### Supporting Information For

# A Bimodal Multianalyte Simple Molecule Chemosensor for Mg<sup>2+</sup>, Zn<sup>2+</sup>, and Co<sup>2+</sup>

Yiran Li, Jiang Wu, Xiaojie Jin, Jianwei Wang, Shuai Han, Wenyu Wu, Jun Xu, Weisheng Liu, Xiaojun Yao, and Yu Tang\*

Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China

Fax: (+86) 931-891-2582; E-mail: tangyu@lzu.edu.cn

**Contents:** 

Determination of binding constants for  ${\rm Mg}^{2+}$  and  ${\rm Zn}^{2+}$ 

Determination of binding constants for Co<sup>2+</sup>

Scheme S1 Synthetic route to HL.

Fig. S1 The linear dynamic response of HL for  $Mg^{2+}$  and the determination of the detection limit (LOD) for  $Mg^{2+}$  in  $CH_3CN$ .

Fig. S2 Fluorescence Job's plot for HL with  $Mg^{2+}$  in  $CH_3CN$ .

Fig. S3 ESI-MS spectrum of  $MgL_2$  complex.

Fig. S4 Competition experiments. The black bars represent the addition of an excess of metal ions

to an acetonitrile solution of **HL** (50  $\mu$ M) in the presence of Mg<sup>2+</sup> (25  $\mu$ M).  $\lambda_{em} = 546$  nm, [Metal] = 100  $\mu$ M, [Ca<sup>2+</sup>] = 500  $\mu$ M, [K<sup>+</sup>] = 500  $\mu$ M, [Na<sup>+</sup>] = 500  $\mu$ M, [Al<sup>3+</sup>] = 500  $\mu$ M.

- Fig. S5 Competition experiments. The black bars (A) represent the addition of an excess of metal ions to an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution of HL(50  $\mu$ M), and the red bars (B) represent the subsequent addition of 50  $\mu$ M Zn<sup>2+</sup> ions to the foregoing solution.  $\lambda_{em} = 558$  nm.
- Fig. S6 The linear dynamic response of HL for  $Zn^{2+}$  and the determination of the detection limit (LOD) for  $Zn^{2+}$  in an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution.
- **Fig. S7** Absorbance Job's plot for **HL** with Co<sup>2+</sup> in an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution.
- Fig. S8 ESI-MS spectrum of CoL<sub>2</sub> complex.
- Fig. S9 The linear fitting (absorbance at 476 nm) of CoL<sub>2</sub>.
- Fig. S10 Competition experiments (absorbance at 476 nm). The black bars (A) represent the addition of an excess of metal ions to an acetonitrile/Tris-HCl (50 mM, pH 7.40) (1:1, v/v) solution of HL(50 μM), and the chromatic bars (B) represent the subsequent addition of 25 μM Co<sup>2+</sup> ions to the foregoing solution.

**Fig. S11** The different metal salts toward **HL** for sensing  $Mg^{2+}$ ,  $Zn^{2+}$ , and  $Co^{2+}$ .

**Fig. S12** <sup>1</sup>H-NMR spectrum of **HL** ( $d_6$ -DMSO) at room temperature.

Fig. S13 <sup>13</sup>C-NMR spectrum of HL ( $d_6$ -DMSO) at room temperature. References

## Determination of binding constants for Mg<sup>2+</sup> and Zn<sup>2+</sup>.

The association constant and stoichiometry for the formation of the complex were evaluated using the Benesi-Hildebrand (B-H) plot [Eq. (1)].<sup>1</sup>

$$\frac{1}{F - F_0} = \frac{1}{K^{0.5} (F_{\text{max}} - F_0) [M^{n+1}]^{0.5}} + \frac{1}{F_{\text{max}} - F_0}$$
(1)

Binding stoichiometry for the complex formation is confirmed from experimental data. In the case of evaluation of the binding constant from the results of fluorescence titration, a modified B-H equation [Eq. (1)] is used, where  $F_0$ ,  $F_{max}$ , and F represent the emission intensity of **HL**, the maximum emission intensity observed in the presence of Mg<sup>2+</sup> or Zn<sup>2+</sup>, and intensity at a certain concentration of the metal ion, respectively. K is the association constant (M<sup>-2</sup>) and was determined from the slope of the linear plot, and [M<sup>n+</sup>] is the concentration of the Mg<sup>2+</sup> or Zn<sup>2+</sup> ion added during titration studies.

## Determination of binding constants for Co<sup>2+,2</sup>

Assuming a 1: *n* stoichiometry for interaction between L and  $Co^{2+}$ , the equilibrium is given by the following equation:

$$L + n Co^{2+} \stackrel{K}{\longleftrightarrow} L Co_n^{2+} \quad (2)$$

The association constant, *K*, is therefore expressed as:

$$K = \frac{[LCo_n^{2+}]}{[L][Co^{2+}]^n} = \frac{[LCo_n^{2+}]}{([L]_0 - [LCo_n^{2+}])([Co^{2+}]_0 - n[LCo_n^{2+}])^n}$$
(3)

 $[LCo^{2+}_{n}]$ , [L], and  $[Co^{2+}]$  represent the equilibrium concentrations of the complex, free L, and free  $Co^{2+}$ , respectively.  $[L]_{0}$  and  $[Co^{2+}]_{0}$  are the initial concentrations of L and  $Co^{2+}$ , respectively. If  $[Co^{2+}]_{0} >> [LCo^{2+}_{n}]$ , the equation 3 can be simplified as follows:

$$K = \frac{[LCo_n^{2+}]}{([L]_0 - [LCo_n^{2+}])([Co^{2+}]_0)^n}$$
(4)

Then it can be transformed to:

$$K[\mathrm{Co}^{2+}]_0^n = \frac{[\mathrm{LCo}_n^{2+}]}{[\mathrm{L}]_0 - [\mathrm{LCo}_n^{2+}]} \quad (5)$$

Absorbance intensity is given by following equations:

$$\frac{A - A_{\min}}{A_{\max} - A} = \frac{[LCo_n^{2+}]}{[LCo_n^{2+}]_{\max} - [LCo_n^{2+}]} = \frac{[LCo_n^{2+}]}{[L]_0 - [LCo_n^{2+}]}$$
(6)

 $A_{\min}$  is the absorbance intensity of L without cations, A is the absorbance intensity of L obtained with  $\operatorname{Co}^{2+}$ ,  $A_{\max}$  is the absorbance intensity of L in the presence of excess amount of  $\operatorname{Co}^{2+}$ . In the presence of excess amount of  $\operatorname{Co}^{2+}$ ,  $[\operatorname{LCo}^{2+}_{n}]_{\max}$  is almost equal to  $[L]_{0}$ . Using equations 5 and 6, the following equation is given:

$$\frac{A - A_{\min}}{A_{\max} - A} = K [Co^{2+}]_0^n \qquad (7)$$
$$\lg \frac{A - A_{\min}}{A_{\max} - A} = \lg K + n \lg [Co^{2+}]_0 \qquad (8)$$

When assuming the 2:1 stoichiometry (n = 0.5), equation 1 is obtained.

$$\lg \frac{A - A_{\min}}{A_{\max} - A} = \lg K + 0.5 \lg [\text{Co}^{2+}] \qquad (1)$$

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013



Scheme S1 Synthetic route to HL



Fig. S1 The linear dynamic response of HL for  $Mg^{2+}$  and the determination of the detection limit (LOD) for  $Mg^{2+}$  in CH<sub>3</sub>CN.



Fig. S2 Fluorescence Job's plot for HL with  $Mg^{2+}$  in  $CH_3CN$ . The total  $[HL] + [Mg^{2+}] = 100 \ \mu M$ .



#### Fig. S3 ESI-MS spectrum of MgL<sub>2</sub> complex.

ESI-MS exhibited the formation of a complex between two deprotonated **HL** and an  $Mg^{2+}$  [m/z 661.3057 (2L+Mg<sup>2+</sup>); calcd for C<sub>40</sub>H<sub>40</sub>MgN<sub>6</sub>O<sub>2</sub> m/z 661.09].

The physiologically important cations, such as  $K^+$ ,  $Na^+$ ,  $Ca^{2+}$ , and  $Al^{3+}$ , which exist at high concentrations in living cells, have negligible interference for forming the Mg-complex. In addition,  $Cd^{2+}$  and  $Hg^{2+}$  quenched the fluorescence intensity due to the heavy metal effect. Even though some biologically relevant metal ions, like  $Zn^{2+}$ ,  $Cu^{2+}$  and so on, showed various extend responses in the fluorescence intensity, these cations would have little influence, since they exist at low concentrations<sup>3</sup> compared to  $Mg^{2+}$ . These results suggested **HL** could be a fluorescence sensor for  $Mg^{2+}$  without interference of other physiologically important cations.



**Fig. S4** Competition experiments. The black bars represent the addition of an excess of metal ions to an acetonitrile solution of **HL** (50  $\mu$ M) in the presence of Mg<sup>2+</sup> (25  $\mu$ M).  $\lambda_{em} = 546$  nm, [Metal] = 100  $\mu$ M, [Ca<sup>2+</sup>] = 500  $\mu$ M, [K<sup>+</sup>] = 500  $\mu$ M, [Na<sup>+</sup>] = 500  $\mu$ M, [Al<sup>3+</sup>] = 500  $\mu$ M.

Via monitoring the fluorescence intensity at 558 nm, zinc ions could be distinguished from other metal ions, such as: Na<sup>+</sup>, K<sup>+</sup>, Ag<sup>+</sup>, Fe<sup>2+</sup>, Al<sup>3+</sup>, Ca<sup>2+</sup>, Cr<sup>3+</sup>, Fe<sup>3+</sup>, Cd<sup>2+</sup>, Hg<sup>2+</sup>, Mg<sup>2+</sup>, and Mn<sup>2+</sup>, indicating excellent selectivity for Zn<sup>2+</sup> over these competing cations. But Ni<sup>2+</sup>, Cu<sup>2+</sup> and Co<sup>2+</sup> had some extent the influence on the  $F_{558nm}$  value of the zinc complex, which indicated that Ni<sup>2+</sup>, Cu<sup>2+</sup>, and Co<sup>2+</sup> could form complexes with **HL** and thus quenched the fluorescence. There were many other Zn<sup>2+</sup> sensors, which had exhibited similarly depressed responses due to the competition from these ions. However, these free cations would have little influence in vivo because they exist at a very low concentration.<sup>4</sup>



**Fig. S5** Competition experiments. The black bars (A) represent the addition of an excess of metal ions to an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution of **HL**(50  $\mu$ M), and the red bars (B) represent the subsequent addition of 50  $\mu$ M Zn<sup>2+</sup> ions to the foregoing solution.  $\lambda_{em} = 558$  nm.



**Fig. S6** The linear dynamic response of **HL** for  $Zn^{2+}$  and the determination of the detection limit (LOD) for  $Zn^{2+}$  in an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution.



**Fig. S7** Absorbance Job's plot for **HL** with  $Co^{2+}$  in an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution. The total [**HL**] + [ $Co^{2+}$ ] = 100  $\mu$ M.



Fig. S8 ESI-MS spectrum of CoL<sub>2</sub> complex.

ESI-MS exhibited the formation of a complex between two deprotonated **HL** and a  $\text{Co}^{2+}$  [m/z 695.2476 (2L+Co<sup>2+</sup>); calcd for C<sub>40</sub>H<sub>40</sub>CoN<sub>6</sub>O<sub>2</sub> m/z 695.25].



**Fig. S9** The linear fitting (absorbance at 476 nm) of complexes.  $\log[(A - A_{\min})/(A_{\max} - A)] = \log K + \log[\operatorname{Co}^{2^+}]$ . *K* is the stability constant,  $A_{\min}$  is absorbance of **HL** without any cations, *A* is absorbance of **HL** obtained with  $\operatorname{Co}^{2^+}$ ,  $A_{\max}$  is absorbance of **HL** in the presence of excess amount of  $\operatorname{Co}^{2^+}$ .



**Fig. S10** Competition experiments (absorbance at 476 nm). The brown bars (A) represent the addition of an excess of metal ions to an acetonitrile/Tris-HCl (50 mM, pH 7.40) (1:1, v/v) solution of **HL**(50  $\mu$ M), and the chromatic bars (B) represent the subsequent addition of 25  $\mu$ M Co<sup>2+</sup> ions to the foregoing solution.



**Fig. S11** The different metal salts toward **HL** for sensing  $Mg^{2+}$ ,  $Zn^{2+}$ , and  $Co^{2+}$ . (a) Fluorescent  $(\lambda_{ex} = 470 \text{ nm})$  spectral changes of **HL** (1.0 µM) upon titration with MgCl<sub>2</sub>, Mg(ClO<sub>4</sub>)<sub>2</sub>, and Mg(NO<sub>3</sub>)<sub>2</sub> in CH<sub>3</sub>CN. (b) Fluorescence  $(\lambda_{ex} = 470 \text{ nm})$  responses of **HL** (50 µM) in the presence of ZnCl<sub>2</sub>, Zn(ClO<sub>4</sub>)<sub>2</sub>, and Zn(NO<sub>3</sub>)<sub>2</sub> in an acetonitrile/Tris-HCl (50 mM, pH 7.40) (9:1, v/v) solution. (c) UV/Vis absorption spectra of **HL** (50 µM) in the presence of CoCl<sub>2</sub>, Co(ClO<sub>4</sub>)<sub>2</sub>, and Co(NO<sub>3</sub>)<sub>2</sub> in an acetonitrile/Tris-HCl (50 mM, pH 7.40) (1:1, v/v) solution.



**Fig. S12** <sup>1</sup>H-NMR spectrum of **HL** ( $d_6$ -DMSO) at room temperature.



Fig. S13 <sup>13</sup>C-NMR spectrum of HL ( $d_6$ -DMSO) at room temperature.

#### References

- (a) Y. Shiraishi, S. Sumiya, Y. Kohno, T. J. Hirai, A Rhodamine-Cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(II) J. Org. Chem. 73 (2008) 8571-8574. (b) S. Sukdeb, M. Prasenjit, R.G. Upendar, E. Suresh, C. Arindam, B. Mithu, K. G. Sudip, D. Amitava, Recognition of Hg<sup>2+</sup> and Cr<sup>3+</sup> in Physiological Conditions by a Rhodamine Derivative and Its Application as a Reagent for Cell-Imaging Studies, Inorg. Chem. 51 (2012) 336-345. (c) Y. Hong, Z. Zhou, K.Huang, M. Yu, F. Li, T. Yi, C. Huang, Multisignaling Optical-Electrochemical Sensor for Hg<sup>2+</sup> Based on a Rhodamine Derivative with a Ferrocene Unit, Org. Lett. 9 (2007) 4729-4732. (d) Y. Xiang, A. Tong, P. Jin, Y. Ju, New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(II) with High Selectivity and Sensitivity, Org. Lett. 8 (2006) 2863-2866.
- (a) B. Valeur, J. Pouget, J. Bouson, M. Kaschke, N. P. Ernsting, Tuning of Photoinduced Energy Transfer in a Bichromophoric Coumarin Supermolecule by Cation Binding, J. Phys. Chem. 96 (1992) 6545-6549. (b) J. Wang, J. Wu, Y. Chen, H. Wang, Y. Li, W. Liu, H. Tian, T. Zhang, J. Xu, Y. Tang, A small-molecular europium complex with anion sensing sensitivity, Dalton Trans. 41 (2012) 12936-12941.
- M. Ishida, Y. Naruta, F. Tani, A Porphyrin-Related Macrocycle with an Embedded 1,10-Phenanthroline Moiety: Fluorescent Magnesium(II) Ion Sensor, Angew. Chem. Int. Ed. 49 (2010) 91-94.
- (a) X. Zhou, B. Yu, Y. Guo, X. Tang, H. Zhang, W. Liu, Both Visual and Fluorescent Sensor for Zn<sup>2+</sup> Based on Quinoline Platform, Inorg. Chem. 49 (2010) 4002-4007. (b) S. Huang, R. J. Clark, L. Zhu, Highly Sensitive Fluorescent Probes for Zinc Ion Based on Triazolyl-Containing Tetradentate Coordination Motifs, Org. Lett. 9 (2007) 4999-5002. (c) E. U. Akkaya, M. E. Huston, A. W. Czarnik, Chelation-Enhanced Fluorescence of Anthrylazamacrocycle Conjugate Probes in Aqueous Solution, J. Am. Chem. Soc. 112 (1990) 3590-3593. (d) R. Krämer, Fluorescent Chemosensors for Cu<sup>2+</sup> Ions: Fast, Selective,

and Highly Sensitive, Angew. Chem., Int. Ed. 37 (1998) 772-773. (e) Y. Tian, C. Y. Chen, C. C. Yang, A. C. Young, S. Η. Jang, W. C. Chen, A. K.-Y.Jen, 2-(2'-Hydroxyphenyl)benzoxazole-Containing Two-Photon-Absorbing Chromophores as Sensors for Zinc and Hydroxide Ions, Chem. Mater. 20 (2008) 1977-1987. (f) E. M. Nolan, J. Jaworski, M. E. Racine, M. Sheng, S. J. Lippard, Midrange Affinity Fluorescent Zn(II) Sensors of the Zinpyr Family: Syntheses, Characterization, and Biological Imaging Applications, Inorg. Chem. 45 (2006) 9748-9757. (g) K. Komatsu, Y.Urano, H. Kojima, T. Nagano, Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc, J. Am. Chem. Soc. 129 (2007) 13447-13454.