mode:	measured: 12 runs; 6302 films / scaled: 12 runs; 6302 films					
	φ - and ω -movement; Increment: $\Delta \varphi / \Delta \omega = 0.50^{\circ}$; dx = 60.0 mm					
LP - Correction:	Yes [2]					
Intensity Correction	No/Yes; during scaling [2]					
Absorption Correction:	Multi-scan; during scaling; $\mu = 4.283 \text{ mm}^{-1}$ [2]					
	Correction Factors: $T_{min} = 0.4028$ $T_{max} = 0.7452$					
Reflection Data:	74150 reflections were integrated and scaled					
	3442 reflections systematic absent and rejected					
	70708 reflections to be merged					
	5301 independent reflections					
	0.035 R_{int} : (basis F_o^2)					
	5301 independent reflections (all) were used in refinements					

14.8 reflections per parameter						
Solution: Direct Methods [3]; Difference Fourier syntheses	Direct Methods [3]; Difference Fourier syntheses					
39 Non-hydrogen atoms with anisotronic displacement parameters						
Hydrogen Atoms: In the difference map(s) calculated from the model containing all non-hydrogen atoms, not of the hydrogen positions could be determined from the highest peaks. For this reason, the hydrogen atoms were placed in calculated positions ($d_{C-H} = 95$, 98, 99, 100 pm). Isotrop displacement parameters were calculated from the parent carbon atom ($U_H = 1.2/1.5 U_C$). The hydrogen atoms were included in the structure factor calculations but not refined.	In the difference map(s) calculated from the model containing all non-hydrogen atoms, not all of the hydrogen positions could be determined from the highest peaks. For this reason, the hydrogen atoms were placed in calculated positions ($d_{C-H} = 95$, 98, 99, 100 pm). Isotropic displacement parameters were calculated from the parent carbon atom ($U_H = 1.2/1.5 U_C$). The hydrogen atoms were included in the structure factor calculations but not refined.					
Atomic Form Factors: For neutral atoms and anomalous dispersion [4]	For neutral atoms and anomalous dispersion [4]					
Extinction Correction: no Weighting Scheme: $w^{1} = r^{2}(E^{-2}) + (\alpha + D)^{2} + b + D$	no $-1 = -2(E^{-2}) + (-, D)^2 + 1 + D$					
weighting Scheme: $W = \sigma(F_0) + (a*P) + b*P$ with a: 0.0121: b: 10.6504: P: [Maximum(0 or $E^{-2}) + 2*E^{-2} / 2$	$W = O(F_0) + (a*F) + 0*F$ with a: 0.0121: b: 10.6504: D: [Maximum(0 or $E^{-2}) + 2*E^{-21/2}$					
Shift/Err: Less than 0.001 in the last cycle of refinement:	Less than 0.001 in the last cycle of refinement:					
$\mathbf{D} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$	$1 \cos \alpha = 1^{3} \cos \alpha = 1^{3}$					
Resid. Electron Density: $+0.60 e_{0;}^{-7}/A^{-3}$; $-0.68 e_{0;}^{-7}/A^{-3}$						
R1: $2(F_0 - F_c)/\Sigma F_0 = 0.0129$						
$[P_0 > 4O(P_0); N=51/0]$ [all reflets: N=5301]: = 0.0143						
wR2: $[\Sigma_w(F_*^2 - F_*^2)^2 / \Sigma_w(F_*^2)^2]^{1/2}$						
$[F_{0} > 4\sigma(F_{0}); N=5170]; = 0.0342$						
[all refletns; $N=5301$]: = 0.0345						
Goodness of fit: $[\Sigma w (F_o^2 - F_c^2)^2 / (\text{NO-NV})]^{1/2} = 1.102$						
Remarks: Refinement expression $\Sigma w (F_o^2 - F_c^2)^2$						

2. Details of DFT Calculations

All calculations were performed with GAUSSIAN-09.7

a) Coordinates and Energies of the Isomers of Compound 1b

Figure S7. Ground State 1b_GS1 (Enantionmer of 1b_GS3).

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Ζ
1	 75	0	-0.004770	-0.758941	-0.305098
2	8	0	-1.962175	-3.174330	-0.191997
3	8	0	2.060698	-2.950220	-1.091455
4	8	0	-0.493823	-0.195958	-3.299421
5	7	0	-3.001339	0.545464	-0.169959
6	7	0	-1.675324	1.802071	0.961079
7	7	0	1.642737	2.068804	-0.720349
8	7	0	2.962998	0.571431	0.072161
9	7	0	0.256577	-1.008636	1.841630
10	6	0	-1.682594	0.670452	0.187117
11	6	0	-3.777347	1.553690	0.379811
12	1	0	-4.843225	1.607717	0.221823
13	6	0	-2.944201	2.349363	1.088037
14	1	0	-3.132947	3.243701	1.661594

Table S5. Coordinates and I	Energies of :	1b_GS1 ((Enantionmer of	f 1b_(GS3).
-----------------------------	---------------	----------	-----------------	--------	---------------

	15	6	0	-0.488625	2.539892	1.392664
	16	1	0	-0.741342	3.064749	2.318543
	17	1	0	0.298735	1.821117	1.619286
	18	6	0	-0.039409	3.545538	0.321269
	19	1	0	0.762586	4.165539	0.740066
	20	1	0	-0.869805	4.218619	0.076680
	21	6	0	0.451090	2.878478	-0.973139
	22	1	0	-0.314189	2.239418	-1.413029
	23	1	0	0.713897	3.637947	-1.714557
	24	6	0	2.906589	2.638611	-0.676336
	25	1	0	3.095009	3.650762	-0.999517
	26	6	0	3.737849	1.692774	-0.182655
	27	1	0	4.801151	1.709187	-0.000289
	28	6	0	1.650079	0.775756	-0.267463
	29	6	0	-1.279373	-2.241272	-0.249709
	30	6	0	0.317004	-1.223834	2.978185
	31	6	0	0.384868	-1.514396	4.405420
	32	1	0	-0.559453	-1.243359	4.888467
	33	1	0	1.197973	-0.948355	4.870962
	34	1	0	0.564484	-2.583690	4.557939
	35	6	0	1.332908	-2.109934	-0.768800
	36	6	0	-0.299087	-0.428646	-2.180610
	37	6	0	-3.604532	-0.475985	-1.031457
	38	1	0	-3.833906	-1.381516	-0.467052
	39	1	0	-4.529243	-0.067286	-1.442755
	40	1	0	-2.935063	-0.715547	-1.855219
	41	6	0	3.564620	-0.643975	0.623637
	42	1	0	3.911285	-1.306556	-0.172174
	43	1	0	4.415535	-0.353014	1.243459
	44	1	0	2.840068	-1.167773	1.243361
HF=-	1199.579689/1	NImag=	0			
Sum	of electronic	c and	thermal Ent	chalpies=	-1199.2	207575
Sum	of electronic	c and	thermal Fre	ee Energies=	-1199.2	292166

Figure S8. Ground State 1b_GS2 (Diastereomer of 1b_GS1 and 1b_GS3).

Center	Atomic	Atomic	Coor	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	75	0	-0.814164	-0.004290	0.001609	
2	8	0	-2.850166	-2.292408	0.585221	
3	8	0	-2.876495	2.243053	0.646825	
4	7	0	0.769866	-2.425678	-1.514451	
5	7	0	1.958867	-1.804744	0.163800	
6	7	0	1.936951	1.822007	0.209383	
7	7	0	0.741166	2.473963	-1.452223	
8	6	0	-2.098263	-1.440994	0.370602	
9	6	0	0.760655	-1.554136	-0.455206	
10	6	0	1.943259	-3.160713	-1.564586	
11	1	0	2.128161	-3.895639	-2.332221	
12	6	0	2.692042	-2.772873	-0.509387	
13	1	0	3.657460	-3.108185	-0.163960	
14	6	0	2.422980	-1.305305	1.460849	
15	1	0	3.051366	-2.099141	1.873623	
16	1	0	1.558072	-1.215005	2.116291	
17	6	0	3.228330	0.000967	1.439834	
18	1	0	3.914229	0.016574	0.584795	
19	1	0	3.856360	-0.006274	2.339634	

Table S6. Coordinates and Energies of 1b_GS2 (Diastereomer of 1b_GS1 and 1b_GS3).

	20	6	0	2.404699	1.294808	1.494005
	21	1	0	3.020431	2.086087	1.930110
	22	1	0	1.539211	1.174288	2.143558
	23	6	0	0.741320	1.575161	-0.415966
	24	6	0	1.906960	3.222127	-1.483120
	25	1	0	2.084089	3.978651	-2.231374
	26	6	0	2.660037	2.814664	-0.438387
	27	1	0	3.621983	3.150868	-0.084233
	28	6	0	-2.114959	1.406580	0.408785
	29	6	0	-0.331292	2.732618	-2.416018
	30	1	0	-1.299919	2.691546	-1.920657
	31	1	0	-0.190060	3.738843	-2.814314
	32	1	0	-0.307640	2.017069	-3.239109
	33	6	0	-0.299989	-2.669809	-2.484822
	34	1	0	-0.285330	-1.930857	-3.287114
	35	1	0	-0.146960	-3.662557	-2.911536
	36	1	0	-1.268599	-2.654261	-1.987923
	37	7	0	-0.493998	-0.032322	2.200596
	38	6	0	-0.670838	-0.050256	3.346538
	39	6	0	-0.914539	-0.072491	4.783618
	40	1	0	-0.057133	-0.503357	5.310568
	41	1	0	-1.083922	0.945383	5.149603
	42	1	0	-1.801973	-0.677234	4.998103
	43	6	0	-1.419871	0.015916	-1.810271
	44	8	0	-1.870923	0.027453	-2.882431
HF = -	1199.5691082	/NImag=	=0			
Sum	of electronic	c and t	hermal Entha	alpies=	-1199.19	96817
Sum	of electronic	c and t	hermal Free	Energies=	-1199.28	32389

Figure S9. Ground State 1b_GS3 (Enantionmer of 1b_GS1).

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Ζ
1	75	0	0.004535	-0.758736	-0.305406
2	8	0	0.493319	-0.195540	-3.299742
3	8	0	-2.060014	-2.951858	-1.088994
4	8	0	1.961929	-3.174094	-0.191885
5	7	0	-0.257106	-1.008791	1.841276
6	7	0	-2.963016	0.572393	0.071261
7	7	0	-1.641931	2.069740	-0.719900
8	7	0	1.675853	1.801150	0.961899
9	7	0	3.001450	0.544886	-0.170015
10	6	0	0.298711	-0.428321	-2.180930
11	6	0	-1.332971	-2.110132	-0.768403
12	6	0	-0.317978	-1.224570	2.977698
13	6	0	-0.386349	-1.515817	4.404764
14	1	0	-0.568282	-2.584807	4.556677
15	1	0	-1.198167	-0.948275	4.870730
16	1	0	0.558615	-1.247124	4.887869
17	6	0	-1.649895	0.776447	-0.267713
18	6	0	-3.737387	1.694134	-0.183258
19	1	0	-4.800756	1.710812	-0.001308
20	6	0	-2.905605	2.639954	-0.676091
21	1	0	-3.093541	3.652352	-0.998781

 Table S7. Coordinates and Energies of 1b_GS3 (Enantionmer of 1b_GS1).

22	2	6	(0	-0.449	938	2.	879128	_	-0.971964
23	3	1	(0	-0.712	2308	3.	639071	_	-1.713053
24	1	1	(0	0.315	5221	2.	240027	_	-1.412011
25	5	6	(0	0.040	484	З.	545380		0.322891
26	ō	1	(0	-0.761	454	4.	165323		0.741888
27	7	1	(0	0.871	058	4.	218424		0.078797
28	3	6	(0	0.489	9338	2.	539066		1.393814
29)	1	(0	0.742	2127	3.	.063375		2.319984
30)	1	(0	-0.298	3230	1.	820378		1.619990
31	<u>_</u>	6	(0	1.682	2769	Ο.	670001		0.187251
32	2	6	(0	3.777	763	1.	552582		0.380303
33	3	1	(0	4.843	3643	1.	606423		0.222260
34	1	6	(0	2.944	1880	2.	348039		1.089084
35	5	1	(0	3.133	3902	3.	241996		1.663145
36	5	6	(0	1.279	055	-2.	.241110	_	-0.249976
37	7	6	(0	3.604	1285	-0.	476152	_	-1.032254
38	3	1	(0	4.528	8881	-0.	.067303	_	-1.443661
39)	1	(0	3.833	3791	-1.	.381996	_	0.468407
40)	1	(0	2.934	1499	-0.	715238	_	-1.855896
41	_	6	(0	-3.565	5235	-0.	643134		0.621802
42	2	1	(0	-4.416	5853	-0.	352308		1.240717
43	3	1	(0	-3.911	016	-1.	305557	_	0.174521
44	1	1	(0	-2.841	.385	-1.	167056		1.242251
-119	9.5796893/	'NImaq	g=0							
of	electronic	c and	thermal	Entha	alpies=			-1199.	2075	577
of	electronic	c and	thermal	Free	Energies	s=		-1199.	2921	.79
	22 24 25 22 22 22 22 22 22 22 22 22 22 22 22	22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 -1199.5796893/ of electronic of electronic	22 6 23 1 24 1 25 6 26 1 27 1 28 6 29 1 30 1 31 6 32 6 33 1 34 6 35 1 36 6 37 6 38 1 39 1 40 1 41 6 42 1 43 1 44 1 -1199.5796893/NImag of electronic and of electronic and	22 6 23 1 24 1 25 6 26 1 27 1 28 6 29 1 30 1 31 6 32 6 33 1 34 6 35 1 36 6 37 6 38 1 39 1 40 1 41 6 42 1 43 1 44 1 -1199.5796893/NImag=0 of electronic and thermal of electronic and thermal 1	22 6 0 23 1 0 24 1 0 25 6 0 26 1 0 27 1 0 28 6 0 29 1 0 30 1 0 31 6 0 32 6 0 33 1 0 34 6 0 35 1 0 36 6 0 37 6 0 39 1 0 41 6 0 42 1 0 43 1 0 44 1 0 -1199.5796893/NImag=0 0 of electronic and thermal Enths of electronic and thermal Free	22 6 0 -0.449 23 1 0 -0.712 24 1 0 0.315 25 6 0 0.040 26 1 0 -0.761 27 1 0 0.871 28 6 0 0.489 29 1 0 0.742 30 1 0 -0.298 31 6 0 1.682 32 6 0 3.777 33 1 0 4.843 34 6 0 2.944 35 1 0 3.133 36 6 0 1.279 37 6 0 3.604 38 1 0 4.528 39 1 0 3.833 40 1 0 -2.841 41 6 0 -3.911 44 1 0 -2.841 -1199.5796893/NImag=0 -0 -2.841	22 6 0 -0.449938 23 1 0 -0.712308 24 1 0 0.315221 25 6 0 0.040484 26 1 0 -0.761454 27 1 0 0.871058 28 6 0 0.489338 29 1 0 0.742127 30 1 0 -0.298230 31 6 0 1.682769 32 6 0 3.777763 33 1 0 4.843643 34 6 0 2.944880 35 1 0 3.133902 36 6 0 1.279055 37 6 0 3.833791 40 1 0 -2.84881 39 1 0 -3.565235 42 1 0 -2.841385 -1199.5796893/NImag=0 of electronic and thermal Enthalpies= of electronic and thermal Free Energies= of electronic and thermal Free Energies	22 6 0 -0.449938 2. 23 1 0 -0.712308 3. 24 1 0 0.315221 2. 25 6 0 0.040484 3. 26 1 0 -0.761454 4. 27 1 0 0.871058 4. 28 6 0 0.489338 2. 29 1 0 0.742127 3. 30 1 0 -0.298230 1. 31 6 0 1.682769 0. 32 6 0 3.777763 1. 33 1 0 4.843643 1. 34 6 0 2.944880 2. 35 1 0 3.133902 3. 36 6 0 1.279055 -2. 37 6 0 3.604285 -0. 38 1 0 -3.565235 -0. 40 1 0 -3.911016 -1.	2260 -0.449938 2.879128 2310 -0.712308 3.639071 2410 0.315221 2.240027 2560 0.040484 3.545380 2610 -0.761454 4.165323 2710 0.871058 4.218424 2860 0.489338 2.539066 2910 0.742127 3.063375 3010 -0.298230 1.820378 3160 1.682769 0.670001 3260 3.777763 1.552582 3310 4.843643 1.606423 3460 2.944880 2.348039 3510 3.133902 3.241996 3660 1.279055 -2.241110 3760 3.604285 -0.476152 3810 4.528881 -0.067303 3910 3.833791 -1.381996 4010 2.934499 -0.715238 4160 -3.565235 -0.643134 4210 -4.416853 -0.352308 4310 -3.911016 -1.30557 4410 -2.841385 -1.167056 -1199.5796893/NImag=0of electronic and thermal Enthalpies= $-1199.576893/NImag=0$ of electronic and thermal Enthalpies= $-1199.576893/NImag=0$	2260 -0.449938 2.879128 $ 23$ 10 -0.712308 3.639071 $ 24$ 10 0.315221 2.240027 $ 25$ 60 0.040484 3.545380 $ 26$ 10 -0.761454 4.165323 27 10 0.871058 4.218424 28 60 0.489338 2.539066 29 10 0.742127 3.063375 30 10 -0.298230 1.820378 31 60 1.682769 0.670001 32 60 3.777763 1.552582 33 10 4.843643 1.606423 34 60 2.944880 2.348039 35 10 3.133902 3.241996 36 60 1.279055 -2.241110 37 60 3.604285 -0.476152 38 10 4.528881 -0.067303 39 10 3.833791 -1.381996 40 10 -2.934499 -0.715238 41 60 -3.911016 -1.305557 44 10 -2.841385 -1.167056 $-1199.5796893/NImag=0$ 0 -2.841385 -1.167056 of electronic and thermal Enthalpies= -1199.2075 $0f$ electronic and thermal Free Energies= -1199.20215

b) Coordinates and Energies of the connecting transition states of all the isomers of **1b**

Figure S10. Transition state 1b_TS12.

Center	Atomic	Atomic	Coord	inates
Number	Number	Туре	Х	Y
1	6	0	3.920577	0.513

Table S8	B . (Coordinates	and	Energies	of	Transition	state	1b	TS12.
				0				_	-

Number	Number	Туре	Х	Y	Ζ
1	 6	0	3.920577	0.513999	0.844643
2	7	0	2.744358	0.772538	0.155731
3	6	0	1.798488	-0.194161	0.383572
4	7	0	2.444367	-1.068507	1.221205
5	6	0	3.732163	-0.645489	1.513327
6	6	0	2.611248	1.951397	-0.704348
7	6	0	1.595188	3.025819	-0.217803
8	6	0	0.878007	2.738304	1.116660
9	7	0	-0.555439	2.447756	0.982448
10	6	0	-1.144511	1.338139	0.433414
11	7	0	-2.484007	1.578884	0.613576
12	6	0	-2.710010	2.795709	1.234439
13	6	0	-1.496296	3.343802	1.465939
14	6	0	-3.605783	0.732231	0.207207
15	6	0	1.930187	-2.324005	1.764170
16	75	0	-0.220728	-0.461166	-0.581182
17	6	0	0.603976	-2.050844	-1.377003

(Angstroms)

	18	8	(C		1.098464	-	2.986877		-1.841562
	19	7		С	_	0.974502	_	1.533962		1.167269
	20	6		С	-	1.514549	-	2.104515		2.018527
	21	6		С	-	2.190864	-	2.834952		3.084264
	22	6		С		0.207736		0.583403		-2.137860
	23	8		С		0.392884		1.219574		-3.091039
	24	6		С	-	1.866761	-	0.962054		-1.511132
	25	8		С	-	2.778404	-	1.342774		-2.115276
	26	1		С	-	1.465539	-	3.414319		3.664951
	27	1		С	- :	2.927152	-	3.522864		2.655762
	28	1		С	- :	2.703511	-	2.137496		3.754528
	29	1		С	-	3.703075		3.156871		1.451002
	30	1		C	-	1.218796		4.276521		1.931127
	31	1		C		0.936192		3.617793		1.760351
	32	1		С		1.344872		1.919610		1.663794
	33	1		C		2.133691		3.973202		-0.119586
	34	1		C		0.843230		3.184144		-0.994847
	35	1	(С		3.609932		2.389150		-0.755769
	36	1	(С		2.369753		1.619636		-1.711625
	37	1		С		4.391820	-	1.210063		2.153473
	38	1	(С		4.780123		1.162589		0.780889
	39	1	(С		1.303680	-	2.823357		1.028712
	40	1	(С		2.778846	-	2.970162		1.996170
	41	1		C		1.357423	-	2.145770		2.677954
	42	1	(С	-	3.422795	-	0.302878		0.490076
	43	1	(С	_	4.499984		1.084852		0.724305
	44	1		С	-	3.773898		0.792946		-0.869264
HF = -1	199.5632222	/NImag=2	1 (-53	.4223	3 cm ⁻¹)				
Sum c	of electroni	c and th	nermal	Enth	nalpi	es=		-1199.	191	522
Sum c	of electroni	c and th	nermal	Free	e Ene	rgies=		-1199.	274	423

Figure S11. Transition state 1b_TS23.

Table S9.	Coordinates	and Energies	of Transition	state 1b	TS23 .

Center Atomic Atom		Atomic	Coord	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z			
1	6	0	1.498160	3.343182	1.465189			
2	7	0	0.556810	2.447453	0.982070			
3	6	0	1.145278	1.337533	0.432995			
4	7	0	2.484921	1.577794	0.612706			
5	6	0	2.711590	2.794584	1.233383			
6	6	0	-0.876474	2.738793	1.116240			
7	6	0	-1.593424	3.026518	-0.218311			
8	6	0	-2.610159	1.952650	-0.704667			
9	7	0	-2.743964	0.774027	0.155611			
10	6	0	-1.798683	-0.193224	0.383543			
11	7	0	-2.445079	-1.067075	1.221298			
12	6	0	-3.732588	-0.643203	1.513430			
13	6	0	-3.920311	0.516322	0.844618			
14	6	0	-1.931808	-2.322932	1.764368			
15	6	0	3.606223	0.730780	0.205814			

16	75	0	0.220426	-0.461584	-0.581101
17	6	0	1.866178	-0.964191	-1.510581
18	8	0	2.777604	-1.346128	-2.114294
19	7	0	0.973476	-1.534138	1.167819
20	6	0	1.513465	-2.104032	2.019554
21	6	0	2.189925	-2.832997	3.086239
22	6	0	-0.207042	0.583083	-2.137981
23	8	0	-0.391553	1.219399	-3.091187
24	6	0	-0.605401	-2.050741	-1.376788
25	8	0	-1.100622	-2.986350	-1.841415
26	1	0	2.579293	-2.134526	3.833871
27	1	0	3.022081	-3.412253	2.672844
28	1	0	1.492424	-3.521487	3.574442
29	1	0	-4.392535	-1.207270	2.153729
30	1	0	-4.779453	1.165446	0.780864
31	1	0	-3.608581	2.391001	-0.756126
32	1	0	-2.368885	1.620558	-1.711895
33	1	0	-2.131314	3.974273	-0.120323
34	1	0	-0.841333	3.184169	-0.995363
35	1	0	3.704864	3.155401	1.449557
36	1	0	1.221164	4.276094	1.930291
37	1	0	3.773137	0.790641	-0.870886
38	1	0	4.500991	1.083786	0.721648
39	1	0	3.423509	-0.304083	0.489742
40	1	0	-1.359939	-2.145241	2.678801
41	1	0	-2.780899	-2.968956	1.995167
42	1	0	-1.304668	-2.822125	1.029338
43	1	0	-1.343808	1.920427	1.663464
44	1	0	-0.934199	3.618402	1.759810
HF = -11	99.5632242/NImag=1	(-53.2399	$cm^{-1})$		
Sum of	electronic and th	ermal Entha	alpies=	-1199.19	91524
Sum of	electronic and th	ermal Free	Energies=	-1199.27	74255

3. NMR Spectra of Complex 3b

fac-acetonitrile-tricarbonyl(1,1'-dimesityl-3,3'-propylene-diimidazoline-2,2'-diylidene)rhenium(I)-hexafluorophosphate (3b).

¹**H-NMR** (400 MHz, CD₂Cl₂): δ (ppm): 1.95 (s, 3H, ortho-CH₃), 1.98 (s, 3H, ortho-CH₃), 2.08 (s, 3H, ortho-CH₃), 2.10 (s, 3H, ortho-CH₃), 2.12 (m, 2H, NCH₂CH₂CH₂N), 2.34 (s, 3H, NCCH₃), 2.34 (s, 3H, para-CH₃), 2.34 (s, 3H, para-CH₃), 4.09 (dddd, 2H, ²J = 14.7, ²J = 12.6, ³J = 8.4, ³J = 2.7 Hz, NCHHCH₂CHHN), 4.17 (dt, 1H, ²J = 14.1, ³J = 3.4 Hz, NCHHCH₂CHHN), 4.36 (dt, 1H, ²J = 14.3, ³J = 3.2 Hz, NCHHCH₂CHHN), 7.00 (m, 1H, meta-CH), 6.98 (m, 1H, meta-CH), 7.01 (d, 1H, ³J = 1.9 Hz, NCHCHN-Mes), 7.27 (d, 1H, ³J = 1.9 Hz, NCHCHN-Mes), 7.34 (d, 1H, ³J = 1.9 Hz, NCHCHN-Mes).

¹³C-NMR (101 MHz, CD₂Cl₂, 298 K): δ (ppm): 3.98 (NCCH₃), 18.44 (*ortho*-CH₃), 18.50 (*ortho*-CH₃), 18.60 (*ortho*-CH₃), 18.89 (*ortho*-CH₃), 21.41 (*para*-CH₃), 21.42 (*para*-CH₃), 34.27 (NCH₂CH₂CH₂CH₂N), 46.56 (NCH₂CH₂CH₂N), 47.31 (NCH₂CH₂CH₂N), 123.27 (NCCH₃), 123.46 (NCHCHN-Mes), 123.85 (NCHCHN-Mes), 125.67 (NCHCHN-Mes), 125.89 (NCHCHN-Mes), 129.34 (*C*-*ortho*-CH₃), 129.82 (*C*-*ortho*-CH₃), 129.98 (*C*-*ortho*-CH₃), 130.37 (*C*-*ortho*-CH₃), 135.83 (*meta*-C), 136.25 (*meta*-C), 136.94 (*meta*-C), 137.50 (*ipso*-CN), 137.55 (*ipso*-CN), 137.59 (*meta*-C), 140.46 (*C*-*para*-CH₃), 140.81 (*C*-*para*-CH₃), 175.30 (NCN), 176.50 (NCN), 188.89 (CO_{trans-NHC}), 189.03 (CO_{trans-NHC}), 193.04 (CO_{cis-NHC}).

Figure S12. ¹H NMR spectrum of compound **3b** in CD₂Cl₂ (bearing a CD₃CN ligand).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2014

Figure S13. ¹H NMR spectrum of compound **3b** in CD₂Cl₂ (bearing a CH₃CN ligand).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2014

Figure S14. ¹H NMR spectrum of compound **3b** in DMSO at 23°C (bearing a CH₃CN ligand).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2014

Figure S15. ¹H NMR spectrum of compound **3b** in DMSO at 93°C.

Figure S16. ¹H NMR spectrum of compound **3b** in DMSO at 23°C, after heating to 93 °C.

Figure S17. ¹³C NMR spectrum of compound **3b**.

Figure S18. ${}^{1}H/{}^{1}H$ COSY NMR spectrum of compound 3b in CD₂Cl₂.

Figure S19. 1 H/ 13 C HSQC NMR spectrum of compound 3b in CD₂Cl₂.

Figure S20. ${}^{1}\text{H}/{}^{13}\text{C}$ HMBC NMR spectrum of compound 3b in CD₂Cl₂.

Figure S21. ${}^{1}\text{H}/{}^{1}\text{H}$ NOESY NMR spectrum of compound **3b** in CD₂Cl₂.

4. ¹H and ¹³C NMR Spectra of Complexes 1a, 1b, 1c, 2a, 2b, 3a, 3c, 4, 5a, 5b and 5c

fac-acetonitrile-tricarbonyl(1,1'-dimethyl-3,3'-ethylene-diimidazoline-2,2'-diylidene)rhenium(I)-hexafluorophosphate (1a)

¹**H-NMR** (400 MHz, CD₂Cl₂, 298 K): δ (ppm): 2.42 (s, 3H, NCC*H*₃), 3.94 (s, 3H, NC*H*₃), 4.53 (dd, 2H, ${}^{3}J$ = 8.3 Hz, ${}^{2}J$ = 15.5 Hz, NCHHCHHN), 4.80 (dd, 2H, ${}^{3}J$ = 8.3 Hz, ${}^{2}J$ = 15.5 Hz, NCHHCHHN), 7.06 (s, 2H, NCHCHNCH₃), 7.08 (s, 2H, NCHCHNCH₃).

¹³C-NMR (101 MHz, CD₂Cl₂, 298 K): δ (ppm): 4.10 (NCCH₃), 40.63 (NCHCHNCH₃), 50.47 (NCH₂CH₂N), 123.79 (NCHCHN-CH₃), 124.49 (NCHCHN-CH₃), 124.68 (NCCH₃), 171.73 (NCN), 192.65 (CO_{cis-NHC}), 193.71 (CO_{trans-NHC}).

Figure S22. ¹H NMR spectrum of compound 1a in CD₂Cl₂ at 23°C.

Figure S23. ¹³C NMR spectrum of compound 1a in CD₂Cl₂ at 23°C.

fac-acetonitrile-tricarbonyl(1,1'-dimethyl-3,3'-propylene-diimidazoline-2,2'diylidene)rhenium(I)-hexafluorophosphate (1b)

¹**H-NMR** (400 MHz, CD₂Cl₂, 298 K): δ (ppm): 1.81 (dddd, 2H, ⁴*J* = 30.0 Hz, ³*J* = 15.0 Hz, ³*J* = 12.1 Hz, ²*J* = 6.1 Hz, ²*J* = 3.0 Hz, NCH₂CH₂CH₂N), 2.38 (s, 3H, NCCH₃), 3.74 (dddd, 2H, ⁴*J* = 29.3 Hz, ³*J* = 14.8 Hz, ³*J* = 12.3 Hz, ²*J* = 2.8 Hz, NCH*H*CH₂CH*H*N), 3.99 (dddd, 2H, NC*H*HCH₂C*H*HN), 4.05 (s, 3H, NCH₃), 4.06 (s, 3H, NCH₃), 7.00 (d, 1H, ²*J* = 1.9 Hz, NC*H*CHNCH₃), 7.18 (d, 1H, ²*J* = 1.9 Hz, NCH*C*HNCH₃).

¹³C-NMR (101 MHz, CD₂Cl₂, 298 K): δ (ppm): 3.97 (NCCH₃), 34.90 (NCH₂CH₂CH₂CH₂N), 40.71 (NCHCHNCH₃), 41.74 (NCHCHNCH₃), 46.38 (NCH₂CH₂CH₂CH₂N), 47.19 (NCH₂CH₂CH₂N), 121.79 (NCHCHNCH₃), 122.43 (NCHCHNCH₃), 124.56 (NCCH₃), 125.42 (NCHCHNCH₃), 126.08 (NCHCHNCH₃), 173.31 (NCN), 174.78 (NCN), 191.74 (CO_{cis-NHC}), 193.27 (CO_{trans-NHC}), 193.60 (CO_{trans-NHC}).

Figure S24. ¹H NMR spectrum of compound **1b** in CD_2Cl_2 at 23°C.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2014

fac-acetonitrile-tricarbonyl(1,1'-dimethyl-3,3'-butylene-diimidazoline-2,2'-diylidene)rhenium(I)-hexafluorophosphate (1c)

¹**H-NMR** (400 MHz, CD₂Cl₂, 298 K): δ (ppm): 1.34 (m, 4H, NCH₂CH₂CH₂CH₂CH₂N), 2.30 (s, 3H, NCCH₃), 2.45 (s, 3H, NCH₃), 2.48 (s, 3H, NCH₃), 3.80-4.25 (m, 4H, NCH₂(CH₂)₂CH₂N), 7.07 (dd, 2H, ²J = 1.9 Hz, NCHCHNCH₃), 7.15 (d, 1H, ²J = 1.9 Hz, NCHCHNCH₃), 7.21 (d, 1H, ²J = 1.9 Hz, NCHCHNCH₃).

¹³C-NMR (101 MHz, CD₂Cl₂, 298 K): δ (ppm): 3.94 (NCCH₃), 21.98 (NCH₂CH₂CH₂CH₂CH₂CH₂N), 22.50 (NCH₂CH₂CH₂CH₂N), 40.09 (NCHCHN-CH₃), 41.16 (NCHCHNCH₃), 47.84 (NCH₂CH₂CH₂CH₂CH₂N), 48.35 (NCH₂CH₂CH₂CH₂N), 121.36 (NCHCHNCH₃), 121.73 (NCHCHNCH₃), 124.46 (NCCH₃), 124.98 (NCHCHNCH₃), 125.66 (NCHCHNCH₃), 174.08 (NCN), 174.58 (NCN), 191.69 (CO_{cis-NHC}), 191.74 (CO_{trans-NHC}), 192.89 (CO_{trans-NHC}).

Figure S27. ¹³C NMR spectrum of compound 1c in CD_2Cl_2 at 23°C.

fac-acetonitrile-tricarbonyl(1,1'-diisopropyl-3,3'-ethylene-diimidazoline-2,2'diylidene)rhenium(I)-hexafluorophosphate (2a)

¹**H-NMR** (400 MHz, CD₂Cl₂, 298 K): δ (ppm): 1.47 (s, 3H, CH(CH₃)₂), 1.49 (s, 3H, CH(CH₃)₂), 1.51 (s, 3H, C(CH₃)₂), 1.53 (s, 3H, C(CH₃)₂), 2.43 (s, 3H, NCCH₃), 4.50 (m, 2H, NCHHCHHN), 4.86 (m, 2H, NCHHCHHN), 5.08 (hept, 2H, ${}^{3}J$ = 6.6 Hz, CH(CH₃)₂), 7.14 (m, 4H, NCHCHNC(CH₃)₂).

¹³C-NMR (101 MHz, CD₂Cl₂, 298 K): δ (ppm): 4.51 (NCCH₃), 24.54 (C(CH₃)₂), 24.24 (C(CH₃)₂), 50.41 (NCH₂CH₂N), 55.29 (CH(CH₃)₂), 123.08 (NCHCHNCH(CH₃)₂), 124.16 (NCHCHNCH(CH₃)₂), 124.90 (NCCH₃), 170.43 (NCN), 184.12 (CO_{cis-NHC}), 191.94 (CO_{trans-NHC}).

Figure S28. ¹H NMR spectrum of compound **2a** in CD_2Cl_2 at 23°C.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2014

Figure S29. ¹³C NMR spectrum of compound 2a in CD₂Cl₂ at 23°C.

fac-acetonitrile-tricarbonyl(1,1'-diisopropyl-3,3'-propylene-diimidazoline-2,2'-diylidene)-rhenium(I)hexafluorophosphate (2b)

¹**H-NMR** (400 MHz, CD₂Cl₂, 298 K): δ (ppm): 1.51 (m, 6H, CH(CH₃)₂), 1.61, (m, 6H, CH(CH₃)₂), 1.79(m, 2H, N 1H $^{3}J = 14.6$ Hz, 2H, NCH₂CH₂CH₂CH₂N), 2.39 14.6 Hz. ${}^{3}J = 11.9$ Hz, ${}^{2}J =$ (s, 3H, $NCCH_3$), 3.61 (ddd, $^{3}J = 11.9$ Hz, 2.9 Hz, NCHHCH2CHHN), 3.74 (ddd, $^{3}J = 12.1$ Hz, $^{2}J =$ $^{3}J = 14.4$ Hz, 3.1 Hz, NCHHCH₂CHHN), 1H. 3.94 (dt. 1H, ${}^{3}J = 14.1 \text{ Hz}$, ${}^{2}J = 3.1 \text{ Hz}$, NCHHCH₂CH*H*N), 4.08 (dt, 1H, ${}^{3}J = 14.5 \text{ Hz}$, ${}^{2}J = 3.2 \text{ Hz}$, NCHHCH₂CHHN), 5.31 (hept, 1H, ${}^{3}J = 6.7$ Hz, CH(CH₃)₂), 5.43 (hept, 1H, ${}^{3}J = 6.7$ Hz, CH(CH₃)₂), 7.08 (d, 1H, ${}^{2}J = 2.0$ Hz, NCHCHN- i Pr, 7.13 (d, 1H, ${}^{2}J = 2.0$ Hz, NCHCHNCH(CH₃)₂), 7.25 (m, 2H, NCHCHNCH(CH₃)₂).

¹³C-NMR (101 MHz, CD_2Cl_2 , 298 K): δ (ppm): 4.00 (NCCH₃), 23.71 (CH(*C*H₃)₂), 23.87 (CH(*C*H₃)₂), 25.18 (CH(*C*H₃)₂), 25.23 (CH(*C*H₃)₂), 35.18 (NCH₂CH₂CH₂CH₂N), 46.45 (NCH₂CH₂CH₂N), 47.35 (NCH₂CH₂CH₂N), 54.08 (CH(CH₃)₂), 54.80 (CH(CH₃)₂), 120.25 (NCHCHNCH(CH₃)₂), 120.60 (NCHCHNCH(CH₃)₂), 122.89 (NCHCHNCH(CH₃)₂), 123.49 (NCHCHNCH(CH₃)₂), 124.19 (NCCH₃), 172.65 (NCN), 173.50 (NCN), 191.22 (CO_{cis-NHC}), 192.76 (CO_{trans-NHC}), 193.62 (CO_{trans-NHC}).

Figure S30. ¹H NMR spectrum of compound **2b** in CD_2Cl_2 at 23°C.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2014

fac-acetonitrile-tricarbonyl(1,1'-dimesityl-3,3'-ethylene-diimidazoline-2,2'-diylidene)rhenium(I)-hexafluorophosphate (3a)

¹**H-NMR** (400 MHz, CD₂Cl₂, 298 K): δ (ppm): 1.97 (s, 6H, *ortho*-CH₃), 2.01 (s, 6H, *ortho*-CH₃), 2.32 (s, 6H, *para*-CH₃), 2.35 (s, 3H, NCCH₃), 4.54 (dd, 2H, ${}^{3}J$ = 7.7 Hz, ${}^{2}J$ = 15.7 Hz, NCHHCHHN), 4.88 (dd, 2H, ${}^{3}J$ = 7.7 Hz, ${}^{2}J$ = 15.7 Hz, NCHCHHN), 6.92 (d, 2H, ${}^{3}J$ = 1.9 Hz, NCHCHNC-Mes), 6.98 (s, 4H, *meta*-CH), 7.28 (d, 2H, ${}^{3}J$ = 1.9 Hz, NCHCHN-Mes).

¹³C-NMR (101 MHz, CD₂Cl₂, 298 K): δ (ppm): 4.13 (NCCH₃), 18.39 (*ortho*-CH₃), 18.57 (*ortho*-CH₃), 26.12 (*para*-CH₃), 52.84 (NCH₂CH₂N), 123.43 (NCHCHN-Mes), 123.78 (NCCH₃), 123.85 (NCHCHN-Mes), 124.29 (NCHCHN-Mes), 125.22 (NCHCHN-Mes), 129.68 (*C*-*ortho*-CH₃), 129.91 (*C*-*ortho*-CH₃), 136.64 (*meta*-C), 137.67 (*ipso*-CN), 140.49 (*C*-*para*-CH₃), 173.62 (NCN), 189.36 (*C*O_{trans-NHC}), 193.00 (*C*O_{cis-NHC}).

Figure S32. ¹H NMR spectrum of compound **3a** in CD_2Cl_2 at 23°C.

Figure S33. ¹³C NMR spectrum of compound 3a in CD₂Cl₂ at 23°C.

fac-acetonitrile-tricarbonyl(1,1'-dimesityl-3,3'-butylene-diimidazoline-2,2'-diylidene)rhenium(I)-hexafluorophosphate (3c)

¹**H-NMR** (400 MHz, CD_2Cl_2): δ (ppm): 1.59 (m, 2H, NCH₂C*H*HCH*H*CH₂N), 1.96 (s, 3H, *ortho*-*CH*₃), 1.98 (s, 3H, *ortho*-*CH*₃), 2.02 (m, 2H, NCH₂CH*H*C*H*HCH₂N), 2.12 (s, 3H, *ortho*-*CH*₃), 2.14 (s, 3H, *ortho*-*CH*₃), 2.32 (s, 3H, NCCH₃), 2.35 (s, 3H, *para*-*CH*₃), 2.36 (s, 3H, *para*-*CH*₃), 4.02 (m, 1H, NCH*H*(CH₂)₂CHHN), 4.15 (m, 1H, NCHH(CH₂)₂C*H*HN), 4.38 (m, 1H, NC*H*H(CH₂)₂CHHN), 4.64 (m, 1H, NCHH(CH₂)₂CH*H*N), 6.93 (m, 1H, *meta*-*CH*), 6.99 (m, 1H, *meta*-*CH*), 7.03 (m, 1H, *meta*-*CH*), 7.06 (m, 2H, NC*H*CHN-Mes), 7.36 (d, 1H, ³*J* = 1.9 Hz, NC*H*CHN-Mes), 7.41 (d, 1H, ³*J* = 2.0 Hz, NC*H*CHN-Mes).

¹³C-NMR (101 MHz, CD₂Cl₂, 298 K): δ (ppm): 3.98 (NCCH₃), 18.66 (*ortho*-CH₃), 18.68 (*ortho*-CH₃), 18.72 (*ortho*-CH₃), 18.91 (*ortho*-CH₃), 21.41 (*para*-CH₃), 21.43 (*para*-CH₃), 22.05 (NCH₂CH₂CH₂CH₂CH₂N), 22.41 (NCH₂CH₂CH₂CH₂N), 47.95 (NCH₂(CH₂)₂CH₂N), 48.77 (NCH₂(CH₂)₂CH₂N), 122.63 (NCHCHN-Mes), 123.00 (NCHCHN-Mes), 123.04 (NCCH₃), 125.57 (NCHCHN-Mes), 125.92 (NCHCHN-Mes), 129.08 (*C*-*ortho*-CH₃), 129.78 (*C*-*ortho*-CH₃), 130.04 (*C*-*ortho*-CH₃), 130.48 (*C*-*ortho*-CH₃), 135.50 (*meta*-C), 135.81 (*meta*-C), 136.77 (*ipso*-CN), 137.28 (*meta*-C), 137.31 (*ipso*-CN), 137.89 (*meta*-C), 140.42 (*C*-*para*-CH₃), 140.78 (*C*-*para*-CH₃), 176.49 (NCN), 177.54 (NCN), 189.28 (CO_{trans}-NHC), 189.85 (CO_{trans}-NHC), 192.30 (CO_{cis}-NHC).

Figure S34. ¹H NMR spectrum of compound **3c** in CD_2Cl_2 at 23°C.

Figure S35. ¹³C NMR spectrum of compound 3c in CD₂Cl₂ at 23°C.

fac-acetonitrile-tricarbonyl(1,1'-diisopropylphenyl-3,3'-ethylene-diimidazoline-2,2'-diylidene)rhenium(I)-hexafluorophosphate (4)

¹**H-NMR** (400 MHz, CD_2Cl_2 , 298 K): δ (ppm): 1.05 (d, 6H, ${}^{3}J = 6.8$ Hz, $CH(CH_3)_2$), 1.11 (d, 6H, ${}^{3}J = 6.8$ Hz, $CH(CH_3)_2$), 1.21 (d, 6H, ${}^{3}J = 2.5$ Hz, $CH(CH_3)_2$), 1.23 (d, 6H, ${}^{3}J = 2.3$ Hz, $CH(CH_3)_2$), 2.34 (s, 3H, NCCH₃), 2.34 (m, 2H, $CH(CH_3)_2$, 2.56 (m, 2H, $CH(CH_3)_2$, 4.67 (m, 2H, NCHHCHHN), 4.78 (m, 2H, NCHHCHHN), 6.99 (d, 2H, ${}^{3}J = 1.9$ Hz, NCHCHNC-Dipp), 7.29 (d, 2H, ${}^{3}J = 1.7$ Hz, NCHCHN-Dipp), 7.29 (m, 4H, *ortho-H*), 7.50 (t, 2H, ${}^{3}J = 7.8$ Hz, *para-H*).

¹³C-NMR (101 MHz, CD₂Cl₂, 298 K): δ (ppm): 4.25 (NCCH₃), 22.74 (CH(*C*H₃)₂), 22.83 (CH(*C*H₃)₂), 26.31 (CH(*C*H₃)₂), 26.39 (CH(*C*H₃)₂), 28.87 (NCH₂CH₂N), 29.18 (NCH₂CH₂N), 123.93 (NCCH₃), 124.35 (NCHCHN-CH(CH₃)₂), 124.95 (NCHCHN-CH(CH₃)₂), 126.13 (*ortho-C*), 131.59 (*meta-C*), 137.97 (*ipso-C*N), 147.07 (*para-C*), 173.96 (NCN), 188.82 (CO_{trans-NHC}), 192.85 (CO_{cis-NHC}).

Figure S37. ¹³C NMR spectrum of compound 4 in CD_2Cl_2 at 23°C.

fac-acetonitrile-tricarbonyl(1,1'-dimesityl-3,3'-ethylene-diimidazoline-2,2'-diylidene)rhenium(I)-[Al(OC(CF₃)₃)₄] (5a)

¹**H-NMR** (400 MHz, CD₂Cl₂, 298 K): δ (ppm): 1.97 (s, 6H, *ortho*-CH₃), 1.99 (s, 6H, *ortho*-CH₃), 2.26 (s, 3H, NCCH₃), 2.33 (s, 6H, *para*-CH₃), 4.64 (m, 4H, N(CH₂)₂N), 6.97 (d, 2H, ³J = 1.9 Hz, NCHCHNC-Mes), 7.02 (s, 4H, *meta*-CH), 7.20 (d, 2H, ³J = 1.9 Hz, NCHCHN-Mes).

¹³C-NMR (101 MHz, CD₂Cl₂, 298 K): δ (ppm): 4.31 (NCCH₃), 18.31 (*ortho*-CH₃), 18.58 (*ortho*-CH₃), 21.39 (*para*-CH₃), 52.57 (NCH₂CH₂N), 120.41 (NCHCHN-Mes), 122.88 (NCCH₃), 123.32 (NCHCHN-Mes), 124.69 (NCHCHN-Mes), 124.92 (NCHCHN-Mes), 129.59 (*C*-*ortho*-CH₃), 130.28 (*C*-*ortho*-CH₃), 135.95 (*meta*-C), 136.76 (*meta*-C), 137.30 (*ipso*-CN), 140.94 (*C*-*para*-CH₃), 173.98 (NCN), 188.96 (CO_{trans}-NHC), 192.56 (CO_{cis}-NHC).

Figure S38. ¹H NMR spectrum of compound 5a in CD₂Cl₂ at 23°C.

S50

fac-acetonitrile-tricarbonyl(1,1'-dimesityl-3,3'-propylene-diimidazoline-2,2'diylidene)rhenium(I)- [Al(OC(CF₃)₃)₄] (5b)

¹**H-NMR** (400 MHz, CD₂Cl₂): δ (ppm): 1.96 (s, 3H, *ortho*-CH₃), 1.97 (s, 3H, *ortho*-CH₃), 2.05 (s, 3H, *ortho*-CH₃), 2.07 (m, 2H, NCH₂CH₂CH₂N), 2.10 (s, 3H, *ortho*-CH₃), 2.28 (s, 3H, NCCH₃), 2.34 (s, 3H, *para*-CH₃), 2.35 (s, 3H, *para*-CH₃), 4.13 (m, 4H, NCH₂CH₂CH₂CH₂N), 6.99 (m, 1H, *meta*-CH), 7.01 (m, 1H, *meta*-CH), 7.04 (d, 1H, ³J = 1.9 Hz, NCHCHN-Mes), 7.04 (m, 1H, *meta*-CH), 7.05 (m, 1H, *meta*-CH), 7.07 (d, 2H, ³J = 1.9 Hz, NCHCHN-Mes), 7.22 (d, 1H, ³J = 1.9 Hz, NCHCHN-Mes), 7.24 (d, 1H, ³J = 1.9 Hz, NCHCHN-Mes).

¹³C-NMR (101 MHz, CD₂Cl₂, 298 K): δ (ppm): 4.16 (NCCH₃), 18.39 (*ortho*-CH₃), 18.48 (*ortho*-CH₃), 18.56 (*ortho*-CH₃), 18.82 (*ortho*-CH₃), 21.41 (*para*-CH₃), 21.41 (*para*-CH₃), 34.26 (NCH₂CH₂CH₂N), 46.57 (NCH₂CH₂CH₂N), 47.16 (NCH₂CH₂CH₂CH₂N), 122.46 (NCCH₃), 123.21 (NCHCHN-Mes), 123.31 (NCHCHN-Mes), 126.17 (NCHCHN-Mes), 126.21 (NCHCHN-Mes), 129.21 (*C*-*ortho*-CH₃), 130.05 (*C*-*ortho*-CH₃), 130.10 (*C*-*ortho*-CH₃), 130.72 (*C*-*ortho*-CH₃), 135.19 (*meta*-C), 136.14 (*meta*-C), 136.56 (*meta*-C), 137.22 (*ipso*-CN), 137.35 (*ipso*-CN), 137.75 (*meta*-C), 140.88 (*C*-*para*-CH₃), 141.13 (*C*-*para*-CH₃), 175.28 (NCN), 177.21 (NCN), 188.44 (CO_{trans-NHC}), 188.72 (CO_{trans-NHC}), 192.50 (CO_{cis-NHC}).

Figure S40. ¹H NMR spectrum of compound **5b** in CD_2Cl_2 at 23°C.

Figure S41. ¹³C NMR spectrum of compound 5b in CD_2Cl_2 at 23°C.

fac-acetonitrile-tricarbonyl(1,1'-dimesityl-3,3'-butylene-diimidazoline-2,2'-diylidene)rhenium(I)-[Al(OC(CF₃)₃)₄] (5c)

¹**H-NMR** (400 MHz, CD₂Cl₂): δ (ppm): 1.59 (m, 2H, NCH₂(CH₂)₂CH₂N), 1.94 (s, 3H, *ortho*-CH₃), 2.00 (s, 3H, *ortho*-CH₃), 2.08 (s, 3H, *ortho*-CH₃), 2.14 (s, 3H, *ortho*-CH₃), 2.22 (m, 2H, NCH₂CHHCHHCH₂N), 2.27 (s, 3H, NCCH₃), 2.35 (s, 3H, *para*-CH₃), 2.36 (s, 3H, *para*-CH₃), 3.94 (m, 1H, NCHH(CH₂)₂CHHN), 4.04 (m, 1H, NCHH(CH₂)₂CHHN), 4.45 (m, 1H, NCHH(CH₂)₂CHHN), 4.63 (m, 1H, NCHH(CH₂)₂CHHN), 7.00 (m, 2H, *meta*-CH), 7.06 (m, 2H, *meta*-CH), 7.07 (m, 1H, *meta*-CH), 7.07 (m, 1H, NCHCHN-Mes), 7.10 (d, 1H, ³J = 2.0 Hz, NCHCHN-Mes), 7.32 (d, 1H, ³J = 2.0 Hz, NCHCHN-Mes), 7.34 (d, 1H, ³J = 2.0 Hz, NCHCHN-Mes).

¹³C-NMR (101 MHz, CD₂Cl₂, 298 K): δ (ppm): 4.17 (NCCH₃), 18.60 (*ortho*-CH₃), 18.65 (*ortho*-CH₃), 18.69 (*ortho*-CH₃), 18.93 (*ortho*-CH₃), 21.42 (*para*-CH₃), 21.42 (*para*-CH₃), 21.98 (NCH₂CH₂CH₂CH₂CH₂N), 22.47 (NCH₂CH₂CH₂CH₂N), 48.04 (NCH₂(CH₂)₂CH₂N), 48.72 (NCH₂(CH₂)₂CH₂N), 120.40 (NCHCHN-Mes), 126.08 (NCCH₃), 122.32 (NCHCHN-Mes), 122.63 (NCHCHN-Mes), 123.31 (NCHCHN-Mes), 128.93 (*C*-*ortho*-CH₃), 130.02 (*C*-*ortho*-CH₃), 130.13 (*C*-*ortho*-CH₃), 130.84 (*C*-*ortho*-CH₃), 134.87 (*meta*-C), 135.77 (*meta*-C), 136.23 (*ipso*-CN), 136.88 (*meta*-C), 137.07 (*ipso*-CN), 138.12 (*meta*-C), 140.78 (*C*-*para*-CH₃), 141.08 (*C*-*para*-CH₃), 176.35 (NCN), 178.21 (NCN), 188.98 (CO_{trans}-NHC), 189.54 (CO_{trans}-NHC), 191.82 (CO_{cis}-NHC).

Figure S42. ¹H NMR spectrum of compound **5c** in CD_2Cl_2 at 23°C.

Figure S43. ¹³C NMR spectrum of compound 5c in CD₂Cl₂ at 23°C.

5. References

- [1] APEX suite of crystallographic software. APEX 2 Version 2008.4. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [2] SAINT, Version 7.56a and SADABS Version 2008/1. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [3] Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, Moliterni A. G. G.; A.; Burla, M. C.; Polidori, G.; Camalli, M.; Spagna, R. "SIR97", A New Tool for Crystal Structure Determination and Refinement; J. Appl. Crystallogr. 1999, 32, 115-119.
- [3a] Sheldrick, G. M. "SHELXS-97", Program for Crystal Structure Solution, Göttingen, (1997).
- [4] International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199), Wilson, A. J. C., Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
- [5] Sheldrick, G. M. "SHELXL-97", University of Göttingen, Göttingen, Germany, (1998).
- [6] Spek, A. L. "**PLATON**", A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, (2010).
- [7] L. J. Farrugia, "WinGX (Version 1.70.01 January 2005)", J. Appl. Cryst. 1999, 32, 837-838.
- [8] Huebschle, C. B., Sheldrick, G. M. & Dittrich, B. "SHELXLE", J. Appl. Cryst. 2011, 44, 1281-1284.

Complete Reference 22 from manuscript:

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;
Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.;
Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.;
Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.;
Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski,
V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., "Gaussian 09" Revision B.1, Wallingford CT: Gaussian Inc..