Yellow-light sensitization of a ligand photosubstitution reaction in a ruthenium polypyridyl complex covalently bound to a rhodamine dye

Azadeh Bahreman, Jordi-Amat Cuello-Garibo, Sylvestre Bonnet*

Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, Leiden, 2300 RA, The Netherlands

Supporting Information

¹H NMR Spectra of the synthesized compounds

Figure S1. ¹H NMR spectra of a mixture of compounds **3** and **3'** (a), and of pure compound **3** (b) in methanol-d4. Atom numbering is given for proton attribution. Reaction conditions: a) 5 eq. KOH, DMSO (dry), heating at 60 °C, 36 h. b) 2.8 eq KOH, DMSO (dry), heating at 60 °C for 3 h, overnight at r.t.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Figure S2. ¹H NMR spectrum of compound [4]Cl in methanol-d4 and atom numbering for proton attribution.

Figure S3. Paramagnetic ¹H NMR spectrum of compound **[5]**Cl in methanol-d4 and atom numbering for proton attribution.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

Figure S4. ¹H NMR spectrum of compound $[6](PF_6)_2$ in methanol-d4 and atom numbering for proton attribution.

Figure S5. ¹H NMR spectrum of compound [2]Cl₃ in methanol-d4 and atom numbering for proton attribution.

Figure S6. ¹H NMR spectra of [**2**]Cl₃ in (region 10–1.0 ppm) in D₂O before (a) and after (b) irradiation with yellow light for 530 min. The arrows show the peaks of coordinated Hmte and 6A in [**2**]³⁺, and the stars indicate free Hmte (aliphatic part) and 6A in [Ru(4)(bpy)(D₂O)]³⁺ (aromatic part). Conditions: Yellow light irradiation (λ_e =570 nm, $\Delta\lambda_{1/2}$ =8.9 nm, t=530 min), photon flux: 5.3×10⁻⁹, [Ru]_{tot}=5.3×10⁻³ M, T=298 K.

Determination of extinction coefficients

[2]³⁺ in H₂O: A stock solution α of [2]Cl₃ in H₂O (1.2 mg in 10 mL H₂O, 1.0×10^{-4} M) was prepared. Four samples containing 2.5 mL, 1.7 mL, 1.1 mL, or 0.7 mL, of solution α were prepared in volumetric flasks and the volume of each solution was completed to 5.00 mL by MilliQ H₂O in the dark, to reach concentrations of 5.0×10^{-5} M, 3.0×10^{-5} M, 2.2×10^{-5} M, and 1.5×10^{-5} M, respectively. The UV-vis spectrum of 3 mL of each sample was measured and the extinction coefficient of [2]³⁺ in H₂O was obtained from the slope of the plot of absorbance *versus* concentration at each wavelength. The value of extinction coefficients at λ_{max} =570 nm and at λ =500 nm were found to be 44000 L·mol⁻¹·cm⁻¹ and 6550 L·mol⁻¹·cm⁻¹, respectively (R²=0.9999).

[7]³⁺ in H₂O: photoconversion of [2](PF₆)₃ in acetone-d4:D₂O(90:10) in a NMR tube (λ_{irr} =452 nm) resulted in the production of compound [7]³⁺ in situ, as proven by ¹H NMR spectroscopy (see Figure S7). MS analysis showed two peaks at 339.6 and 503.2 for [Ru(4)(bpy)(OD₂)]³⁺ ([7–3Cl]³⁺) and [Ru(4)(bpy)(OD)]²⁺ ([7–3Cl–D]²⁺), respectively. Full photoconversion into [7](PF₆)₃ was obtained by leaving the tube two days under the sun light. After evaporation of acetone the photoproduced complex [7]³⁺ was diluted to 5.0 mL by adding MilliQ water (solution β , 1.7 mg, 2.4×10⁻⁴ M). Five UV-vis cuvettes containing x mL β , and 3.0-x mL H₂O were prepared (x: 0.50 ml, 0.33 ml, 0.22 ml, 0.15 ml, and 0.010 ml). The concentrations in the samples were 4.0×10⁻⁵ M, 2.7×10⁻⁵ M, 1.8×10⁻⁵ M, 1.2×10⁻⁵ M, 7.9×10⁻⁶ M, and 4.6×10⁻⁵ M, respectively. Absorbance spectra were measured for all samples and the extinction coefficient of [7]³⁺ in water was obtained from the slope of the plot of absorbance *versus* concentration at each wavelength. The value of extinction coefficients at λ_{max} =570 nm and at λ =500 nm were found to be 60000 L·mol⁻¹·cm⁻¹ and 9900 L·mol⁻¹·cm⁻¹, respectively (R²=0.9999).

Extinction coefficients for $[Ru(terpy)(bpy)(Hmte)]^{2+}$ ([1]²⁺) and $[Ru(terpy)(bpy)(OH_2)]^{2+}$ ([8]²⁺) were obtained as described in previous work.¹

Figure S7. ¹H NMR spectra of [**2**](PF₆)₃ (region 10–6.6 ppm) in acetone-d6/D₂O (90:10) (a) before irradiation and in the dark; (b) after 4 h irradiation with yellow light (λ_e =570 nm, $\Delta\lambda_{1/2}$ =8.9 nm; the solution contains a mixture of [**2**]³⁺ and [Ru(**4**)(bpy)(OD)]²⁺; and (c) after leaving under sun light for 2 days; full photoconversion to the aqua compound [**7**]³⁺ was reached. Conditions: [*Ru*]_{tot}=2.0×10⁻³ M, T=298 K.

Photon flux determination

Photon flux for the irradiation setup at 452 nm was measured using the ferrioxalate actinometer. ² However, the ferrioxalate actinometer is not suited for 570 nm photons, so that an indirect method was used. The light power (in mW·cm⁻²) at 452 nm (I_{452}) and 570 nm (I_{570}) was measured using an OPHIR Nova power meter. Knowing the photon flux at 452 nm (Φ_{452}), the photon flux at 570 nm (Φ_{570}) was calculated using Equation S1. In this equation E_{λ} is the photon energy at 452 nm (E_{452} =4.4×10⁻¹⁹ J) and at 570 nm (E_{570} =3.5×10⁻¹⁹ J). The photon flux at 570 nm was found to be 5.3×10⁻⁹ Einstein.s⁻¹.

$$\frac{I_{452}}{I_{572}} = \frac{\phi_{452} \times E_{452}}{\phi_{570} \times E_{570}}$$
 (Equation S1)

Quantum Yield measurements

The abostbance $(A_{t_j}^{\lambda})$ of a solution containing RuHmte $([2]^{3^+} \text{ or } [1]^{2^+})$ and RuOH₂ $([7]^{3^+} \text{ or } [8]^{2^+})$ at each wavelength and at each irratiation time (t_j) is given by Equation S2. *L'*, in this equation, is the pathlength for absorbance measurement (see Figure S9), *[RuHmte]* and *[RuOH_2]* are the concentrations of the RuHmte complex $([2]^{3^+} \text{ or } [1]^{2^+})$ and RuOH₂ complex $([7]^{3^+} \text{ or } [8]^{2^+})$, respectively.

$$A_{t_j}^{\lambda} = L' \times \varepsilon_{RuHmte}^{\lambda} \cdot [RuHmte]_{t_j} + L' \cdot \varepsilon_{RuOH2}^{\lambda} \times [RuOH_2]_{t_j} \quad (\text{Equation S2})$$

At t_{∞} (full photoconversion):

$$A_{t\infty}^{\lambda} = L' \times \varepsilon_{RuOH2}^{\lambda} \times [Ru]_{tot}$$
 (Equation S3)

Where $[Ru]_{tot}$ is the total Ru concentration. If we replace $[RuOH_2]$ by $[Ru]_{tot}$ -[RuHmte] in Equation S2, [RuHmte] can be obtained from Equation S4.

$$[RuHmte] = \frac{A_{t_j}^{\lambda} - A_{t_{\infty}}^{\lambda}}{L' \times (\varepsilon_{RuHmte}^{\lambda} - \varepsilon_{RuOH_2}^{\lambda})}$$
(Equation S4)

When the irradiation wavelength is not close to the isosbestic point, the absorbance at the irradiation wavelength is not constant throughout the whole irradiation period, which must be taken into account. Thus the procedure below was applied to calculate the photosubstitution quantum yields.³

The average absorbance between two consecutive UV-vis measurements at t_j and t_{j+1} , at the irradiation wavelength λ_e (452 nm or 570 nm) was calculated according to Equation S5.

$$(A_{\lambda e})_{ave} = \frac{(A_{\lambda e})_j + (A_{\lambda e})_{j+1}}{2}$$
 (Equation S5)

The number of moles of photons absorbed by the ruthenium complex RuHmte between two consecutive UVvis measurements ($\Delta t = t_{j+1} - t_j$) was calculated according to Equation S6. In this Equation $\Phi_{\lambda e}$ is the photon flux at irradiation wavelength (λ_e) and $(1 - 10^{-3 \times (A_{\lambda e})_{gemi}})$ is the photon absorption probability. As shown in Figure S9, the sample was irradiated from the top of the UV-vis cuvette (irradiation pathlength: *L*=3 cm) while the absorbance was measured perpendicular to the light irradiation direction (absorbance pathlength *L*'=1 cm). Thus $(A_{\lambda e})_{gemi}$ is multiplied by 3 in order to obtain the probability of photon absorption.

$$q_{j} = \left(\frac{A_{RuSRR'}}{(A_{\lambda e})_{ave}}\right)_{j} \times \left(1 - 10^{-3(A_{\lambda e})_{ave}}\right) \times \Phi_{\lambda e} \times \Delta t \quad (\text{Equation S6})$$

The total number of moles of photons absorbed by the product at time *t* since t=0, Q(t), was calculated according to Equation S7, where j is summed on all measurements times t_i until *t*.

 $Q(t) = \sum_{i} q_{i}$ (Equation S7)

The quantum yield was obtained from the slope of a plot of number of moles of RuHmte (n_{RuHmte}) vs. Q (see Figure 5b).

Figure S8. Irradiation of a solution in a UV-vis cuvette is done in situ, perpendicular to the optical axis of the spectrophotometer. Irradiation pathlength=*L*, UV-vis absorption pathlength=*L'*, $\Phi_{\lambda e}$: photon flux at the irradiation wavelength λ_e , $I_{\lambda e}$: light power at irradiation wavelength λ_e . *I'*: UV-vis light beam intensity measured by the spectrophotometer.

Figure S9. Irradiation of $[2]Cl_3$ in water from the side of an NMR tube. The NMR tube was hold in a sample holder that was equipped with a water circulator to keep the temperature constant.

Förster distance R_{θ} and spectral overlap calculations

Overlap integral which expresses the degree of spectral overlap between the donor ([4]⁺) emission and the acceptor ([1]²⁺) was calculated using Equation S8. In equation S8 $F_D(\lambda)$ is the donor emission intensity at wavelength λ normalized to an area of 1, ε_A is the extinction coefficient (in M⁻¹·cm⁻¹) of the acceptor at wavelength λ . If the wavelength λ is expressed in cm, then the unit of J_{DA} is M⁻¹·cm³. A plot of $J(\lambda)$, defined according to Equation S9, is shown in Figure S10.

$$J_{DA} = \frac{\int F_D(\lambda) \cdot \varepsilon_A(\lambda) \cdot \lambda^4 d\lambda}{\int F_D(\lambda) d\lambda}$$
(Equation S8)
$$J(\lambda) = F_D(\lambda) \cdot \varepsilon_A(\lambda) \cdot \lambda^4$$
(Equation S9)

Figure S10. a) Absorption spectrum of compound $[1]^{2+}$ (left axis) and normalized emission spectrum of [4]Cl (right axis) in water. b) Overlap $J(\lambda)$ between the donor emission ([4]Cl) and the acceptor absorption ([1](BF₄)₂) in Figure S10a. All spectra measured in water at pH 7.

DFT calculations

Figure S11. DFT-minimized geometry of the dyad $[2]^{3+}$.

Table S1. Z-matrix (Å) of the DFT-minimized model of dyad $[2]^{3+}$.

c			
c	1 cc2		
c	2 cc3	1 ccc3	
c	3 cc4	2 ccc4	1 dih4
0	4 oc5	3 occ5	2 dih5
c	5 co6	4 coc6	3 dih6
c	4 cc7	3 ccc7	2 dih7
c	7 cc8	4 ccc8	3 dih8
c	8 cc9	7 ccc9	4 dih9
c	9 cc10	8 ccc10	7 dih10
c	1 cc11	6 ccc11	5 dih11
c	11 cc12	1 ccc12	6 dih12
c	12 cc13	11 ccc13	1 dih13
c	13 cc14	12 ccc14	11 dih14
c	2 cc15	3 ccc15	10 dih15
c	15 cc16	2 ccc16	3 dih16
c	16 cc17	15 ccc17	2 dih17
c	17 cc18	16 ccc18	15 dih18
c	18 cc19	17 ccc19	16 dih19
c	19 cc20	18 ccc20	17 dih20
c	16 cc21	15 ccc21	20 dih21
0	21 oc22	16 occ22	15 dih22
n	8 nc23	9 ncc23	10 dih23
c	23 cn24	8 cnc24	9 dih24

c	24 cc25	23 ccn25	8 dih25
n	13 nc26	14 ncc26	6 dih26
c	26 cn27	13 cnc27	14 dih27
c	27 cc28	26 ccn28	13 dih28
n	21 nc29	16 ncc29	15 dih29
c	29 cn30	21 cnc30	16 dih30
c	29 cn31	21 cnc31	22 dih31
c	31 cc32	29 ccn32	21 dih32
0	32 oc33	31 occ33	29 dih33
c	33 co34	32 coc34	31 dih34
c	34 cc35	33 cco35	32 dih35
c	35 cc36	34 ccc36	33 dih36
n	36 nc37	35 ncc37	34 dih37
c	37 cn38	36 cnc38	35 dih38
c	38 cc39	37 ccn39	36 dih39
ru	37 run40	36 runc40	35 dih40
s	40 sru41	37 srun41	36 dih41
c	41 cs42	40 csru42	37 dih42
c	42 cc43	41 ccs43	40 dih43
0	43 oc44	42 occ44	41 dih44
c	36 cc45	37 ccn45	40 dih45
n	45 nc46	36 ncc46	37 dih46
c	46 cn47	45 cnc47	36 dih47
c	47 cc48	46 ccn48	45 dih48
c	48 cc49	47 ccc49	46 dih49
c	49 cc50	48 ccc50	47 dih50
c	38 cc51	37 ccn51	40 dih51
n	51 nc52	38 ncc52	37 dih52
c	52 cn53	51 cnc53	38 dih53
c	53 cc54	52 ccn54	51 dih54
c	54 cc55	53 ccc55	52 dih55
c	55 cc56	54 ccc56	53 dih56
n	40 nru57	52 nrun57	51 dih57
c	57 cn58	40 cnru58	52 dih58
c	58 cc59	57 ccn59	40 dih59
c	59 cc60	58 ccc60	57 dih60
c	60 cc61	59 ccc61	58 dih61
c	61 cc62	60 ccc62	59 dih62
c	58 cc63	57 ccn63	40 dih63
n	63 nc64	58 ncc64	57 dih64
c	64 cn65	63 cnc65	58 dih65
c	65 cc66	64 ccn66	63 dih66
c	66 cc67	65 ccc67	64 dih67

c	67 cc68	66 ccc68	65 dih68
c	41 cs69	40 csru69	52 dih69
c	26 cn70	13 cnc70	14 dih70
c	70 cc71	26 ccn71	13 dih71
c	23 cn72	8 cnc72	9 dih72
c	72 cc73	23 ccn73	8 dih73
h	53 hc74	52 hen74	40 dih74
h	54 hc75	55 hcc75	56 dih75
h	55 hc76	56 hcc76	51 dih76
h	56 hc77	51 hcc77	52 dih77
h	39 hc78	34 hcc78	35 dih78
h	35 hc79	36 hcc79	37 dih79
h	50 hc80	49 hcc80	48 dih80
h	49 hc81	48 hcc81	47 dih81
h	48 hc82	47 hcc82	46 dih82
h	47 hc83	46 hcn83	40 dih83
h	62 hc84	57 hen84	40 dih84
h	61 hc85	60 hcc85	59 dih85
h	60 hc86	59 hcc86	58 dih86
h	59 hc87	58 hcc87	57 dih87
h	68 hc88	67 hcc88	66 dih88
h	67 hc89	66 hcc89	65 dih89
h	66 hc90	65 hcc90	64 dih90
h	65 hc91	64 hcn91	40 dih91
h	69 hc92	41 hcs92	40 dih92
h	69 hc93	41 hcs93	40 dih93
h	69 hc94	41 hcs94	40 dih94
h	42 hc95	41 hcs95	40 dih95
h	42 hc96	41 hcs96	40 dih96
h	43 hc97	42 hcc97	41 dih97
h	43 hc98	42 hcc98	41 dih98
h	44 ho99	43 hoc99	42 dih99
h	32 hc100	33 hco100	34 dih100
h	32 hc101	33 hco101	34 dih101
h	31 hc102	32 hcc102	33 dih102
h	31 hc103	32 hcc103	33 dih103
h	17 hc104	16 hcc104	21 dih104
h	18 hc105	19 hcc105	20 dih105
h	19 hc106	20 hcc106	15 dih106
h	20 hc107	15 hcc107	16 dih107
h	10 hc108	3 hcc108	2 dih108
h	9 hc109	10 hcc109	3 dih109
h	7 hc110	8 hcc110	9 dih110

h 14 hc111	6 hcc111	5 dil	h111	
h 12 hc112	13 hcc112	14 d	ih112	
h 11 hc113	12 hcc113	13 d	ih113	
h 30 hc114	29 hcn114	31 d	lih114	
h 30 hc115	29 hcn115	31 d	lih115	
h 30 hc116	29 hcn116	31 d	lih116	
h 24 hc117	23 hcn117	8 di	ih117	
h 24 hc118	23 hcn118	8 di	ih118	
h 25 hc119	24 hcc119	23 d	ih119	
h 25 hc120	24 hcc120	23 d	ih120	
h 25 hc121	24 hcc121	23 d	ih121	
h 72 hc122	23 hcn122	8 di	ih122	
h 72 hc123	23 hcn123	8 di	ih123	
h 73 hc124	72 hcc124	23 d	ih124	
h 73 hc125	72 hcc125	23 d	ih125	
h 73 hc126	72 hcc126	23 d	ih126	
h 27 hc127	26 hcn127	13 d	lih127	
h 27 hc128	26 hcn128	13 d	lih128	
h 28 hc129	27 hcc129	26 d	ih129	
h 28 hc130	27 hcc130	26 d	ih130	
h 28 hc131	27 hcc131	26 d	ih131	
h 70 hc132	26 hcn132	13 d	lih132	
h 70 hc133	26 hcn133	13 d	lih133	
h 71 hc134	70 hcc134	26 d	ih134	
h 71 hc135	70 hcc135	26 d	ih135	
h 71 hc136	70 hcc136	26 d	ih136	
variables				
cc2	1.4054	14	ccc36	118.939
cc3	1.4357	34	dih36	-179.375
ccc3	119.0	17	nc37	1.368226
cc4	1.429	16	ncc37	119.944
ccc4	119.3	65	dih37	-0.748
dih4	-6.3	46	cn38	1.36073
oc5	1.3930	82	cnc38	122.3
occ5	120.3	73	dih38	0.098
dih5	-0.7	77	cc39	1.400041
c06	1.3892	47	ccn39	120.188
coc6	120.5	26	dih39	0.681
dih6	7.3	59	run40	2.005031
cc7	1.3920	18	runc40	119.022
ccc7	122.0	95	dih40	-176 595
dih7	178 1	94	sru41	2 587559
····· /	1,0.1	/ ·	51411	2.501555

143.891	hcc103	109.401
1.489817	dih103	23.606
121.116	hc104	1.087471
4.495	hcc104	118.858
1.545074	dih104	6.176
113.119	hc105	1.085726
73.225	hcc105	120.527
1.494729	dih105	179.265
118.198	hc106	1.08783
98.62	hcc106	119.782
1.531214	dih106	179.515
115.87	hc107	1.086807
47.966	hcc107	119.179
1.082954	dih107	179.19
116.554	hc108	1.083718

dih69

cn70

cnc70

dih70

cc71

ccn71

dih71

cn72

cnc72

dih72

cc73

ccn73

dih73

hc74

hcn74

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

cc8	1.41263	srun41	83.521	dih74	1.873	hcc108	119.762
ccc8	119.551	dih41	86.121	hc75	1.084096	dih108	6.73
dih8	-4.779	cs42	1.904563	hcc75	121.181	hc109	1.085878
cc9	1.431492	csru42	119.43	dih75	-179.237	hcc109	119.571
ccc9	118.337	dih42	101.69	hc76	1.084926	dih109	177.515
dih9	2.534	cc43	1.539201	hcc76	120.442	hc110	1.083757
cc10	1.384106	ccs43	116.348	dih76	179.409	hcc110	120.423
ccc10	121.375	dih43	70.27	hc77	1.084696	dih110	177.222
dih10	2.844	oc44	1.452205	hcc77	120.235	hc111	1.081509
cc11	1.433833	occ44	109.724	dih77	179.824	hcc111	118.054
ccc11	115.657	dih44	161.568	hc78	1.082019	dih111	-0.691
dih11	177.128	cc45	1.480807	hcc78	120.727	hc112	1.080564
cc12	1.371092	ccn45	113.072	dih78	179.375	hcc112	119.736
ccc12	121.738	dih45	3.747	hc79	1.083479	dih112	177.08
dih12	2.674	nc46	1.386319	hcc79	122.41	hc113	1.081724
cc13	1.448097	ncc46	115.661	dih79	179.482	hcc113	119.18
ccc13	121.787	dih46	-2.927	hc80	1.085275	dih113	-178.565
dih13	1.275	cn47	1.359854	hcc80	119.564	hc114	1.090258
cc14	1.427784	cnc47	119.066	dih80	-179.709	hcn114	110.776
ccc14	117.245	dih47	179.851	hc81	1.085895	dih114	165.521
dih14	-4.217	cc48	1.400759	hcc81	120.576	hc115	1.09833
cc15	1.493032	ccn48	122.312	dih81	179.359	hcn115	109.313
ccc15	118.036	dih48	-0.115	hc82	1.085492	dih115	46.546
dih15	-7.05	cc49	1.40444	hcc82	119.698	hc116	1.100569
cc16	1.418377	ccc49	119.026	dih82	-179.721	hcn116	111.994
ccc16	123.306	dih49	0.19	hc83	1.084947	dih116	-74.145
dih16	-111.105	cc50	1.403739	hcn83	116.504	hc117	1.096834
cc17	1.410457	ccc50	118.991	dih83	-1.471	hcn117	107.938
ccc17	119.12	dih50	-0.29	hc84	1.082371	dih117	-30.208
dih17	172.681	cc51	1.479858	hcn84	116.737	hc118	1.104833
cc18	1.399769	ccn51	113.429	dih84	1.875	hcn118	111.799
ccc18	121.582	dih51	-2.186	hc85	1.084794	dih118	88.206
dih18	0.993	nc52	1.387055	hcc85	121.217	hc119	1.09628
cc19	1.405458	ncc52	115.71	dih85	179.471	hcc119	109.974
ccc19	119.389	dih52	2.314	hc86	1.084279	dih119	168.488
dih19	-0.49	cn53	1.358963	hcc86	120.335	hc120	1.095599
cc20	1.402194	cnc53	118.836	dih86	-179.844	hcc120	112.492
ccc20	119.644	dih53	-179.403	hc87	1.082905	dih120	-71.991
dih20	-0.322	cc54	1.399961	hcc87	120.414	hc121	1.095893
cc21	1.510947	ccn54	122.47	dih87	-179.683	hcc121	109.889
ccc21	125.205	dih54	-0.351	hc88	1.083224	dih121	49.225

16/18

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

dih21	172.986	cc55	1.405408	hcc88	119.798	hc122	1.10776
oc22	1.258785	ccc55	119.054	dih88	179.224	hcn122	108.334
occ22	121.16	dih55	-0.271	hc89	1.084482	dih122	-75.199
dih22	-61.154	cc56	1.403335	hcc89	120.683	hc123	1.091836
nc23	1.410664	ccc56	118.886	dih89	179.319	hcn123	107.234
ncc23	120.343	dih56	0.647	hc90	1.084699	dih123	169.821
dih23	-177.793	nru57	2.068719	hcc90	119.863	hc124	1.096636
cn24	1.490037	nrun57	90.823	dih90	179.822	hcc124	108.588
cnc24	116.543	dih57	-96.006	hc91	1.078837	dih124	-179.001
dih24	-42.201	cn58	1.377015	hcn91	116.179	hc125	1.095698
cc25	1.539715	cnru58	115.462	dih91	-0.532	hcc125	111.039
ccn25	111.227	dih58	-97.987	hc92	1.090789	dih125	62.268
dih25	-148.954	cc59	1.402874	hcs92	107.176	hc126	1.095866
nc26	1.362411	ccn59	120.961	dih92	58.27	hcc126	112.416
ncc26	121.884	dih59	178.22	hc93	1.091024	dih126	-60.236
dih26	-177.426	cc60	1.398834	hcs93	106.758	hc127	1.096163
cn27	1.486573	ccc60	119.876	dih93	175.85	hcn127	109.53
cnc27	121.06	dih60	0.276	hc94	1.09039	dih127	47.141
dih27	177.59	cc61	1.405044	hcs94	112.92	hc128	1.093476
cc28	1.5438	ccc61	118.859	dih94	-63.097	hcn128	107.448
ccn28	113.002	dih61	0.583	hc95	1.094175	dih128	161.854
dih28	-77.234	cc62	1.397578	hcs95	104.917	hc129	1.094621
nc29	1.391288	ccc62	119.039	dih95	-169.572	hcc129	110.633
ncc29	117.248	dih62	-0.604	hc96	1.093123	dih129	-60.727
dih29	126.364	cc63	1.469298	hcs96	105.38	hc130	1.095586
cn30	1.473524	ccn63	115.605	dih96	-54.593	hcc130	111.915
cnc30	124.227	dih63	-1.76	hc97	1.092234	dih130	59.885
dih30	-21.589	nc64	1.377629	hcc97	110.77	hc131	1.095973
cn31	1.473803	ncc64	114.937	dih97	47.77	hcc131	110.065
cnc31	118.485	dih64	0.637	hc98	1.099999	dih131	-179.74
dih31	-6.787	cn65	1.360993	hcc98	111.453	hc132	1.093708
cc32	1.546396	cnc65	118.652	dih98	-73.439	hcn132	107.296
ccn32	110.918	dih65	-179.563	ho99	0.978964	dih132	-165.638
dih32	-117.194	cc66	1.396607	hoc99	113.509	hc133	1.096592
oc33	1.482154	ccn66	122.701	dih99	80.508	hcn133	109.267
occ33	108.947	dih66	0.011	hc100	1.098447	dih133	-50.579
dih33	142.66	cc67	1.405536	hco100	108.792	hc134	1.09469
co34	1.371539	ccc67	118.814	dih100	62.867	hcc134	111.879
coc34	118.705	dih67	0.103	hc101	1.099314	dih134	-60.767
dih34	-175.582	cc68	1.401366	hco101	107.93	hc135	1.09576
cc35	1.416894	ccc68	119.004	dih101	-56.779	hcc135	111.015

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2013

cco35	116.632	dih68	-0.012	hc102	1.096344	dih135	59.939
dih35	171.503	cs69	1.889671	hcc102	110.111	hc136	1.09634
cc36	1.394742	csru69	118.045	dih102	-95.804	hcc136	110.12
				hc103	1.090688	dih136	179.464
constants							

end

References

- A. Bahreman, B. Limburg, M. A. Siegler, E. Bouwman and S. Bonnet, *Inorg. Chem.*, 2013, 52, 9456-9469.
- 2. J. G. P. Calvert, J. N., *Chemical actinometer for the determination of ultraviolet light intensities. In Photochemistry*. Wiley and Sons, New York, 1967, 780.
- 3. M. Rougee, T. Ebbesen, F. Ghetti and R. V. Bensasson, J. Phys. Chem., 1982, 86, 4404-4412.