Supporting Information

Exploration of selective recognition of iodide with dipodal sensor: 2,2'-[ethane-1,2-diylbis(iminoethane-1,1-diyl)]diphenol

Kundan Tayade^{a,b}, Judith Gallucci^c, Hemant Sharma^d, Sanjay Attarde^b, Rahul Patil^a, Narinder Singh^d*, Anil Kuwar^a*

^aSchool of Chemical Sciences, North Maharashtra University, Jalgaon 425 001 (MS) India.

^bSchool of Environmental and Earth Sciences, North Maharashtra University, Jalgaon 425 001 (MS) India.

^cDepartment of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210 USA

^dDepartment of Chemistry, Indian Institute of Technology, Ropar, Rupanagar (Punjab) India

* Corresponding authors. Tel.: +91-257-2257432; fax: +91-257-2257403

E-mail addresses: <u>kuwaras@gmail.com</u> <u>nsingh@iitrpr.ac.in</u>

Figure S1. IR spectra of receptor 2

Figure S2. ¹H-NMR spectra of receptor 2

Figure S4. LC-MS spectra of receptor 2 (M+H⁺)

Fig. S5. Fluorescent titrations of receptor 2(0.1 mM) with tetrabutylammonium iodide in CH₃CN.

Figure S6. A sensing of Γ by receptor **2** (0.1 mM) in the presence of other competing anions.

To determination of binding constant

Linear fitting of the titration profiles using Benesi-Hildebrand methodology (Eq.1), Scatchard methodology (Eq.2) and Connor's fitting method (Eq.3,) based on a 1:1 binding mode results in a good linearity. The binding constant was calculated to be $8.6 \pm 0.01 \times 10^4 \,\mathrm{M^{-1}}$. We calculated the association constant (*K_a*) by using the following equation.

$$\frac{1}{(F-F_0)} = \frac{1}{(F_{\infty} - F_0)K_a[G]} + \frac{1}{(F_{\infty} - F_0)}$$
(Eq.1)

$$\frac{(F-F_0)}{[G]} = (F_{\infty} - F_0)K_a - (F - F_0)K_a$$
(Eq.2)

Connor's fitting method was carried out by the following equation as,

$$K_{a}$$

$$[H] + [G] \longrightarrow [HG]$$

$$F = k_{s}[H] + k_{p}[HG]$$

$$F_{0} = k_{s} [H]_{t}$$

$$[H]_{t} = [H] + [HG]$$

$$K_{a} = \frac{[HG]}{[H][G]}$$

$$(1 + \frac{k_{p}}{2}) \qquad (1 - \frac{F}{2})$$

$$\frac{F}{F_0} = \frac{(1 + \frac{hp}{k_s})}{(1 + K_a[G])} \Longrightarrow \frac{(1 - \frac{1}{F_0})}{[F]} = K_a(\frac{F}{F_0}) - \alpha K \qquad (as \frac{kp}{k_s} - \alpha)$$
(Eq.3)

Where, F_0 represents the fluorescence intensity in the absence of guest ion (Γ ion), F represents the fluorescence intensity in presence of guest ion, F_{∞} represents fluorescence intensity after titration and [G] represents the concentration of guest.

Figure S7. A Benesi-Hildebrand methodology for receptor **2**, $(1/\Delta F)$ vs 1/[G], K_a = 8.57×10^4 M⁻¹.

Figure S8. A Scatchard methodology for receptor **2**, $\Delta F/[G]$ vs ΔF , K_a = 8.62 × 10⁴ M⁻¹.

Figure S9. Connor's fitting method for receptor 2, $(1-F/F_0)/[G]$ vs F/F_0 , K_a = 8.62 × 10⁴ M⁻¹.

Figure S10. 1:1 Stoichiometry of the host guest relationship realized from the Job's plot for receptor **2**.

Figure S11. LC-MS spectrum of receptor 2.1⁻ ion complex [M+H⁺.(H₂O)_{0.5}]

Figure S12. A change in fluorescence intensity of receptor 2 with time (sec.) upon addition of 3 equiv. of I^{-} .

Group	Synthetic strategy	Detection limit	Fluorescence response	Ref.
Singh <i>et al</i> .	Multistep tripodial	2.1 µM	quenching	la
Wang <i>et al</i> .	Multistep Ag-complex	7.16 µM	quenching	21
Shang <i>et al</i> .	Capped CdSe nanoparticles	0.28 µM	quenching	22
Yang <i>et al</i> .	Multistep PVC membrane	0.5 µM	quenching	23
Wang <i>et al</i> .	Capped Au nanoclusters	118 nM	quenching	24
Lin <i>et al</i> .	Multistep Hg-complex	0.45 μM	enhancement	25
Present work	Simple condensation & reduction	1.38 µM	enhancement	-

Table S1. A comparison of literature reported synthesis with present methodology

Parameter	Receptor 2
Formula	$C_{18}H_{24}N_2O_2$
Formula weight	300.39
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Tetragonal
Space group	P 4 ₁ 2 ₁ 2
Unit cell dimensions	a = 7.5161(6) Å c = 29.023(2) Å
Volume	1639.6(3) Å ³
Ζ	4
Density (calculated)	1.217 Mg/m ³
Absorption coefficient	0.080 mm ⁻¹
F(000)	648
Crystal size	0.23 x 0.23 x 0.27 mm ³
Theta range for data collection	2.799 to 24.988°
Index ranges	-8<=h<=8, -5<=k<=6, -33<=l<=34
Reflections collected	10916
Independent reflections	1434 [R(int) = 0.050]
Completeness to theta = 25.00°	99.7 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1434 / 0 / 109
Goodness-of-fit on F ²	1.041
Final R indices [I>2sigma(I)]	R1 = 0.0590, wR2 = 0.1365
R indices (all data)	R1 = 0.0807, wR2 = 0.1539
Largest diff. peak and hole	0.500 and -0.222 e/Å ³

Table S2	Crystallogram	hic details	for recentor 2
	Crystanograp	me actans	

Table S3. Hydrogen bonds for receptor 2 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(8)-H(8A)O	0.98	2.57	3.156(6)	118.6
N-H(1N)O	1.10(5)	2.20(5)	2.993(5)	127(3)
O-H(1O)N#2	0.95(7)	1.81(7)	2.760(5)	171(7)

Symmetry transformations used to generate equivalent atoms: #1 y,x,-z #2 y,x+1,-z

Parameter	Ligand 2	2. I ⁻	
Dihedral angles (°)			
N25-C29-C30-N26	61.09	91.88	
C29-C30-N26-C24	-135.57	-169.19	
C5-C4-C23-N25	33.34	69.46	
O21-C3-C4-C23	-0.50	-2.44	
C27-C23-N25-C29	-66.67	-80.35	
C3-C4-C23-N25	-147.43	-108.38	
O22-C12-C11-C24	-2.34	0.35	
C11-C24-N26-C30	157.50	-179.05	
Bond angles (°)			
C23-N25-C29	116.22	112.14	
C5-C4-C23	121.38	121.06	
C30-N26-C24	120.29	114.74	
N26-C24-C28	113.49	110.27	
N25-C29-C30	109.24	112.12	
Bond Length (Å)			
N25-C29	1.46	1.52	
C30-N26	1.46	1.54	
C24-N26	1.47	1.56	
C23-N25	1.47	1.53	
C12-O22	1.39	1.40	
C3-O21	1.40	1.43	
О22-Н45	0.97	1.02	
O21-H44	0.97	1.02	
N25-H42	1.01	1.05	
N26-H43	1.01	1.06	
C23-C27	1.54	1.56	
Energy (a.u.)	-960.28	-959.48	

Table S4: An optimized bond angles, dihedral angles, bond length and energy calculated at B3LYP/ LANL2DZ level.