Dalton Transactions

Electronic Supplementary Information

Synthesis, structure and spectroscopic properties of Re(I) complexes incorporating 5-arylazo-8hydroxyquinoline: a density functional theory/time dependent density functional theory investigation

Rupa Sarkar, Pallab Mondal, and Kajal Krishna Rajak^{*}

Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700 032, India

* To whom correspondence should be addressed. Email: kajalrajak@hotmail.com

Jadavpur University

Table S1 Selected optimized geometrical parameters for $[\text{Re}_2(\text{CO})_6(\text{hq}^2)_2]$, **2**; $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{Im})]$, **2a** and $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{N-MeIm})]$, **2b** in the ground (**S**₀) and lowest lying triplet (**T**₁) excited states at B3LYP levels

Bond lengths (Å)										
		2	_	2	a		2b			
	S_0	T_1		S_0	T_1	S_0	T_1			
Re1–C1	1.903	1.904	Re1–C1	1.921	1.921	1.922	1.922			
Re1–C2	1.905	1.905	Re1–C2	1.907	1.907	1.907	1.907			
Re1–C3	1.927	1.927	Re1–C3	1.921	1.922	1.921	1.921			
Re1–N1	2.211	2.210	Re1–N1	2.204	2.203	2.204	2.204			
Re1–O4	2.194	2.194	Re1–N2	2.206	2.208	2.204	2.206			
Re1–O4A	2.233	2.231	Re1–O4	2.156	2.155	2.156	2.155			
C7-N2	1.410	1.359	C7-N4	1.401	1.355	1.400	1.356			
C13-N3	1.420	1.372	C16-N5	1.419	1.371	1.419	1.371			
N2-N3	1.284	1.317	N4-N5	1.287	1.338	1.287	1.339			
			Bond angles (°)							
		2	_	2	a	2b				
	S_0	T_1		S_0	T_1	\mathbf{S}_0	T ₁			
C1-Re1-O4A	171.197	171.208	C1-Re1-N2	175.427	175.543	175.299	175.428			
C2-Re1-O4	167.637	167.693	C2-Re1-O4	173.715	173.650	173.569	173.731			
C3-Re1-N1	175.168	175.209	C3–Re1–N1	170.721	170.835	170.865	170.797			
Dihedral angle (°)										
		2		2	a		2b			
	S_0	T_1		S_0	T ₁	S_0	T ₁			
C7-N2-N3-C13	177.666	117.566	C7-N4-N5-C16	179.874	110.179	179.856	109.950			

Table S2 Selected optimized geometrical parameters for $[\text{Re}_2(\text{CO})_6(\text{hq3})_2]$, **3**; $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{Im})]$, **3a** and $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{N-MeIm})]$, **3b** in the ground (**S**₀) and lowest lying triplet (**T**₁) excited states at B3LYP levels

Bond lengths (Å)										
		3		3	a	3	b			
	S_0	T_1		S_0	T_1	\mathbf{S}_{0}	T ₁			
Re1–C1	1.903	1.906	Re1–C1	1.922	1.921	1.922	1.922			
Re1–C2	1.905	1.901	Re1–C2	1.907	1.908	1.907	1.907			
Re1–C3	1.928	1.935	Re1–C3	1.922	1.921	1.921	1.921			
Re1–N1	2.210	2.212	Re1–N1	2.204	2.203	2.204	2.204			
Re1–O4	2.193	2.201	Re1–N2	2.206	2.207	2.205	2.206			
Re1–O4A	2.235	2.239	Re1–O4	2.156	2.155	2.157	2.154			
C7-N2	1.411	1.356	C7-N4	1.403	1.355	1.402	1.356			
C13-N3	1.419	1.380	C16-N5	1.419	1.381	1.420	1.381			
N2-N3	1.285	1.311	N4-N5	1.287	1.340	1.287	1.340			
			Bond angles (°)							
		3		3	a	3	b			
	S_0	T_1		S_0	T_1	\mathbf{S}_{0}	T ₁			
C1-Re1-O4A	171.211	170.900	C1-Re1-N2	175.484	175.449	175.449	175.523			
C2-Re1-O4	167.803	166.791	C2-Re1-O4	173.610	173.790	173.509	173.762			
C3-Re1-N1	175.195	175.598	C3-Re1-N1	170.858	170.785	170.943	170.800			
			Dihedral angle (°)							
	3			3	a	3	b			
	S ₀	T_1		S_0	T_1	\mathbf{S}_0	T ₁			
C7-N2-N3-C13	179.901	122.554	C7-N4-N5-C16	179.651	109.688	179.918	107.580			

Fig. S1 Optimized molecular structures of $[\text{Re}_2(\text{CO})_6(\text{hq}^2)_2]$, **2**; $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{Im})]$, **2a** and $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{N-MeIm})]$, **2b** at S₀ state. (Re: Cyan, N: Blue, O: Red, C: Grey, H: White. All hydrogen atoms of **2** are omitted for clarity).

Fig. S2 Optimized molecular structures of $[\text{Re}_2(\text{CO})_6(\text{hq}^3)_2]$, **3**; $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{Im})]$, **3a** and $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{N-MeIm})]$, **3b** at S₀ state. (Re: Cyan, N: Blue, O: Red, C: Grey, H: White. All hydrogen atoms of **3** are omitted for clarity).

Fig. S3 Optimized molecular structures of $[\text{Re}_2(\text{CO})_6(\text{hq}^1)_2]$, **1**; $[\text{Re}(\text{CO})_3(\text{hq}^1)(\text{Im})]$, **1a** and $[\text{Re}(\text{CO})_3(\text{hq}^1)(\text{N-MeIm})]$, **1b** at T₁ state. (Re: Cyan, N: Blue, O: Red, C: Grey, H: White. All hydrogen atoms of **1** are omitted for clarity).

Fig. S4 Optimized molecular structures of $[\text{Re}_2(\text{CO})_6(\text{hq}^2)_2]$, **2**; $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{Im})]$, **2a** and $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{N-MeIm})]$, **2b** at T₁ state. (Re: Cyan, N: Blue, O: Red, C: Grey, H: White. All hydrogen atoms of **2** are omitted for clarity).

Fig. S5 Optimized molecular structures of $[\text{Re}_2(\text{CO})_6(\text{hq}^3)_2]$, **3**; $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{Im})]$, **3a** and $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{N-MeIm})]$, **3b** at T₁ state. (Re: Cyan, N: Blue, O: Red, C: Grey, H: White. All hydrogen atoms of **3** are omitted for clarity).

Orb	Energy			Contribution	Main bond type		
ital	(eV)	Re	CO	Li	gand (h	q ¹)	
				Quinoline	N=N	Aromatic	
						system	
L+5	-1.585	24	68	7	1	1	$p(\text{Re})+\pi^*(\text{CO})+\pi^*(\text{hq}^1)$
L+4	-1.713	26	42	22	6	4	$p(\text{Re})+\pi^*(\text{CO})+\pi^*(\text{hq}^1)$
L+3	-1.961	3	7	59	20	12	$\pi^{*}(CO) + \pi^{*}(hq^{1})$
L+2	-1.983	11	17	45	16	10	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq1)$
L+1	-2.912	2	3	54	29	13	$\pi^*(hq^1)$
L	-2.925	1	1	57	28	13	$\pi^*(hq^1)$
Н	-6.048	14	10	51	7	17	$d(Re) + \pi(CO) + \pi(hq1)$
H-1	-6.174	3	2	58	10	27	$\pi(hq^1)$
Н-2	-6.289	0	0	11	79	9	$\pi(hq^1)$
Н-3	-6.291	0	0	11	79	9	$\pi(hq^1)$
H-4	-6.630	63	29	7	1	1	$d(Re) + \pi(CO) + \pi(hq^1)$
H-5	-6.677	58	29	12	0	0	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^1)$

Table S3 Frontier molecular orbital composition (%) in the ground state for $[Re_2(CO)_6(hq^1)_2], 1$

Table S4 Frontier molecular orbital composition (%) in the ground state for $[Re(CO)_3(hq^1)(N-MeIm)]$, 1b

Orb	Energy			Contrib	ution (%	6)		Main bond type
ıtal	(eV)	Re	СО	Ligand (hq ¹)			Imi	-
				Quinoline	N=N	Aromatic		
						system		
L+5	-0.629	2	66	3	0	1	29	$\pi^*(CO) + \pi^*(Imi)$
L+4	-1.097	1	1	95	0	0	2	$\pi^*(hq^1)$
L+3	-1.154	14	71	7	0	0	7	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{1}) + \pi^{*}(Imi)$
L+2	-1.395	24	71	5	0	0	1	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{1})$
L+1	-2.072	1	4	70	16	9	0	$\pi^{*}(CO) + \pi^{*}(hq^{1})$
L	-2.814	1	2	47	34	16	0	$\pi^*(hq^1)$
Η	-5.677	7	5	64	9	14	0	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^1)$
H-1	-6.443	0	0	6	86	7	0	$\pi(hq^1)$
H-2	-6.580	57	28	6	0	0	9	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^1)+\pi(\text{Imi})$
H-3	-6.687	51	25	11	2	7	3	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^1)$
H-4	-6.759	56	28	8	2	5	2	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^{1})$
H–5	-7.232	2	1	2	1	6	90	$\pi(hq^1) + \pi(Imi)$

Orb	Energy	_		Contribution		Main bond type	
ital	(eV)	Re	CO	Li	gand (h	q ²)	
				Quinoline	N=N	Aromatic	
						system	
L+5	-1.592	24	68	7	0	1	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{2})$
L+4	-1.753	29	46	17	2	6	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{2})$
L+3	-2.045	3	6	59	14	18	$\pi^{*}(CO) + \pi^{*}(hq^{2})$
L+2	-2.050	8	13	50	13	16	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{2})$
L+1	-2.959	2	2	48	29	18	$\pi^*(hq^2)$
L	-2.970	1	1	52	29	18	$\pi^*(hq^2)$
Η	-5.789	4	3	31	11	51	$d(Re) + \pi(hq^2)$
H-1	-5.828	1	0	28	12	59	$\pi(hq^2)$
Н-2	-6.304	0	0	10	71	19	$\pi(hq^2)$
H-3	-6.305	0	0	10	71	18	$\pi(hq^2)$
H–4	-6.410	28	17	23	5	28	$d(Re) + \pi(CO) + \pi(hq^2)$
H-5	-6.595	53	24	13	2	8	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^2)$

Table S5 Frontier molecular orbital composition (%) in the ground state for $[Re_2(CO)_6(hq^2)_2]$, 2

Table S6 Frontier molecular orbital composition (%) in the ground state for $[Re(CO)_3(hq^2)(Im)]$, 2a

Orb	Energy			Contrib	ution (%	6)		Main bond type
ıtal	(eV)	Re	СО	Li	gand (h	q ²)	Imi	-
				Quinoline	N=N	Aromatic	_	
						system		
L+5	-1.059	0	1	60	4	31	3	$\pi^*(hq^2)$
L+4	-1.151	5	21	37	5	31	1	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{2})$
L+3	-1.180	9	53	13	2	17	5	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{2}) + \pi^{*}(Imi)$
L+2	-1.405	24	73	4	0	0	0	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{2})$
L+1	-2.131	1	4	72	10	13	0	$\pi^*(CO)+\pi^*(hq^2)$
L	-2.889	1	1	42	33	23	0	$\pi^*(hq^2)$
Η	-5.568	5	4	53	8	30	0	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^2)$
H-1	-6.384	0	0	7	85	7	0	$\pi(hq^2)$
H-2	-6.402	16	9	14	5	55	1	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^2)$
Н-3	-6.606	58	29	7	0	0	6	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^2)+\pi(\text{Imi})$
H-4	-6.740	60	29	8	0	1	1	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^2)$
H–5	-6.911	38	17	19	3	16	7	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^2)+\pi(\text{Imi})$

Table	S7	Frontier	molecular	orbital	composition	(%)	in	the	ground	state	for
[Re(CC))3(h	q ²)(N-Me	Im)], 2b								

Orb	Energy			Contrib	ution (%	6)		Main bond type
ıtal	(eV)	Re	СО	Li	gand (h	q ²)	Imi	-
				Quinoline	N=N	Aromatic	_	
						system		
L+5	-1.055	1	1	62	4	30	3	$\pi^*(hq^2)$
L+4	-1.142	8	38	28	4	20	2	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{2})$
L+3	-1.169	6	34	21	4	29	5	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{2}) + \pi^{*}(Imi)$
L+2	-1.394	24	72	4	0	0	0	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{2})$
L+1	-2.126	1	4	72	10	13	0	$\pi^{*}(CO) + \pi^{*}(hq^{2})$
L	-2.883	1	1	42	34	23	0	$\pi^*(hq^2)$
Н	-5.559	5	3	53	8	30	0	$d(\text{Re})+\pi(\text{hq}^2)$
H-1	-6.381	0	0	7	84	8	0	$\pi(hq^2)$
Н-2	-6.391	17	9	13	6	53	2	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^2)$
Н-3	-6.589	58	28	7	0	1	7	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^2)+\pi(\text{Imi})$
H–4	-6.727	59	29	8	0	2	1	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^2)$
H–5	-6.882	36	16	19	3	17	9	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^2)+\pi(\text{Imi})$

Table S8 Frontier molecular orbital composition (%) in the ground state for

 $[\text{Re}_2(\text{CO})_6(\text{hq}^3)_2], 3$

Orb	Energy			Contribution	n (%)	Main bond type	
ital	(eV)	Re	CO	Li	gand (h	q^3)	_
				Quinoline	N=N	Aromatic	
						system	
L+5	-1.575	24	67	7	1	1	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{3})$
L+4	-1.716	25	41	22	5	7	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{3})$
L+3	-1.975	3	7	57	16	16	$\pi^{*}(CO) + \pi^{*}(hq^{3})$
L+2	-1.991	12	18	44	13	13	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{3})$
L+1	-2.896	2	2	51	28	17	$\pi^*(hq^3)$
L	-2.913	1	1	54	28	16	$\pi^*(hq^3)$
Н	-5.783	4	3	32	7	54	$d(\text{Re}) + \pi(\text{hq}^3)$
H-1	-5.824	1	0	30	7	62	$\pi(hq^3)$
H-2	-6.239	0	0	11	79	9	$\pi(hq^3)$
H-3	-6.241	0	0	11	79	9	$\pi(hq^3)$
H–4	-6.406	27	17	22	4	31	$d(\text{Re}) + \pi(\text{CO}) + \pi(\text{hq}^3)$
H-5	-6.582	53	24	12	2	9	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^3)$

Table	S9	Frontier	molecular	orbital	composition	(%)	in	the	ground	state	for
[Re(CC))3(h	q^{3})(Im)], (1)	3a								

Orb	Energy			Contrib	ution (%		Main bond type	
ıtal	(eV)	Re	СО	Li	gand (h	q ³)	Imi	-
				Quinoline	N=N	Aromatic		
						system		
L+5	-0.851	0	1	9	7	82	1	$\pi^*(hq^3)$
L+4	-1.091	1	1	94	1	2	2	$\pi^*(hq^3)$
L+3	-1.164	13	73	7	0	0	6	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{3}) + \pi^{*}(Imi)$
L+2	-1.398	23	73	4	0	0	0	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{3})$
L+1	-2.093	1	4	70	12	12	0	$\pi^{*}(CO) + \pi^{*}(hq^{3})$
L	-2.821	1	2	44	32	21	0	$\pi^*(hq^3)$
Η	-5.545	5	4	55	8	28	0	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^3)$
H-1	-6.408	0	0	6	86	8	0	$\pi(hq3)$
Н-2	-6.420	18	10	13	6	53	1	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^3)$
Н-3	-6.599	58	29	7	0	0	6	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^3)+\pi(\text{Imi})$
H-4	-6.730	59	29	8	0	2	1	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^3)$
H-5	-6.910	35	16	19	3	20	7	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^3)+\pi(\text{Imi})$

Table S10 Frontier molecular orbital composition (%) in the ground state for $[Re(CO)_3(hq^3)(N-MeIm)]$, 3b

Orb	Energy			Contrib	ution (%	6)		Main bond type
ıtal	(eV)	Re	CO	Li	gand (h	q^3)	Imi	-
				Quinoline	N=N	Aromatic	_	
						system		
L+5	-0.849	0	1	10	7	82	1	$\pi^*(hq^3)$
L+4	-1.085	1	1	94	1	2	2	$\pi^*(hq^3)$
L+3	-1.145	14	71	7	0	0	8	$p(Re) + \pi^{*}(CO) + \pi^{*}(hq^{3}) + \pi^{*}(Imi)$
L+2	-1.384	23	72	4	0	0	1	$p(\text{Re}) + \pi^*(\text{CO}) + \pi^*(\text{hq}^3)$
L+1	-2.086	1	4	70	12	12	0	$\pi^*(hq^3)$
L	-2.815	1	2	44	33	21	0	$\pi^*(hq^3)$
Η	-5.538	5	4	55	8	28	0	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^3)$
H-1	-6.402	1	0	6	85	8	0	$\pi(hq^3)$
Н-2	-6.411	19	10	12	7	51	2	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^3)$
Н-3	-6.569	57	28	7	0	1	7	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^3)+\pi(\text{Imi})$
H–4	-6.715	59	29	8	0	2	1	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^3)$
H-5	-6.890	34	16	19	3	20	9	$d(\text{Re})+\pi(\text{CO})+\pi(\text{hq}^3)+\pi(\text{Imi})$

Fig. S6 Partial molecular orbital diagram with some isodensity frontier molecular orbital mainly involved in the electronic transitions for complexes [$Re(CO)_3(hq^1)(N-MeIm)$], **1b**; [$Re(CO)_3(hq^2)(N-MeIm)$], **2b** and [$Re(CO)_3(hq^3)(N-MeIm)$], **3b**.

Fig. S7 Partial molecular orbital diagram with some isodensity frontier molecular orbital mainly involved in the electronic transitions for complexes $[\text{Re}_2(\text{CO})_6(\text{hq}^1)_2]$, 1; $[\text{Re}_2(\text{CO})_6(\text{hq}^2)_2]$, 2 and $[\text{Re}_2(\text{CO})_6(\text{hq}^3)_2]$, 3.

Fig. S8 Isodensity surface plots of the highest and lowest singly occupied molecular orbitals, HSOMO and LSOMO, respectively, along with the corresponding electron spin density, for the complexes $[\text{Re}_2(\text{CO})_6(\text{hq}^2)_2]$, **2**; $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{Im})]$, **2a** and $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{N-MeIm})]$, **2b** at their T₁ state geometry. Blue and green colors show regions of positive and negative difference between the alpha and beta electron densities, respectively.

Figure S9. Isodensity surface plots of the highest and lowest singly occupied molecular orbitals, HSOMO and LSOMO, respectively, along with the corresponding electron spin density, for the complexes $[\text{Re}_2(\text{CO})_6(\text{hq}^3)_2]$, **3**; $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{Im})]$, **3a** and $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{N-MeIm})]$, **3b** at their T₁ state geometry. Blue and green colors show regions of positive and negative difference between the alpha and beta electron densities, respectively.

Table S11 The occupancies and composition of the calculated natural bond orbitals (NBOs) between the rhenium and carbonyl ligand for $[\text{Re}_2(\text{CO})_6(\text{hq}^2)_2]$, 2; $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{Im})]$, 2a and $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{N-MeIm})]$, 2b

		2		
BD	Occupancy	Composition of NBO	BD^{a}	Occupancy
Re-CO (1)	1.9705	$0.6124(spd)_{Re} + 0.7905(sp)_{C}$	$0.7905(spd)_{Re} - 0.6124(sp)_{C}$	0.1758
Re-CO (2)	1.9661	$0.6001(spd)_{Re} + 0.7999(sp)_{C}$	$0.7999(spd)_{Re} - 0.6001(sp)_{C}$	0.1996
Re-CO (3)	1.9727	$0.6177(spd)_{Re} + 0.7864(sp)_{C}$	$0.7864(spd)_{Re} - 0.6177(sp)_{C}$	0.2154
Re-N _{pyridyl}	1.6010	$0.9069(spd)_{Re} + 0.4214(sp)_{Ne}$	$0.4214(spd)_{Re} - 0.9069(sp)_{N}$	1.2336
		2a		
BD	Occupancy	Composition of NBO	BD^{a}	Occupancy
Re-CO (1)	1.9705	$0.6092(spd)_{Re} + 0.7930(sp)_{C}$	$0.7930(spd)_{Re} - 0.6092(sp)_{C}$	0.2016
Re-CO (2)	1.9717	$0.6128(spd)_{Re} + 0.7902(sp)_{C}$	$0.7902(spd)_{Re} - 0.6128(sp)_{C}$	0.2122
Re-CO (3)	1.9727	$0.6175(spd)_{Re} + 0.7866(sp)_{C}$	$0.7866(spd)_{Re} - 0.6175(sp)_{C}$	0.2064
		2b		
BD	Occupancy	Composition of NBO	BD^{a}	Occupancy
Re-CO (1)	1.9704	$0.6090(spd)_{Re} + 0.7932(sp)_{C}$	$0.7932(spd)_{Re} - 0.6090(sp)_{C}$	0.2023
Re-CO (2)	1.9717	$0.6129(spd)_{Re} + 0.7901(sp)_{C}$	$0.7901(spd)_{Re} - 0.6129(sp)_{C}$	0.2123
Re-CO (3)	1.9728	$0.6177(spd)_{Re} + 0.7864(sp)_{C}$	$0.7864(spd)_{Re} - 0.6177(sp)_{C}$	0.2066
BD denotes 2-	center bond. ^a	Denotes antibond NBO.		

Table S12 The occupancies and composition of the calculated natural bond orbitals (NBOs) between the rhenium and carbonyl ligand for $[\text{Re}_2(\text{CO})_6(\text{hq}^3)_2]$, **3**; $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{Im})]$, **3a** and $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{N-MeIm})]$, **3b**

	3						
BD	Occupancy	Composition of NBO	BD ^a	Occupancy			
Re-CO (1)	1.9705	$0.6125(spd)_{Re} + 0.7904(sp)_{C}$	$0.7904(spd)_{Re} - 0.6125(sp)_{C}$	0.1759			
Re-CO (2)	1.9662	$0.6002(spd)_{Re} + 0.7999(sp)_{C}$	$0.7999(spd)_{Re} - 0.6002(sp)_{C}$	0.2001			
Re-CO (3)	1.9728	$0.6176(spd)_{Re} + 0.7865(sp)_{C}$	$0.7865(spd)_{Re} - 0.6176(sp)_{C}$	0.2155			
Re-N _{pyridyl}	1.6004	$0.9064(spd)_{Re} + 0.4225(sp)_{N}$	$0.4225(spd)_{Re} - 0.9064(sp)_{N}$	1.2344			
		3a					
BD	Occupancy	Composition of NBO	BD^{a}	Occupancy			
Re-CO (1)	1.9705	$0.6093(spd)_{Re} + 0.7930(sp)_{C}$	$0.7930(spd)_{Re} - 0.6093(sp)_{C}$	0.2019			
Re-CO (2)	1.9717	$0.6127(spd)_{Re} + 0.7903(sp)_{C}$	$0.7903(spd)_{Re} - 0.6127(sp)_{C}$	0.2119			
Re-CO (3)	1.9727	$0.6175(spd)_{Re} + 0.7866(sp)_{C}$	$0.7866(spd)_{Re} - 0.6175(sp)_{C}$	0.2067			
		3b					
BD	Occupancy	Composition of NBO	BD ^a	Occupancy			
Re-CO (1)	1.9704	$0.6091(spd)_{Re} + 0.7931(sp)_{C}$	$0.7931(spd)_{Re} - 0.6091(sp)_{C}$	0.2024			
Re-CO (2)	1.9717	$0.6127(spd)_{Re} + 0.7903(sp)_{C}$	$0.7903(spd)_{Re} - 0.6127(sp)_{C}$	0.2118			
Re-CO (3)	1.9728	$0.6177(spd)_{Re} + 0.7864(sp)_{C}$	$0.7864(spd)_{Re} - 0.6177(sp)_{C}$	0.2068			

BD denotes 2-center bond. ^a Denotes antibond NBO.

Table S13 Main calculated optical transition for the complex $[Re(CO)_3(hq^1)(N-MeIm)]$, **1b** with composition in terms of molecular orbital contribution of the transition, vertical excitation energies, and oscillator strength in acetonitrile

Electronic Transitions	Composition	Excitation energy	Oscillator strength (<i>f</i>)	CI	Assign	λ_{exp} (nm)
$S_0 \rightarrow S_2$	$H \rightarrow L$	2.5884 eV	0.777	0.681	¹ MLCT / ¹ ILCT	475
	$H \rightarrow L + 1$	(479 nm)		0.167	¹ MLCT / ¹ ILCT	
$S_0 \rightarrow S_3$	$H \rightarrow L + 1$	3.0684 eV	0.301	0.138	¹ MLCT / ¹ ILCT	402
	$H \rightarrow L$	(404 nm)		-0.167	¹ MLCT / ¹ ILCT	
	$H - 2 \rightarrow L$			0.668	¹ MLCT / ¹ ILCT	
$S_0 \rightarrow S_6$	$H - 4 \rightarrow L$	3.445 eV	0.061	0.577	¹ MLCT / ¹ ILCT	356
	$H - 4 \rightarrow L + 1$	(359 nm)		0.109	¹ MLCT / ¹ ILCT	
	$H - 3 \rightarrow L$			-0.341	¹ MLCT / ¹ ILCT	
	$H - 2 \rightarrow L$			-0.125	¹ MLCT / ¹ ILCT	
$S_0 \rightarrow S_{20}$	$H - 8 \rightarrow L$	4.434 eV	0.083	0.478	¹ ILCT	275
	$H-4 \rightarrow L+4$	(279 nm)		0.197	¹ MLCT / ¹ ILCT	
	$H - 3 \rightarrow L + 2$			0.196	¹ MLCT / ¹ ILCT	
	$H - 8 \rightarrow L + 3$			0.102	¹ ILCT	
	$H - 2 \rightarrow L + 4$			0.195	¹ MLCT / ¹ ILCT	
	$H \rightarrow L + 3$			-0.248	¹ MLCT / ¹ ILCT	
	$H \rightarrow L + 5$			-0.146	¹ MLCT / ¹ ILCT	

Table S14 Main calculated optical transition for the complex $[\text{Re}_2(\text{CO})_6(\text{hq}^2)_2]$, **2** and $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{Im})]$, **2a** with composition in terms of molecular orbital contribution of the transition, vertical excitation energies, and oscillator strength in acetonitrile

Complex	Electronic Transitions	Composition	Excitation energy	Oscillator strength	CI	Assign	λ_{exp} (nm)
2	$S_0 \rightarrow S_2$	$H - 3 \rightarrow L + 1$	2.1323	0.0784	0.416	¹ ILCT	572
		$H - 2 \rightarrow L$	eV		0.243	¹ ILCT	
		$H - 1 \rightarrow L$	(581 nm)		0.231	¹ ILCT	
		$H \rightarrow L + 2$			0.421	¹ MLCT / ¹ ILCT	
	$S_0 \rightarrow S_3$	$H - 3 \rightarrow L$	2.4524	0.1261	-0.148	¹ ILCT	532
		$H - 2 \rightarrow L + 1$	eV		-0.172	¹ ILCT	
		$H-1 \rightarrow L+1$	(505 nm)		-0.162	¹ ILCT	
		$H \rightarrow L + 1$			0.639	¹ MLCT / ¹ ILCT	
	$S_0 \rightarrow S_{16}$	$H - 3 \rightarrow L$	3.2062	0.0764	0.221	ILCT	251
		$H - 2 \rightarrow L + 1$	eV		0.174	¹ ILCT	
		$H-1 \rightarrow L+1$	(386 nm)		-0.158	¹ ILCT	
		$H \rightarrow L$			-0.337	¹ MLCT / ¹ ILCT	
		$H - 6 \rightarrow L$			0.492	¹ MLCT / ¹ ILCT	
2a	$S_0 \rightarrow S_2$	$H \rightarrow L$	2.3819 eV (520 pm)	0.9778	0.6972	¹ MLCT / ¹ ILCT	488
	$S_0 \to S_3$	$H \rightarrow L+1$	(320 mm) 2.8825 eV (430 nm)	0.1224	0.6937	¹ MLCT / ¹ ILCT	356
	$S_0 \rightarrow S_{22}$	$H - 8 \rightarrow L$	4.3023	0.0898	0.502	¹ ILCT	277
	·	$H - 5 \rightarrow L + 2$	eV		0.183	¹ MLCT / ¹ ILCT	
		$H - 3 \rightarrow L + 4$	(288 nm)		0.100	¹ MLCT / ¹ ILCT	
		$H - 2 \rightarrow L + 3$			-0.209	¹ MLCT / ¹ ILCT	
		$H \rightarrow L + 4$			-0.153	¹ MLCT / ¹ ILCT	
		$H \rightarrow L + 5$			-0.256	¹ MLCT / ¹ ILCT	

Table S15 Main calculated optical transition for the complex $[Re(CO)_3(hq^2)(N-MeIm)]$, **2b** with composition in terms of molecular orbital contribution of the transition, vertical excitation energies, and oscillator strength in acetonitrile

Electronic	Composition	Excitation	Oscillator	CI	Assign	λ_{exp}
Transitions		energy	strength			(nm)
			(<i>f</i>)			
$S_0 \rightarrow S_2$	$H \rightarrow L$	2.418 eV	0.967	0.695	¹ MLCT / ¹ ILCT	488
		(512 nm)				
$S_0 \to S_3$	$H \rightarrow L$	2.913 eV	0.167	0.105	¹ MLCT / ¹ ILCT	355
	$H \rightarrow L + 1$	(425 nm)		0.689	¹ MLCT / ¹ ILCT	
$S_0 \to S_{24}$	$H - 6 \rightarrow L$	4.387 eV	0.0653	0.200	¹ ILCT	276
	$H - 6 \rightarrow L + 1$	(282 nm)		-0.353	¹ ILCT	
	$H - 6 \rightarrow L + 3$			-0.114	¹ ILCT	
	$H - 6 \rightarrow L + 5$			-0.121	¹ ILCT	
	$H - 2 \rightarrow L + 6$			0.109	¹ MLCT / ¹ ILCT	
	$H \rightarrow L + 6$			0.535	¹ MLCT / ¹ ILCT	

Table S16 Main calculated optical transition for the complex $[\text{Re}_2(\text{CO})_6(\text{hq}^3)_2]$, **3** and $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{Im})]$, **3a** with composition in terms of molecular orbital contribution of the transition, vertical excitation energies, and oscillator strength in acetonitrile

Complex	Electronic Transitions	Composition	Excitation energy	Oscillator strength (<i>f</i>)	CI	Assign	λ_{exp} (nm)
3	$S_0 \rightarrow S_2$	$H - 3 \rightarrow L + 1$	2.1933	0.0004	-0.479	¹ ILCT	597
		$H - 3 \rightarrow L + 3$	eV		0.110	¹ ILCT	
		$H - 2 \rightarrow L$	(565 nm)		0.489	¹ ILCT	
		$H - 2 \rightarrow L + 2$			0.102	¹ ILCT	
	$S_0 \rightarrow S_3$	$H - 1 \rightarrow L + 2$	2.4674	0.4324	-0.179	¹ ILCT	525
		$H \rightarrow L$	eV (502 nm)		0.677	¹ MLCT / ¹ ILCT	
	$S_0 \rightarrow S_{13}$	$H - 8 \rightarrow L + 1$	3.1928	0.0433	-0.101	¹ MLCT / ¹ ILCT	254
		$H - 7 \rightarrow L$	eV		-0.139	¹ MLCT / ¹ ILCT	
		$H - 6 \rightarrow L$	(388 nm)		0.665	¹ MLCT / ¹ ILCT	
3a	$S_0 \rightarrow S_2$	$H \rightarrow L$	2.450 eV	1.206	0.693	¹ MLCT / ¹ ILCT	490
		$H \rightarrow L + 1$	(505 nm)		0.109	¹ MLCT / ¹ ILCT	
	$S_0 \rightarrow S_5$	$H - 4 \rightarrow L$	3.240 eV	0.045	0.259	¹ MLCT / ¹ ILCT	358
		$H - 3 \rightarrow L$	(382 nm)		-0.143	¹ MLCT / ¹ ILCT	
		$H - 2 \rightarrow L$			0.618	¹ MLCT / ¹ ILCT	
	$S_0 \rightarrow S_{23}$	$H - 9 \rightarrow L$	4.397 eV	0.048	-0.247	¹ ILCT	277
		$H - 7 \rightarrow L$	(281 nm)		0.218	¹ ILCT	
		$\mathrm{H}-7 \rightarrow \mathrm{L}+1$			0.109	¹ ILCT	
		$H \rightarrow L + 4$			0.129	¹ MLCT / ¹ ILCT	
		$H \rightarrow L + 5$			-0.281	¹ MLCT / ¹ ILCT	
		$H \rightarrow L + 6$			0.466	¹ MLCT / ¹ ILCT	
		$H \rightarrow L + 7$			0.138	¹ MLCT / ¹ ILCT	
	$S_0 \rightarrow S_{33}$	$H - 10 \rightarrow L$	4.762 eV	0.026	-0.292	ILCT	256
		$H - 8 \rightarrow L + 1$	(260 nm)		0.603	¹ MLCT / ¹ ILCT	

Table S17 Main calculated optical transition for the complex [Re(CO)₃(hq³)(N-MeIm)],
3b with composition in terms of molecular orbital contribution of the transition, vertical excitation energies, and oscillator strength in acetonitrile

Electronic Transitions	Composition	Excitation energy	Oscillator strength (<i>f</i>)	CI	Assign	λ_{exp} (nm)
$S_0 \rightarrow S_2$	$H \rightarrow L$	2.450 eV	1.212	0.695	¹ MLCT / ¹ ILCT	490
	$H \rightarrow L+1$	(506 nm)		0.109	¹ MLCT / ¹ ILCT	
$S_0 \to S_5$	$H - 4 \rightarrow L$	3.235 eV	0.059	0.234	¹ MLCT / ¹ ILCT	358
	$H - 2 \rightarrow L$	(383 nm)		0.637	¹ MLCT / ¹ ILCT	
$S_0 \rightarrow S_{23}$	$H - 9 \rightarrow L$	4.397 eV	0.063	-0.342	¹ ILCT	277
	$H - 8 \rightarrow L$	(281 nm)		0.199	¹ ILCT	
	$H \rightarrow L + 3$			0.152	¹ MLCT / ¹ ILCT	
	$H \rightarrow L + 5$			-0.207	¹ MLCT / ¹ ILCT	
	$H \rightarrow L + 6$			0.446	¹ MLCT / ¹ ILCT	
	$H \rightarrow L + 7$			-0.135	¹ MLCT / ¹ ILCT	
$S_0 \rightarrow S_{36}$	$H - 11 \rightarrow L$	4.779 eV	0.035	0.207	¹ MLCT / ¹ ILCT	256
	$H - 10 \rightarrow L + 3$	(259 nm)		0.493	¹ ILCT	
	$H - 9 \rightarrow L + 1$			0.114	¹ ILCT	
	$H - 3 \rightarrow L + 3$			-0.269	¹ MLCT / ¹ ILCT	
	$H - 2 \rightarrow L + 3$			-0.277	¹ MLCT / ¹ ILCT	

Fig. S10 Difference electron density upon excitation from the ground state (S_0) to allowed singlet states (40 singlet to singlet excitations) for complexes [$Re_2(CO)_6(hq^2)_2$], **2**; [$Re(CO)_3(hq^2)(Im)$], **2a** and [$Re(CO)_3(hq^2)(N-MeIm)$], **2b** determined with TD-DFT (B3LYP/CPCM-Acetonitrile) calculations. Turquoise and purple colors show regions of decreasing and increasing electron density, respectively.

Fig. S11 Difference electron density upon excitation from the ground state (S_0) to allowed singlet states (40 singlet to singlet excitations) for complexes [$Re_2(CO)_6(hq^3)_2$], 3; [$Re(CO)_3(hq^3)(Im)$], 3a and [$Re(CO)_3(hq^3)(N-MeIm)$], 3b determined with TD-DFT (B3LYP/CPCM-Acetonitrile) calculations. Turquoise and purple colors show regions of decreasing and increasing electron density, respectively.

¹ MI	LCT / ¹ ILCT	Hole	Electron
$\lambda_{exp} = 550$ nm	S ₃ w = 0.97 2.641 ev (0.17) $t_{2g} - \pi \rightarrow \pi^*$		A CONTRACTOR OF A CONTRACTOR O
$\lambda_{exp} = 253$ nm	S_{31} w = 0.28 3.377 ev (0.08) $t_{2g} - \pi \rightarrow \pi^*$		A A A

Fig. S12 Natural transition orbitals (NTOs) for the complexes $[\text{Re}_2(\text{CO})_6(\text{hq}^1)_2]$, 1 illustrating the nature of optically active singlet excited states in the absorption bands 550 and 253 nm. For each state, the respective number of the state, transition energy (eV), and the oscillator strength (in parentheses) are listed. Shown are only occupied (holes) and unoccupied (electrons) NTO pairs that contribute more than 25% to each excited state. All transitions are mixed ¹MLCT/¹ILCT character: charge is transferred from $t_{2g} - \pi$ hole orbital to the π^* orbital of the ligands.

	¹ MI	.CT / ¹ ILCT	Hole	Electron
188	2a	$S_{2} w = 0.97 2.382 ev (0.98) t_{2g} - \pi \rightarrow \pi^{*}$	Aless	the
400 nm	2b	$S_{2} = 0.96$ 2.418 ev (0.96) $t_{2g} - \pi \rightarrow \pi^{*}$	A Property	****
255	2a	S ₃ w = 0.96 2.883 ev (0.12) t _{2g} − π → π [*]	And and a state	· forest
~ 355 nm	2b	$S_{3} w = 0.95 2.913 ev (0.16) t_{2g} - \pi \rightarrow \pi^{*}$	Ases at	· And ·
	2a	$S_{22} w = 0.50 4.302 ev (0.08) t_{2g} - \pi \rightarrow \pi^*$	A sector	to the
nm	2b	$S_{24} w = 0.57 4.387 ev (0.07) t_{2g} - \pi \rightarrow \pi^*$	Alt and a	Age of

Fig. S13 Natural transition orbitals (NTOs) for the complexes $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{Im})]$, **2a** and $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{N-MeIm})]$, **2b** illustrating the nature of optically active singlet excited states in the absorption bands 488, ~ 355 and ~ 277 nm. For each state, the respective number of the state, transition energy (eV), and the oscillator strength (in parentheses) are listed. Shown are only occupied (holes) and unoccupied (electrons) NTO pairs that contribute more than 30% to each excited state. All transitions are mixed ¹MLCT/¹ILCT character: charge is transferred from $t_{2g} - \pi$ hole orbital to the π^* orbital of the ligands.

1	MLC	T / ¹ ILCT	Hole	Electron
~ 490	3 a	S_2 w = 0.96 2.450 ev (1.20) $t_{2g} - \pi \rightarrow \pi^*$	A series	And the second
nm	3b	S_2 w = 0.96 2.450 ev (1.21) $t_{2g} - \pi \rightarrow \pi^*$	Alesser	Alt and a
358	3a	S_5 w = 0.76 3.240 ev (0.04) $t_{2g} - \pi \rightarrow \pi^*$	A states	A states
358 nm	3b	S_5 w = 0.81 3.235 ev (0.06) $t_{2g} - \pi \rightarrow \pi^*$	本です	An and
277	3a	$S_{23} = 0.43$ 4.397 ev (0.05) $t_{2g} - \pi \rightarrow \pi^*$	A service	Alt - Alt
nm	3b	$S_{23} w = 0.39 4.397 ev (0.06) t_{2g} - \pi \rightarrow \pi^{*}$	A second	****
	3 a	$S_{33} w = 0.72 4.762 ev (0.03) t_{2g} - \pi \rightarrow \pi^{*}$		total and the second
250 nm	3 b	$S_{36} = 0.48$ 4.779 ev (0.04) $t_{2g} - \pi \rightarrow \pi^*$	ななし	****

Fig. S14 Natural transition orbitals (NTOs) for the complexes $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{Im})]$, **3a** and $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{N-MeIm})]$, **3b** illustrating the nature of optically active singlet excited states in the absorption bands ~ 490, 358, 277 and 256 nm. For each state, the respective number of the state, transition energy (eV), and the oscillator strength (in parentheses) are listed. Shown are only occupied (holes) and unoccupied (electrons) NTO pairs that contribute more than 30% to each excited state. All transitions are mixed ¹MLCT/¹ILCT character: charge is transferred from $t_{2g} - \pi$ hole orbital to the π^* orbital of the ligands.

Fig. S15 Time evolution of UV-Vis absorption spectra (recorded at different time intervals) for 4.40×10^{-5} (M) solution of $[\text{Re}_2(\text{CO})_6(\text{hq}^2)_2]$, 2 in acetonitrile at room temperature.

Fig. S16 Time evolution of UV-Vis absorption spectra (recorded at different time intervals) for 3.43×10^{-5} (M) solution of $[\text{Re}_2(\text{CO})_6(\text{hq}^3)_2]$, 3 in acetonitrile at room temperature.

Fig. S17 Absorbance changes (monitored at 531 nm) for 4.40×10^{-5} (M) solution of $[\text{Re}_2(\text{CO})_6(\text{hq}^2)_2]$, **2** in acetonitrile at different time intervals.

Fig. S18 Absorbance changes (monitored at 596 nm) for 3.43×10^{-5} (M) solution of $[\text{Re}_2(\text{CO})_6(\text{hq}^3)_2]$, **3** in acetonitrile at different time intervals.

Fig. S19 Emission spectra of dinuclear complexes $[\text{Re}_2(\text{CO})_6(\text{hq}^1)_2]$, **1**; $[\text{Re}_2(\text{CO})_6(\text{hq}^2)_2]$, **2** and $[\text{Re}_2(\text{CO})_6(\text{hq}^3)_2]$, **3** in dichloromethane solution, at room temperature.

Fig. S20 Changes in the time-resolved photoluminescence decay of complexes $[Re(CO)_3(hq^1)(N-MeIm)]$, **1b**; $[Re(CO)_3(hq^2)(N-MeIm)]$, **2b** and $[Re(CO)_3(hq^3)(N-MeIm)]$, **3b** in CH₃CN at room temperature obtained with 450 nm excitation. The emission at 559, 559 and 570 nm was monitored for **1b**, **2b** and **3b**, respectively.

Fig. S21 Changes in the time-resolved photoluminescence decay of $[\text{Re}_2(\text{CO})_6(\text{hq}^1)_2]$, **1** in CH₃CN at room temperature obtained with 450 nm excitation. The emission at 660, 615 and 519 nm was monitored for **1**.

Fig. S22 Changes in the time-resolved photoluminescence decay of $[\text{Re}_2(\text{CO})_6(\text{hq}^2)_2]$, **2** in CH₃CN at room temperature obtained with 450 nm excitation. The emission at 660, 621 and 592 nm was monitored for **2**.

Fig. S23 Changes in the time-resolved photoluminescence decay of $[\text{Re}_2(\text{CO})_6(\text{hq}^3)_2]$, **2** in CH₃CN at room temperature obtained with 450 nm excitation. The emission at 652, 619 and 592 nm was monitored for **3**.

Table S18 Calculated triplet excited state of $[\text{Re}_2(\text{CO})_6(\text{hq}^2)_2]$, **2**; $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{Im})]$, **2a** and $[\text{Re}(\text{CO})_3(\text{hq}^2)(\text{N-MeIm})]$, **2b** in acetonitrile based on the lowest lying triplet state geometry. Main calculated vertical transitions with compositions in terms of molecular orbital contribution of the transition, vertical excitation energies and oscillator strength

Complex	Excitation	Composition	Excitation Energy	Oscillator Strength (f)	CI	Assign	λ_{exp} (nm)
2	1	$H - 3 \rightarrow L$	1.8712 eV	0.0255	-0.14929	³ ILCT	660
		$H - 2 \rightarrow L + 1$	(662 nm)		0.14176	³ ILCT	
		$H - 1 \rightarrow L + 1$			0.50242	JLCT	
		$H \rightarrow L$			-0.49100	JILCT	
	2	$H - 1 \rightarrow L$	2.0512 eV	0.0111	-0.40050	JILCT	621
		$H - 1 \rightarrow L + 6$	(604 nm)		0.10790	³ ILCT	
		$H \rightarrow L + 1$			0.39946	³ ILCT	
		$H \rightarrow L + 5$			0.11449	³ ILCT	
	3	$H - 1 \rightarrow L$	2.3182 eV	0.0663	0.31434	³ ILCT	592
		$H \rightarrow L + 1$	(535 nm)		-0.13189	³ ILCT	
2a	1	$H-1 \rightarrow L+2$	2.2261 eV	0.1625	0.23525	³ ILCT	559
		$H \rightarrow L + 2$	(557 nm)		-0.19928	³ ILCT	
		$H - 1 \rightarrow L$			0.68697	³ ILCT	
		$H-1 \rightarrow L+1$			0.17114	³ ILCT	
2b	1	$H-1 \rightarrow L+1$	2.2271 eV	0.1600	0.17445	³ ILCT	559
		$H-1 \rightarrow L+2$	(557 nm)		0.17810	³ ILCT	
		$H \rightarrow L + 1$			-0.14777	³ ILCT	
		$H \rightarrow L + 2$			-0.14700	³ ILCT	
		$H - 1 \rightarrow L$			0.69702	³ ILCT	
		$H-1 \rightarrow L+1$			0.17102	³ ILCT	

Table S19 Calculated triplet excited state of $[\text{Re}_2(\text{CO})_6(\text{hq}^3)_2]$, **3**; $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{Im})]$, **3a** and $[\text{Re}(\text{CO})_3(\text{hq}^3)(\text{N-MeIm})]$, **3b** in acetonitrile based on the lowest lying triplet state geometry. Main calculated vertical transitions with compositions in terms of molecular orbital contribution of the transition, vertical excitation energies and oscillator strength

Complex	Excitation	Composition	Excitation	Oscillator	CI	Assign	λ_{exp}
			Energy	Strength (f)			(nm)
3	1	$H - 3 \rightarrow L + 1$	1.7918 eV	0.0247	-0.13888	³ ILCT	652
		$H - 2 \rightarrow L$	(692 nm)		0.13897	³ ILCT	
		$H - 1 \rightarrow L + 1$			-0.54322	³ ILCT	
		$H \rightarrow L$			0.58081	³ ILCT	
	2	$H - 1 \rightarrow L$	2.0504 eV	0.0137	-0.34631	³ ILCT	619
		$H - 1 \rightarrow L + 6$	(605 nm)		0.36059	³ ILCT	
		$H - 1 \rightarrow L + 1$			0.54682	³ ILCT	
		$\mathrm{H}-16 \rightarrow \mathrm{L}+1$			0.10905	³ ILCT	
		$H - 17 \rightarrow L$			-0.10086	³ ILCT	
	3	$H - 1 \rightarrow L + 1$	2.0559 eV	0.0056	0.31323	³ ILCT	592
		$H \rightarrow L$	(603 nm)		-0.37740	³ ILCT	
		$H - 1 \rightarrow L$			0.55143	³ ILCT	
		$\mathrm{H}-17 \rightarrow \mathrm{L}+1$			-0.10612	³ ILCT	
		$H - 16 \rightarrow L$			0.11477	³ ILCT	
3 a	1	$H \rightarrow L$	2.0765 eV	0.0708	-0.33870	³ ILCT	571
		$H - 1 \rightarrow L$	(597 nm)		0.10608	³ ILCT	
3b	1	$H \rightarrow L$	2.1061 eV	0.0708	-0.31119	³ ILCT	570
			(589 nm)				

	³ ILCT	Hole	Electron
1	w = 0.75	*****	11 1
	1.9074 eV (0.0095)	- Ese	a the second
	$\pi \to \pi$	- Frederick	ACC A
2	$\lambda_{exp} = 650 \text{ nm}$		1
4	w = 0.50 1.8712 eV (0.0255)		4 23
	$\pi \rightarrow \pi^*$	e the	- And
	$\lambda_{exp} = 660 \text{ nm}$		222-2-1
3	w = 0.67	*	źr.
	1.7918 eV (0.0247)	· · · · · · · · · · · · · · · · · · ·	-Alex.
	$\pi \rightarrow \pi^{-}$	- Ale	
	$\lambda_{exp} = 652 \text{ nm}$	A CONTRACT	TOT SALA
	0.72	4	40
1	W = 0.73	*****	the second
	$\pi \to \pi^*$		- Area
	$\lambda_{ovn} = 615 \text{ nm}$		- Activ
2	w = 0.32	the second	the .
	2.0512 eV (0.0111)	the state	74
	$\pi \rightarrow \pi^{*}$	and total	A State
	$\lambda_{exp} = 621 \text{ nm}$	XX Ser.	XXX and
3	w = 0.60	S	H.
	2.0504 eV (0.0137)	North	Matal
	$\eta \rightarrow \eta$ $\lambda = 610 \text{ nm}$	-	-
	$\lambda_{exp} = 017 \text{ mm}$	ist 1	Ste 1
	0.00	X	R
1	W = 0.90		The second second
	2.5180 ev (0.0119) $\pi \rightarrow \pi^*$	- Carte	C. ANT
	$\lambda_{ave} = 590 \text{ nm}$		- Profile .
2	w = 0.20	the second	The a
	2.3182 eV (0.0663)	the state	The second
	$\pi \rightarrow \pi^*$	Prototo to	J- T-
	$\lambda_{exp} = 592 \text{ nm}$	- C	the second
3	w = 0.61	See.	Fr.
	2.0559 eV (0.0056)	No.	Martin L
	$\eta \rightarrow \eta$ $\lambda = 502 \text{ nm}$	A	- Cart
	$n_{\rm exp} = 372$ IIII	3	Æ.
L	1		8 - A

Fig. S24 Natural transition orbitals (NTOs) for the complexes 1, 2 and 3 illustrating the nature of optically active triplet excited state in their emission bands. For each state, the transition energy (eV), and the oscillator strength (in parentheses) are listed. Shown are only occupied (holes) and unoccupied (electrons) NTO pairs that contribute more than 20% to each excited The state. ³ILCT transition has charge is character: transferred from π hole orbital to the π^* orbital of the ligands.