Probing the metallating ability of a polybasic sodium alkylmagnesiate supported by a bulky bis(amido) ligand: deprotomagnesiation reactions of nitrogen-based aromatic substrates

David R. Armstrong,^a William Clegg,^b Alberto Hernán-Gómez,^a Alan R. Kennedy,^a Zoe Livingstone,^a Stuart D. Robertson,^a Luca Russo^b and Eva Hevia^{*a}

^aWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK, G1 1XL. E-mail: <u>eva.hevia@strath.ac.uk</u>

^b School of Chemistry, Newcastle University, Newcastle upon Tyne, UK, NE1 7RU

Experimental Section

General Procedure. All reactions were performed under a protective argon atmosphere using standard Schlenk techniques. THF and hexane, purchased from Sigma Aldrich, were dried by heating to reflux over sodium benzophenone ketyl and distilled under nitrogen prior to use. NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer, operating at 400.13 MHz for ¹H, and 100.62 MHz for ¹³C{¹H}. BuNa was prepared by reaction of equimolar amounts of ⁿBuLi and NaO'Bu in hexane according to the literature method.¹ 2,6-diisopropyl aniline was dried with CaH₂ and distilled under argon at reduced pressure prior to use. {Ph₂Si(NHAr^{*})₂} and [{Na(THF)₆}⁺{(Ph₂Si(NAr^{*})₂)Mg(Bu)(THF)}⁻] (1) were prepared following our previously described method.⁹ Elemental analyses were attempted using a Perkin Elmer 2400 elemental analyzer; however, due to the extreme air-sensitivity of the compounds, satisfactory analyses could not be obtained. Owing to the traces of **5** present in the crystalline sample of **3**, elemental analysis values for this compound did not match the theoretical values.

X-ray crystallography. Crystallographic data were collected at 123(2) K on Oxford Diffraction diffractometers with Mo K α ($\lambda = 0.71073$ Å) radiation. Structures were solved using SHELXS-97,² and refined to convergence on F² against all independent reflections by the full-matrix least-squares method using the SHELXL-97 program.² The structure of **3** contained non-metal-bound disordered THF. The SQUEEZE routine implemented from within the program PLATON³ was used to model this. A total of 44 electrons were estimated in a volume of 345 Å³. This corresponds to approximately 1 THF molecule per unit cell. **3** also contained three further THF groups that were modelled as disordered, each over two sites. Appropriate restraints on bond lengths and displacement parameters were required to give chemically sensible values. Four disordered THF molecules were

^{1.} W. Bauer, C. Schade and P. v. R. Schleyer, J. Organomet. Chem., 1985, 295, C25.

^{2.} G. M. Sheldrick, Acta Crystallogr., 2007, A64, 112.

^{3.} A. L. Spek, Acta Crystallogr., 2009, D65, 148

Electronic Supporting Information

similarly treated in the model of structure **4**. Selected crystallographic data are presented in Table S1 in the ESI and full details in cif format are available from the CCDC (CCDC 960101-960103). These can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

	2	3	4 <i>a</i>
empirical formula	$C_{128}H_{182}Mg_2N_8Na_2O_{10}Si_2$	C ₅₆ H ₇₇ MgN ₄ NaO ₃ Si	C ₉₂ H ₁₄₅ MgN ₄ NaO ₈ Si
$M_{ m r}$	2143.60	926.61	1510.51
crystal system	monoclinic	monoclinic	monoclinic
space group	P 2 ₁ /c	P 2 ₁ /c	P 2 ₁ /n
<i>T</i> (K)	150(2)	123(2)	123(2)
a [Å]	19.3321(10)	10.4287(6)	11.0261(7)
<i>b</i> [Å]	17.1557(8)	38.3533(18)	18.0103(11)
<i>c</i> [Å]	19.9580(11)	14.3444(7)	44.259(2)
β[°]	113.694(6)	104.314(5)	94.473(6)
V [ų]	6061.2(5)	5559.3(5)	8762.4(9)
Z	2	4	4
$ ho_{calcd}$ [g cm ⁻³]	1.175	1.111	1.145
reflns measured	41345	39077	a
unique reflns	12833	13477	38363
observed reflns	4767	9627	17297
R _{int}	0.0921	0.0410	a
GooF	0.767	1.055	1.048
R [on F, obs rflns only]	0.0533	0.0665	0.1028
wR [on F ² , all data]	0.1275	0.1707	0.3128
Largest diff. peak/hole [eÅ-3]	0.476/-0.281	0.604/-0.357	0.782/-0.426

Table ST. Sciected Civilanographic and reinicinent datameters

^{*a*} After initial refinement, the program Rotax suggested the presence of twinning for **4**. A matrix corresponding to a 180 $^{\circ}$ rotation about 1 0 0 was applied to give a new hklf5 formatted dataset. Refinement against this dataset improved the fit of the model. A batch scale factor for the ratio of the twin components refined to 0.1716(15).⁴

Synthesis of $[(THF)_2NaMg(NC_4H_4)_3]$ (5). Pyrrole (0.21 ml, 3 mmol) was added to a solution of sodium magnesiate 1 (1.14 g, 1 mmol) in hexane (3 mL), affording a suspension which was stirred at room temperature for one hour affording a white suspension. THF (6 ml) was introduced and the suspension gently heated until all the solid was dissolved affording a pale yellow solution. The resulting solution was transferred to the freezer (-30°C) and colourless crystals were obtained after 24 hours. Compound **5** was isolated as a colourless crystalline solid in a 49% yield (0.19 g).^{5 1}H NMR (D₈-THF, 298K) δ 6.91 [s, 6H, α -CH, Mg-NC₄H₄], 6.01 [s, 6H, β -CH, Mg-NC₄H₄], 3.62 [m, 8H, O-CH₂, THF], 1.78 [m, 8H, CH₂, THF]. ¹³C{¹H} NMR (C₆D₆, 298K) 127.8 [α -CH, MgNC₄H₄], 107.7 [β -CH, MgNC₄H₄], 68.1 [O-CH₂, THF], 26.1 [CH₂, THF].

^{4.} Rotax, R. I. Cooper; R. O. Gould; S. Parsons; D. J. Watkin, J. Appl. Cryst., 2005, 35, 168.

^{5.} Compound 5 was isolated as a crystalline solid along with trace amounts of $bis(amine) Ph_2Si(NHAr^*)_2$ which is the byproduct resulting from the reaction of 1 with 3 molar equivalents of pyrrole. ¹H NMR integration indicated that this impurity is present in an approximately 5%.

Compound	δ(¹ H) α-Η	$\delta(^{1}H)\beta-H$	$\delta(^{13}C) \alpha$ -CH	$\delta(^{13}C)\beta-CH$
pyrrole	6.37	6.31	117.5	108.4
3	6.50	6.13	136.6	128.5
5	7.69	6.61	127.8^{a}	107.7^{a}

Table S2: ¹H and ¹³C NMR chemical shifts (δ in ppm) for free pyrrole and pyrrolyl ligands in compounds **3** and **5** in C₆D₆ solution.

Reactions of [{Na(THF)₆}⁺{(Ph₂Si(NAr*)₂)Mg(Bu)(THF)}⁻] (1) with 2,6-diisopropylaniline

(a) Reaction of 1 with 3 equivalents of NH_2Ar^* : Synthesis of $[\{Na(THF)_d\}^{\dagger}\{Mg(NHAr^*)_3\}^{-1}]$ (7). 2,6diisopropylaniline (0.57 mL, 3 mmol) was added to a solution of sodium magnesiate 1 (1.14 g, 1 mmol) in hexane (5 mL), affording a colourless solution which was allowed to stir at room temperature for 1 hour. Approximately half of the volume was removed *in vacuo*. The resulting yellow solution was transferred to the freezer at -28°C. A crop of colourless crystals of Ph₂Si(NHAr*)₂ was formed after 48 hours which were isolated by filtration and analyzed by ¹H and ¹³C{¹H} NMR spectroscopy. ¹H NMR (C₆D₆, 298 K) δ 7.71 [m, 4H, Ph], 7.12 [m, 6H, Ph], 7.05 [m, 6H, Ar*], 3.51 [s, 2H, NH], 3.38 [m, 4H, CH, ¹Pr, Ar*], 1.00 [d, 24H, CH₃, ⁱPr, Ar*]. ¹³C{¹H} NMR (C₆D₆, 298K) δ 145.2, 138.7, 136.3, [C_{quarternay}, Ph and Ar*], 136.0, 135.9, 129.8, 123.9, 123.5 [CH, Ph and Ar*], 23.4 [CH, ⁱPr, Ar*], 29.1 [CH₃, ⁱPr, Ar*]. The volatiles from the filtrate solution were removed under vacuum affording **7** as a colourless oil which was characterised by ¹H and ¹³C NMR spectroscopy. ¹H NMR (C₆D₆, 298K) δ 7.02 [d, 6H, Ar*], 6.56 [t, 3H, Ar*], 3.54 [m, 6H, CH, ⁱPr, Ar*], 3.25 (s, 3H, NH), 3.14 [m, 24H, OCH₂, THF], 1.30 [d, 36H, CH₃, ⁱPr, Ar*], 1.55 [m, 24H, CH₂, THF] ¹³C{¹H} NMR (C₆D₆, 298K) δ 154.2, 142.7, 135.4 [C quarternary, Ar*], 132.3, 123.7, 112.4 [CH, Ar*], 68.2 [OCH₂, THF], 28.1 [CH, ⁱPr, Ar*], 25.3 [CH₂, THF], 23.9 [CH₃, ⁱPr, Ar*].

(b) NH₂Ar*: Reaction of 1 with 1 equivalent of **Formation** of $[{Na(THF)_6}^+{(Ph_2Si(NAr^*)_2)Mg(NHAr^*)(THF)}^-]$ (6.) Sodium magnesiate 1 (0.29 g, 0.25 mmol) was charged in an NMR tube and 0.5 mL of C₆D₆ were added affording a colourless solution. NH₂Ar* (47 µL, 0.25 mmol) were introduced and the solution was allowed to rest at room temperature for 15 minutes. ¹H NMR of the solution showed the almost quantitative formation of 6 along with some trace amounts of 4 (see Figure S1b). ¹H NMR (C₆D₆, 298K) δ 7.71 [d, 4H, Ar], 7.18 [d, 4H, Ar], 7.07 [m, 6H, Ar], 6.61[t, 1H, NHAr*], 3.91 [m, 4H, CH, ¹Pr, Ar*], 3.34 [m, 24H, OCH₂, THF], 3.22 (s, 1H, NHAr*), 3.15 (m, 2H, , CH, ⁱPr, Ar*], 1.19 [bs, 36H, THF and CH₃, ⁱPr, Ar*], 1.11 [bs, 24H, CH₃, ⁱPr, Ar*].¹³C{¹H} NMR (C₆D₆, 298K) δ 152.2, 142.6, 139.2, 135.9 [C_{quarternary}], 135.2 [CH, Ph], 132.1 [C_{quarternary}], 129.9, 127.8, 123.6, 123.5, 122.9, [CH, Ph and Ar*], 112.4 [CH, Ar*], 68.09 [OCH₂, THF], 31.80 [CH, ¹Pr, Ar^{*}], 28.30 [CH, ¹Pr, Ar^{*}], 25.24 [CH₂, THF], 23.88, 23.69 [CH₃, ¹Pr, Ar^{*}]. Despite being a minor product in this reaction, after 24 hours a few colourless crystals of 4 deposited in the NMR tube which were used for an X-ray crystallographic study.

(c) Reaction of 1 with 2 equivalents of NH_2Ar^* . Sodium magnesiate 1 (0.29 g, 0.25 mmol) was charged in an NMR tube and 0.5 mL of C₆D₆ were added affording a colourless solution. NH₂Ar* (94 µL, 0.50 mmol) were introduced and the solution was allowed to rest at room temperature for 15 minutes. ¹H NMR of the solution showed a complex mixture of products, comparison of this spectrum with those recorded for 6, 7 and

Electronic Supporting Information

 $Ph_2Si(NHAr^*)_2$ (see Figure S1b and S2), revealed that these three species are present in solution along with some unreacted starting material **1**. Close inspection of the aromatic region between 7 and 6.5 ppm showed the presence third containing NHAr* amido ligands, of a species which was attributed to $[{Na(THF)_6}^+{(Ph_2Si(NAr^*)(NHAr^*))Mg(NHAr^*)_2(THF)}^-]$ (4) (Figure S1c and Figure S2). The same species is a minor component in the reaction mixture of 1 with 1 equivalent of NH₂Ar (Figure S1b). Although the ¹H spectrum of the 1:2 reaction is quite complicated, with significant overlapping of most of the signals, the resonances for the para-H of the NHAr* ligands are well resolved (see Figure S2) and their integration can be used to estimate the ratio present in solution of products 4, 6 and 7, showing that these three different amination products **4**, **6** and **7** are formed in a 1:2.1:1.1 ratio. Similarly, when the reaction of **1** was carried out using 1.5 equivalents of NH₂Ar* (70 μ L, 0.37 mmol) afforded a mixture of products where the single-amination product **6** was the major species present in solution (the 4:6:7 ratio was found to be 1.1:5:1, see Figure S1c). The complexity of these NMR spectra contrasts with the relatively straightforward spectra obtained when 3 equivalents of the aniline are employed, highlighting the difficulty to control the polybasic behaviour of butyl magnesiate 1 in the presence of substoichiometric amounts of the amine.

Figure S1. Comparison of the resonances for the *para*-H of the NHAr* amido ligands in the ¹H NMR spectra in deuterated benzene solutions of: a) isolated $[(THF)_4NaMg(NHAr*)_3]$ (7); b) reaction of **1** with one equivalent of NH₂Ar; c) reaction of **1** with 1.5 equivalents of NH₂Ar*; and d) reaction of **1** with 2 equivalents of NH₂Ar*.

Figure S2. Expansion of the aromatic region of the ¹H NMR spectrum of the reaction of **1** with 2 equivalents of $NH_2Ar^*in C_6D_6$.

Scheme S1. Proposed mechanism for the formation of $[Na_2Mg_2(L1)_2(THF)_5]$ (solvating THF molecules on Mg are omitted for clarity).⁶

^{6.} V. L. Blair, W. Clegg, A. R. Kennedy, Z. Livingstone. L. Russo, E. Hevia, Angew. Chem, Int. Ed. 2011, 50, 9857.

Computational Details

Density Functional Theory (DFT) calculations⁷ were performed using the Gaussian computational package G03.⁸ In this series of calculations the geometries of the molecules and ions were optimised by employing the B3LYP density functionals^{9,10} and the 6-311G** basis set.^{11,12}

Scheme S2: DFT study on the energy of the reaction of model systems 1A and 1B to afford 2A1

Geometry optimisation of 1A

⁷. W. Kohn, A. D. Becke and R.G. Parr, J. Phys. Chem., **1996**, *100*, 12974.

- ¹⁰. C.T. Lee, W.T. Yang and R.G.Parr, Phys.Rev. B, 1998, **37**, 785.
- ¹¹. A. D. McLean and G. S. Chandler, J. Chem. Phys., **1980**, <u>72</u>, 5639.
- ¹². R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., **1980**, 72, 650.

⁸. Gaussian 03, Revision B.0.5, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

⁹. A.D. Becke, Phys. Rev. A, **1988**, *38*, 3098.

Geometry optimisation of 1B

Geometry optimisation of 2A₁

(E = -2416.7252498 a.u.)					
Principal bond lengths (Å) and angles (°)					
Inner 3-me	mbered ring	Inner 4-membered ring			
N-C	1.354	N-Mg 2.044 2.044			
N-Mg	2.099	Si-Mg 1.729 1.729			
C-Mg	2.163	N-Mg-N 79.4			
C-N-Mg	74.1	N-Si-N 98.1			
N-Mg-C	37.0	Mg-N-Si 90.8 90.8			
Mg-C-N	68.9	-			

Scheme S3: DFT study on the energy of the reaction of model systems 1A and 1B to afford $2A_2$

Geometry optimisation of 2A₂

(E = -2416.7228618 a.u.)					
Principal bond lengths (Å) and angles (°)					
Inner 4-me	mbered ring	Mg-imidazo	lyl		
N-Mg	2.040 2.024	Mg-C	2.133		
Si-Mg	1.733 1.731	C-N	1.333		
N-Mg-N	80.0	C-N _{Me}	1.400		
N-Si-N	97.9	Mg-C-N	117.5		
Mg-N-Si	90.7 91.2	Mg-C-N _{Me}	132.6		
-		N-C-N _{Me}	109.9		

Dimerization energy: When considering only the magnesiate anions, the dimerization process was found to be endothermic ($2A_1 \rightarrow 0.5 \ 2B$; $\Delta E = +22.6 \ kcal \ mol^{-1}$). However when taking into account the effect of the Na cations, into consideration, the reaction was found to be exothermic by 71.4 kcal mol⁻¹. This value was estimated using the resulting point energies of placing the Na cations 15 Å away from their anionic counterparts, using the Mg atoms as the origin. This approximation was made in order to simulate the solvent-separated ion-pair structure found experimentally for 2