Supporting Information

Encapsulation of $[X_2(H_2O)_4]^2$ (X = F/Cl) clusters by pyridyl terminated tripodal amide receptor in aqueous medium: Single crystal X-ray structural evidence

Sourav Chakraborty^{*a*}, Ranjan Dutta^{*a*}, M. Arunachalam^{*b*} and Pradyut Ghosh^{*a}

^a Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India. E-mail: <u>icpg@iacs.res.in</u>

^b Present address: Dept. of Inorganic Chemistry, Virginia Tech, Blacksburg, VA-24060, United States.

1.	Coordination geometry of complex 1 & 2	2	9.	¹ H-NMR titration spectra of L with F ⁻ and Cl ⁻ in Acetone- d_6/D_2O (1:19, v/v)	14
2.	Structure of complex 3	3	10.	¹ H-NMR titration spectra of L with Br ⁻ and NO ₃ ⁻ in Acetone- d_6/D_2O (1:19, v/v)	15
3.	¹ H & ¹³ C NMR spectra of L	4-5	11	¹ H-NMR titration spectra of L with HSO ₄ ⁻ and H ₂ PO ₄ ⁻ in Acetone- d_6/D_2O (1:19, v/v)	16
4.	¹ H & ¹³ C NMR spectra of complex 1	6-7	12.	¹ H-NMR titration spectra of L with F ⁻ and H ₂ PO ₄ ⁻ in DMSO- d_6	17
5.	¹ H & ¹³ C NMR spectra of complex 2	8-9	13.	Comparative ¹⁹ F spectra and arrangement of clusters in complex 1 & 2	18
6.	¹ H & ¹³ C NMR spectra of complex 3	10-11	14.	Anion equivalent plots of different titration profiles	19-20
7.	H-bonding table of complex 1, 2 & 3	12	15.	FIT plot and WINEQNMR output files of titrations	20-25
8.	Comparative partial ¹ H-NMR spectra of L with TBA salts of different anions	13			

Fig. 1S: Coordination number and geometry of (a) complex **1**. In such distorted TBP arrangement F1 sits 1.047Å above the plane containing O5-N3-O5" and distance of F1 from the centroid of plane containing O5-N3-O5" is 1.166 Å. The plane containing O2-F1-C17 and O5-N3-O5" dissects each other with an angle of 78.81° which means these planes are distorted by -11.19° compared to perfect TBP arrangement.

(b) Complex 2. Here Cl1 sits just 0.326 Å above the centroid of plane containing O4-N2-O6-C21. In perfect octahedral arrangement the angle between axial atoms has to be 180° but in complex 2, $\angle O4''$ -Cl1-N3= 139.22° which means the structure is more axially distorted by - 40.78°. The angle between axial (O4''-Cl1-N3) and equatorial planes (O4-N2-O6-C21) in complex 2, is 88.67° which is slightly distorted by -1.33°.

Color codes of the crystal pictures are yellow: carbon, cyan: nitrogen, gray: hydrogen, red: oxygen, lighy green: fluoride, green: chloride.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2014

Fig. 2S: Labelled structure of complex **3**, SiF_6^{2-} encapsulated dimeric capsule. Color codes of the crystal picture are yellow: carbon, cyan: nitrogen, gray: hydrogen, red: oxygen, light green: fluoride.

Fig. 3S: ¹H NMR (300 MHz) spectrum of receptor **L** in DMSO- d_6 at 25°C.

Fig. 4S: ¹³C NMR (75 MHz) spectrum of receptor L in DMSO- d_6 at 25°C.

Fig. 5S: ¹H NMR (300 MHz) spectrum of complex **1** in DMSO- d_6 at 25°C.

Fig. 6S: ¹³C NMR (75 MHz) spectrum of complex 1 in DMSO- d_6 at 25°C.

Fig. 7S: ¹H NMR (300 MHz) spectrum of complex **2** in DMSO- d_6 at 25°C.

Fig. 8S: ¹³C NMR (75 MHz) spectrum of complex **2** in DMSO- d_6 at 25°C.

Fig. 9S:¹H NMR (300 MHz) spectrum of complex **3** in DMSO- d_6 at 25°C.

D-H···A	H…A (Å)	D… A (Å)	∠ D-H ···A (°)		
$N1-H1\cdotsO5^{1}$	1.9800	2.821(7)	165.00		
$O2-H2A\cdots F1^{1}$	1.78(5)	2.647(7)	171(7)		
$N3-H3\cdots F1^2$	1.8400	2.683(6)	165.00		
$O4-H4B\cdotsO11^3$	2.06(7)	2.847(6)	154(6)		
$N5-H5\cdotsO2^2$	2.0400	2.878(7)	163.00		
$O5-H5A\cdots F1^2$	1.71(10)	2.702(6)	165(7)		
O5-H5B…F1 ⁴	1.71(9)	2.618(6)	159(7)		
O6-H6A…O4 ⁵	2.06(9)	2.869(8)	174(11)		
O6-H6B…N2 ⁶	1.96(9)	2.871(8)	164(7)		
C10-H10O5 ¹	2.4500	3.254(8)	145.00		
Symmetry codes: (1) x, y, z (2) x, y, -1+z (3) x, y, 1+z (4) 2-x, 1-y, 1-z (5) 1-x, 1-y, 1-z (6) -					
1+x, y, z.					

 Table 1S: Selected H-bonding parameters of complex 1

Table 2S: Selected H-bonding parameters of complex 2

D-H···A	H…A (Å)	D… A (Å)	∠D-H…A (°)	
$N1-H1\cdotsO4^{1}$	2.1600	2.974(3)	157.00	
$N2-H2\cdots Cl1^2$	2.6100	3.429(2)	159.00	
$N3-H3\cdots Cl1^2$	2.5900	3.419(2)	161.00	
$O4-H4A\cdotsCl1^2$	2.61(3)	3.375(2)	161(4)	
$O5-H5B-O1^3$	2.52(4)	2.942(3)	112(4)	
C3-H3B…N1 ¹	2.6000	3.311(4)	132.00	
C12-H12AO3 ¹	2.3900	2.732(3)	100.00	
C37-H37BO3 ⁴	2.5900	3.384(3)	139.00	
C41-H41B····O2 ⁵	2.4700	3.421(3)	166.00	
Symmetry codes: (1) x, y, z (2) x, y, 1+z (3) x, y, -1+z (4) 1-x, 1-y, 1-z (5) 2-x, 1-y, 1-z.				

Table 3S: Selected H-bonding parameters of complex 3

D-H···A	H···A (Å)	D… A (Å)	∠D-H··· A (°)	
N4-H4 \cdots F2 ¹	2.0100	2.854(3)	166.00	
N5-H5-05 ²	2.0600	2.880(3)	158.00	
N6-H6…F1 ¹	2.0000	2.844(3)	167.00	
C9-H9BO1 ³	2.5900	3.429(3)	145.00	
$C22-H22\cdots F2^{1}$	2.5300	3.252(4)	135.00	
C28-H28-F3 ¹	2.5300	3.442(7)	165.00	
Symmetry codes: (1) x, 1+y, z (2) x, y, z (3) -x, 1-y, 2-z				

Fig. 11S: Comparative partial ¹H NMR (300 MHz) spectra of $L(\sim 4 \text{ mM})$ in D₂O-acetone- d_6 (1:19, v/v) after addition of excess amount (~ 3 equivalent) of TBA salts of different anions.

Fig. 12S: Comparative partial ¹H NMR (300 MHz) spectra of $L(\sim 4 \text{ mM})$ in DMSO-*d*₆ after addition of excess amount (~ 3 equivalent) of TBA salts of different anions.

Fig. 13S: Partial ¹H NMR (300 MHz) titration profiles (a) Spectral change of L after adding TBAF in D₂O-acetone- d_6 (1:19, v/v) upto 1.15 equivalents. (b) Spectral change of L after adding TBACl in D₂O-acetone- d_6 (1:19, v/v) upto 1.16 equivalents.

Fig. 14S: Partial ¹H NMR (300 MHz) titration profiles (a) Spectral change of **L** in D₂O-acetone- d_6 (1:19, v/v) after adding TBAF (6. 45 equivalent) in D₂O-acetone- d_6 (1:19, v/v) (b) Spectral change of **L** in D₂O-acetone- d_6 (1:19, v/v) after adding TBACl (6.54 equivalent).

Fig. 15S (a) Job's plot analysis of **L** in D₂O-acetone- d_6 (1:19, v/v) after adding TBABr in acetone- d_6 . (b) Job's plot for analysis of **L** in D₂O-acetone- d_6 (1:19, v/v) after adding TBANO₃ in acetone- d_6 .

Fig. 16S: Partial ¹H NMR (300 MHz) titration profiles (a) Spectral change of **L** after adding TBABr in D₂O-acetone- d_6 (1:19, v/v) upto 1.17 equivalents. (b) Spectral change of **L** after adding TBANO₃ in D₂O-acetone- d_6 (1:19, v/v) upto 1.25 equivalents.

Fig. 17S: Partial ¹H NMR (300 MHz) titration profiles (a) Spectral change of L in D₂O-acetone- d_6 (1:19, v/v) after adding TBABr (5. 31 equivalent) in D₂O-acetone- d_6 (1:19, v/v) (b) Spectral change of L in D₂O-acetone- d_6 (1:19, v/v) after adding TBANO₃ (5.36 equivalent).

Fig. 18S: (a) Job's plot analysis of **L** in D₂O-acetone- d_6 (1:19, v/v) after adding TBAHSO₄ in D₂O-acetone- d_6 (1:19, v/v). (b) Job's plot for analysis of **L** in D₂O-acetone- d_6 (1:19, v/v) after adding TBAH₂PO₄ in acetone- d_6 .

Fig. 19S: Partial ¹H NMR (300 MHz) titration profiles (a) Spectral change of **L** after adding TBAHSO₄ in D₂O-acetone- d_6 (1:19, v/v) upto 1.13 equivalent. (b) Spectral change of **L** after adding TBAH₂PO₄ in D₂O-acetone- d_6 (1:19, v/v) upto 1.03 equivalent.

Fig. 20S: Partial ¹H NMR (300 MHz) titration profiles (a) Spectral change of L in D₂O-acetone- d_6 (1:19, v/v) after adding TBAHSO₄ (6.05 equivalent) in D₂O-acetone- d_6 (1:19, v/v) (b) Spectral change of L in D₂O-acetone- d_6 (1:19, v/v) after adding TBAH₂PO₄ (4.94 equivalent).

Fig. 21S: (a) Job's plot analysis of **L** in D₂O-acetone- d_6 (1:19, v/v) after adding TBAF in DMSO- d_6 (b) Job's plot analysis of **L** in D₂O-acetone- d_6 (1:19, v/v) after adding TBAH₂PO₄ in DMSO- d_6 .

Fig. 22S: Partial ¹H NMR (300 MHz) titration profiles (a) Spectral change of L after adding TBAF in DMSO- d_6 upto 1.04 equivalent. (b) Spectral change of L after adding TBAH₂PO₄ in DMSO- d_6 upto 1.21 equivalent.

Fig. 23S: Partial ¹H NMR (300 MHz) titration profiles (a) Spectral change of L in after adding TBAF (6.64 equivalent) in DMSO- d_6 (b) Spectral change of L in DMSO- d_6 after adding TBAH₂PO₄ (6.33 equivalent).

Fig. 24S: Comparative partial ¹⁹F NMR spectra in DMSO- d_6 in 500 MHz.

Fig. 25S: H-bonding distances and angles of the $[(X)_2(H_2O)_4]^{2-}$ cluster in (a) complex **1** (X=F) and (b) complex **2** (X=Cl).

Fig. 26S: Anion equivalents plot of (a) change in chemical shift of **L** with increasing equivalent of TBAF in D₂O-acetone- d_6 (1:19, v/v) (b) change in chemical shift of **L** with increasing equivalent of TBACl in D₂O-acetone- d_6 (1:19, v/v).

Fig. 27S: Anion equivalents plot of (a) change in chemical shift of **L** with increasing equivalent of TBABr in D₂O-acetone- d_6 (1:19, v/v) (b) change in chemical shift of **L** with increasing equivalent of TBANO3 in D₂O-acetone- d_6 (1:19, v/v).

Fig. 28S: Anion equivalents plot of (a) change in chemical shift of **L** with increasing equivalent of TBAHSO₄ in D₂O-acetone- d_6 (1:19, v/v) (b) change in chemical shift of **L** with increasing equivalent of TBAH₂PO₄ in D₂O-acetone- d_6 (1:19, v/v).

Fig. 29S: Anion equivalents plot of (a) change in chemical shift of **L** with increasing equivalent of TBAF in DMSO- d_6 (b) change in chemical shift of **L** with increasing equivalent of TBAH₂PO₄ in DMSO- d_6 .

Fig. 30S: Fit plot of NMR titration of **L** with TBAF (Concentration in mole unit) in D₂O-acetone- d_6 (1:19, v/v).

Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes Program run at 11:14:42 on 10/08/2013 IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: Sn + L = Sn(L) FILE: TEST11.FIT (Measured shift is on 119Sn) IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0 File prepared by M. J. Hynes, October 22 2000 Equilibrium constants are log10 values NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION 1 1 1.59245E+00 2.000E-01 2.920E-02 2.300E+02 K1 2 1 7.75683E+00 2.000E-01 1.168E-03 8.101E+00 SHIFT Sn 3 1 8.10416E+00 1.000E+00 1.141E-02 1.791E+02 SHIFT Sn(L)

Fig. 31S: Fit plot of NMR titration of **L** with TBACl (Concentration in mole unit) in D₂O-acetone- d_6 (1:19, v/v).

Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes Program run at 11:29:59 on 10/08/2013 IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: Sn + L = Sn(L) FILE: TEST11.FIT (Measured shift is on 119Sn) IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0 File prepared by M. J. Hynes, October 22 2000 Equilibrium constants are log10 values NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION 1 1 1.58094E+00 2.000E-01 2.509E-02 2.308E+02 K1 2 1 7.75398E+00 2.000E-01 1.508E-03 8.333E+00 SHIFT Sn 3 1 8.25250E+00 1.000E+00 1.383E-02 1.783E+02 SHIFT Sn(L) ORMS ERROR = 2.11E-03 MAX ERROR = 3.69E-03 AT OBS.NO. 25 RESIDUALS SQUARED = 1.37E-04 RFACTOR = 0.0254 PERCENT

Fig. 32S: Fit plot of NMR titration of **L** with TBABr (Concentration in mole unit) in D₂O-acetone- d_6 (1:19, v/v).

Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes

Program run at 12:37:03 on 10/08/2013

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)

Reaction: Sn + L = Sn(L)

FILE: TEST11.FIT (Measured shift is on 119Sn)

IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0

File prepared by M. J. Hynes, October 22 2000

Equilibrium constants are log10 values

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

1 1 1.56227E+00 2.000E-01 1.070E-01 1.069E+03 K1

2 1 7.78004E+00 2.000E-01 2.910E-03 1.048E+01 SHIFT Sn

3 1 8.55284E+00 1.000E+00 1.340E-01 9.312E+02 SHIFT Sn(L)

0RMS ERROR = 4.69E-03 MAX ERROR = 2.11E-02 AT OBS.NO. 38

RESIDUALS SQUARED = 7.70E-04

RFACTOR = 0.0570 PERCENT

Fig. 33S: Fit plot of NMR titration of **L** with TBANO₃ (Concentration in mole unit) in D₂O-acetone- d_6 (1:19, v/v).

Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes

Program run at 15:15:23 on 10/08/2013

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)

Reaction: Sn + L = Sn(L)

FILE: TEST11.FIT (Measured shift is on 119Sn)

IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0

File prepared by M. J. Hynes, October 22 2000

Equilibrium constants are log10 values

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

1 1 2.02509E+00 2.000E-01 2.881E-02 9.054E+01 K1

2 1 7.76675E+00 2.000E-01 2.210E-03 7.230E+00 SHIFT Sn

3 1 8.10447E+00 1.000E+00 8.055E-03 6.202E+01 SHIFT Sn(L)

0RMS ERROR = 2.63E-03 MAX ERROR = 4.68E-03 AT OBS.NO. 30

RESIDUALS SQUARED = 1.86E-04

RFACTOR = 0.0315 PERCENT

Fig. 34S: Fit plot of NMR titration of **L** with TBAHSO₄ (Concentration in mole unit) in D₂O-acetone- d_6 (1:19, v/v).

Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes

Program run at 15:43:37 on 10/08/2013

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)

Reaction: Sn + L = Sn(L)

FILE: TEST11.FIT (Measured shift is on 119Sn)

IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0

File prepared by M. J. Hynes, October 22 2000

Equilibrium constants are log10 values

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

1 1 1.96887E+00 2.000E-01 1.111E-02 2.635E+02 K1

2 1 7.74983E+00 2.000E-01 5.374E-04 1.050E+01 SHIFT Sn

3 1 8.13070E+00 1.000E+00 4.574E-03 1.966E+02 SHIFT Sn(L)

0RMS ERROR = 6.14E-04 MAX ERROR = 1.10E-03 AT OBS.NO. 4

RESIDUALS SQUARED = 9.82E-06

RFACTOR = 0.0074 PERCENT

Fig. 35S: Fit plot of NMR titration of **L** with TBAH₂PO₄ (Concentration in mole unit) in D₂O-acetone- d_6 (1:19, v/v).

Calculations by WinEQNMR2 Version 2.00 by Michael J. Hynes

Program run at 16:33:57 on 10/08/2013

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)

Reaction: Sn + L = Sn(L)

FILE: TEST11.FIT (Measured shift is on 119Sn)

IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0

File prepared by M. J. Hynes, October 22 2000

Equilibrium constants are log10 values

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

```
1 1 8.71083E-01 2.000E-01 1.239E-01 7.841E+03 K1
```

```
2 1 7.78813E+00 2.000E-01 1.512E-03 1.182E+01 SHIFT Sn
```

```
3 1 1.00450E+01 1.000E+00 5.536E-01 7.425E+03 SHIFT Sn(L)
```

0RMS ERROR = 2.52E-03 MAX ERROR = 4.56E-03 AT OBS.NO. 24

RESIDUALS SQUARED = 2.16E-04

RFACTOR = 0.0306 PERCENT

References:

1. P. A. Gale, J. Garric, M. E. Light, B. A. McNally and Bradley D. Smith, *Chem. Commun.*, 2007, 1736-1738.