ELECTRONIC SUPPLEMENTARY INFORMATION

5

10

A tetradentate metalloligand: Synthesis and coordination behaviour of a 2-pyridyl-substituted cyclobutadiene iron complex

B. Rezaei Rad, D. Herrmann, C. Lescop and R. Wolf

University of Regensburg, Institute of Inorganic Chemistry, 93040 Regensburg, and Sciences Chimiques de Rennes UMR 6226 CNRS, Université de Rennes 1 Campus de Beaulieu, 35042 Rennes Cedex (France)

1.	Full experimental details, synthesis of and spectroscopic characterisation of complexes	K1
	and 1–4	.S2
2.	UV-vis spectra of complexes K1 and 1-4 (Figure S1)	.S4
15 3.	Cyclic voltammograms of complexes K1 and 2-4 (Figures S2-S5)	. S6
4.	Crystallographic data for K1 and 1–4	510
	4.1. Crystal and Refinement data of K1	510
	4.2. Crystal and Refinement data of 1	518
	4.3. Crystal and Refinement data of 2	528
20	4.4. Crystal and Refinement data of 3	538
	4.5. Crystal and Refinement data of 4	548

1. Full experimental details, synthesis of and spectroscopic characterisation of complexes K1 and 1–4

General considerations: All experiments were performed under an atmosphere of dry argon, by using standard Schlenk and glovebox techniques. Solvents were purified, dried, and degassed with an MBraun SPS800 solvent purification system. NMR spectra were recorded on Bruker Avance 300 and Avance 400 spectrometers at 300 K and internally referenced to residual solvent resonances. The ³⁰ assignment of the ¹H and ¹³C NMR signals was confirmed by two-dimensional (COSY, HSQC, and HMBC) experiments. Melting points were measured on samples in sealed capillaries on a Stuart SMP10 melting point apparatus. UV/Vis spectra were recorded on a Varian Cary 50 spectrometer. Elemental analyses were determined by the analytical department of Regensburg University. The starting materials FeCl₂(thf)_{1.5},^{S1} [CuBr(tht)],^{S2} [K([18]crown-6)][Cp*Fe(C₁₀H₈)]^{S3} and bis(2-³⁵ pyridyl)acetylene^{S4} were prepared according to literature procedures. ZnCl₂ was purchased from ABCR and used as received.

[K([18]crown-6){Cp*Fe(C₄py₄)}] (K1): A solution of bis(2-pyridyl)acetylene (0.108 g, 0.60 mmol)

in THF (10 mL) at -30 °C was added to a solution of $[K([18]crown-6){Cp*Fe(C_{10}H_8)}]$ (0.187 g, 0.30 mmol) in THF (20 mL) at -60 °C. The ⁴⁰ reaction mixture was stirred overnight and warmed to room temperature. A dark solid precipitated which was separated by filtration. After removal of the solvent, the crude product was extracted with diethyl ether (150 mL). Dark purple **K1** precipitated after layering this solution with *n*-hexane at room temperature. The isolated solid contains one equivalent *n*-hexane per formula

⁴⁵ unit of **K1** according to ¹H NMR spectroscopy and microanalysis. X-ray quality crystals of **K1** were obtained by layering a concentrated toluene solution with *n*-hexane at room temperature. Yield: 85 mg (33%); m.p.: >225 °C; UV/Vis (THF): λ_{max} (nm, (ε_{max}/L·mol⁻¹·cm⁻¹)): 333 (35488), 371sh (27321), 518 (5241); ¹H NMR (400.13 MHz, C₆D₆): δ = 1.69 (s, 15H, CH₃), 3.03 (s, 24H, CH₂ of [18]crown-6), 6.58 (m, 4H, H₄), 7.29 (m, 4H, H₅), 8.28 (m, 4H, H₃), 8.64 (m, 4H, H₆). ¹³C{¹H} NMR (400.13 MHz, S⁵⁰ C₆D₆): δ = 9.9 (s, CH₃), 69.8 (s, CH₂ of [18]crown-6), 70.3 (s, C₄py₄), 80.8 (s, C₅(CH₃)₅), 114.1 (s, CH_{pyridine}), 126.3 (s, CH_{pyridine}), 132.6 (s, CH_{pyridine}), 147.3 (s, CH_{pyridine}), 168.9 (s, *ipso-C_{pyridine}*); Elemental analysis calcd. for C₅₂H₆₉FeKN₄O₆·C₆H₁₄ (Mw = 941.09 g·mol⁻¹): C 66.37, H 7.39, N 5.95, found: C 66.18, H 6.72, N 5.94.

[Cp*Fe(C4py4)] (1): A suspension of [CuBr(tht)] (0.046 g, 0.20 mmol) in THF was added to a

⁵⁵ solution of **K1** (0.171 g, 0.20 mmol) in THF (50 mL). The color changed to brown and a black residue precipitated. The reaction mixture was stirred overnight and was filtered afterwards. The solution was removed *in vacuo*, and the crude product was extracted with benzene. Red brown crystals were isolated durig the diffusion of *n*-hexane into the benzene solution. Yield: 62 mg (56%);
⁶⁰ m.p.: >188 °C; UV/Vis (THF): λ_{max} (nm, (ε_{max}/L·mol⁻¹·cm⁻¹)): 332 (36793),

420sh (3592); Effective magnetic moment (Evans NMR Method, C_6D_6): $\mu_{eff} = 1.8(1) \ \mu_B$; Elemental analysis calcd. for $C_{34}H_{31}FeN_4$ (Mw = 551.49 g·mol⁻¹): C 74.05, H 5.67, N 10.16, found: C 74.24, H 5.29, N 10.30.

[K([18]crown-6){Cp*Fe(C₄py₄)}(ZnCl₂)] (2): A solution of ZnCl₂ (0.020 g, 0.15 mmol) in THF (10

⁶⁵ mL) was added to a solution of **K1** (0.128 g, 0.15 mmol) in THF (10 mL) at room temperature. The reaction mixture was stirred overnight and was filtered afterwards. Dark purple crystals were isolated after diffusion of diethyl ether (50 mL) into this solution. Yield: 96 mg (62%); m.p.: >260 °C; UV/Vis (THF): λ_{max} (nm, ($\varepsilon_{max}/L \cdot mol^{-1} \cdot cm^{-1}$)): 327 (35658), ⁷⁰ 397sh (25066), 538 (6640); ¹H NMR (400.13 MHz, [D₈]THF): δ = 1.21 (s, 15H, CH₃), 3.55 (s, 24H, CH₂ of [18]crown-6), 6.53 (m, 2H, H₅), 6.83 (m, 2H, H₅), 7.07 (m, 2H, H₄), 7.23 (m, 2H, H₄), 7.51 (br d, *J* = 8.0 Hz, 2H,

*H*₃), 7.74 (br d, *J* = 8.0 Hz, 2H, *H*₃), 8.30-8.33 (overlapping m, 4H, *H*₆ and *H*₆). ¹³C{¹H} NMR (400.13 MHz, C₆D₆): δ = 8.9 (s, *C*H₃), 71.1 (s, *C*H₂ of [18]crown-6), 83.1 (s, *C*₅(CH₃)₅), 112.4 (s, *CH*_{pyridine}), 175 117.2 (s, *CH*_{pyridine}), 125.4 (br s, *CH*_{pyridine}), 134.2 (s, *CH*_{pyridine}), 148.0 (s, *CH*_{pyridine}), 148.8 (s, *CH*_{pyridine}), 166.6 (s, *CH*_{pyridine}), 169.0 (s, *CH*_{pyridine}), the signal for the carbons of the C₄py₄ moiety were not detected due to overlap with solvent; Elemental analysis calcd. for C₄₈H₆₁Cl₂FeKN₄O₆Zn (Mw = 1021.26 g·mol⁻¹): C 55.74, H 5.59, N 5.65, found: C 56.02, H 5.59, N 5.73.

[K([18]crown-6){Cp*Fe(C₄py₄)}(FeCl₂)] (3): A suspension of FeCl₂(thf)_{1.5} (0.030 g, 0.13 mmol) in

THF (10 mL) was added to a solution of **K1** (0.111 g, 0.13 mmol) in THF (10 mL) at room temperature. The reaction mixture was stirred overnight and was filtered afterwards. Dark purple crystals were isolated by diffusion of *n*-hexane (50 mL) into this solution. Yield: 67 mg (52%); m.p.: >165 °C; UV/Vis (THF): λ_{max} (nm, ($\varepsilon_{max}/L \cdot mol^{-1} \cdot cm^{-1}$)): 320 (32821), *402sh (16125), 532 (4593); Effective magnetic moment (Evans NMR Method, [D₈]THF): $\mu_{eff} = 4.1(1) \ \mu_B$; Elemental analysis calcd. for

 $C_{48}H_{61}Cl_2Fe_2KN_4O_6 \ (Mw=981.64 \ g\cdot mol^{-1}): C \ 56.28, \ H \ 5.65, \ N \ 5.71, \ found: \ C \ 56.26, \ H \ 5.66, \ N \ 5.81.$

[K([18]crown-6)(thf)][Cp*Fe(C4py4)(ZnCl2)2] (4): A solution of ZnCl2 (0.031 g, 0.23 mmol) in THF

(10 mL) was added to a solution of K1 (0.094 g, 0.11 mmol) in
⁵⁰ THF (10 mL) at room temperature. The reaction mixture was stirred overnight. A purple microcrystalline solid precipitated after 15 min. Solid residue was isolated by filtration and dissolved in 20 mL THF/acetonitrile (10:1). Dark purple crystals of 4.THF formed during the diffusion of diethyl ether (70 mL) into this solution. ¹H
⁵⁵ NMR spectroscopy and elemental analysis confirmed the presence

of one THF solvate molecule per formula unit. Yield: 38 mg (28%); m.p.: >290 °C, decomposition to a black solid; UV/Vis (1,2-DFB): λ_{max} (nm, (ε_{max} /L·mol⁻¹·cm⁻¹)): 391 (23006), 405sh (12644), 527

(3802); ¹H NMR (400.13 MHz, CD₃CN): $\delta = 1.22$ (s, 15H, CH₃), 1.29 (m, 8H, THF), 3.57 (s, 24H, CH₂ of [18]crown-6), 3.62 (m, 8H, THF), 7.11 (t, J = 6.3 Hz, 4H, H₅), 7.20 (d, J = 8.3 Hz, 4H, H₃), ¹⁰⁰ 7.58 (t, J = 8.0 Hz, 4H, H₄), 8.53 (d, J = 4.9 Hz, 4H, H₆). ¹³C{¹H} NMR (400.13 MHz, CD₃CN): $\delta = 10.3$ (s, *C*H₃), 26.2 (s, THF), 62.2 (s, THF), 70.0 (s, *C*₄py₄), 70.9 (s, *C*H₂ of [18]crown-6), 84.0 (s, *C*₅(CH₃)₅), 118.5 (s, *CH*_{pyridine}), 127.1 (s, *CH*_{pyridine}), 138.4 (s, *CH*_{pyridine}), 149.2 (s, *CH*_{pyridine}), 165.9 (s, *ipso-C*_{pyridine}); Elemental analysis calcd. for C₄₈H₆₁Cl₄FeKN₄O₆Zn₂·OC₄H₈ (Mw = 1229.65): C 50.79, H 5.66, N 4.56, found: C 50.36, H 5.40, N 4.56.

105 Cyclic voltammetry:

Cyclic Voltammetry experiments were performed in an airtight single-compartment cell connected to a Metrohm Autolab PGSTAT101 potentiostat. The cell was equipped with a Pt disk working electrode that was polished with 0.25 µm diamond paste, a Pt coil counter eletrode and an Ag wire pseudoreference electrode. The solutions of the studied complexes were prepared under an argon atmosphere in dry acetonitrile. The supporting electrolyte, tetrabutylammonium hexafluorophosphate, was predried in vacuo at 110 °C. All redox potentials are reported versus the ferrocene / ferrocenium (Fc/Fc⁺) couple used as an internal standard.

X-ray crystallography:

Crystals were mounted in paratone oil and transferred to the cold N₂ gas stream of an Agilent ¹¹⁵ Technologies SuperNova diffractometer with Cu/Ka radiation ($\lambda = 1.54178$ Å). Semi-empirical multiscan absorption corrections were applied to the data. The structures were solved by direct methods using SHELXS or SIR. Least-square refinements were performed on F^{2} .^{S5,S6}

Table S1. Crystal and structure refinement data for K1 and 1–4						
Identification	K1	1	2	3	4	
code	131	1	2	5	-	
Empirical formula	C46H55FeKN4O6	$C_{34}H_{31}FeN_4 \\$	$C_{46}H_{55}Cl_2FeKN_4O_6Zn$	C46H55Cl2Fe2KN4O6	$C_{54}H_{71}Cl_4FeKN_4O_8Zn_2$	
Formula weight	854.89	551.49	991.16	981.64	1271.64	
Temperature/K	123(2) K	123(2)	123(2)	123(2)	123(2)	
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	
Space group	$P2_{1}/n$	$P2_{1}/n$	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/m$	
a/Å	10.8231(2)	13.6884(2)	16.4571(2)	16.4365(9)	13.8686(8)	
b/Å	21.9105(2)	14.1246(2)	16.5968(2)	16.5146(8)	14.3500(5)	
c/Å	20.3007(1)	15.0838(2)	17.0934(2)	17.1501(8)	16.1195(7)	
$\alpha/^{\circ}$	90.00	90.00	90.00	90.00	90.00	
$\beta/^{\circ}$	98.027(1)	113.276(1)	94.918(1)	95.109(5)	114.168(6)	
γ/°	90.00	90.00	90.00	90.00	90.00	
Volume/Å ³	4766.9(1)	2679(1)	4651.6(1)	4636.8(4)	2926.8(2)	
Z	4	4	4	4	2	
$ ho_{ m calc} m mg/mm^3$	1.191	1.367	1.415	1.406	1.443	
μ/mm^{-1}	3.699	4.743	5.405	7.295	5.669	
<i>F</i> (000)	1808.0	1156.0	2064.0	2048.0	1320.0	
C_{1}	$0.49 \times 0.3553 \times$	$0.335 \times 0.174 \times$	$0.232 \times 0.159 \times$	0.38 imes 0.143 imes	$0.191 \times 0.098 \times$	
Crystal size/mm	0.3271	0.102	0.078	0.039	0.026	
2Θ range for data	5.96 to 153.44°	7.4 to 147.36°	7.44 to 147.58°	7.44 to 148.36°	17.78 to 133.18°	
collection						
	$-13 \le h \le 13, -27$	$-16 \le h \le 15, -17$	$-20 \le h \le 20, -17$	$-20 \le h \le 19, -18$	$-14 \le h \le 16, -17$	
Index ranges	\leq k \leq 27, -25 \leq l	\le k \le 17, -18 \le l	\leq k \leq 20, -21 \leq l	\leq k \leq 20, -21 \leq l	\le k \le 17, -19 \le l	
	≤25	≤ 18	≤ 20	≤ 21	≤19	
Reflections	96550	14409	27914	19283	15832	
collected						
Independent	9864	5200	9169	9059	5331	
reflections	[R(int) = 0.0389]	[R(int) = 0.0238]	[R(int) = 0.0351]	[R(int) = 0.0384]	[R(int) = 0.0517]	
Data/restraints/pa	9864/18/569	5200/0/352	9169/0/551	9059/0/550	5331/25/366	
rameters						
Goodness-of-fit	1.042	1.043	1.041	1.027	1.018	
on F^2						
Final <i>R</i> indexes	$R_1 = 0.0756,$	$R_1 = 0.0341,$	$R_1 = 0.0336,$	$R_1 = 0.0419$,	$R_1 = 0.0654,$	
[I>2σ (I)]	$wR_2 = 0.2153$	$wR_2 = 0.0959$	$wR_2 = 0.0857$	$wR_2 = 0.1053$	$wR_2 = 0.1678$	
Final <i>R</i> indexes	$R_1 = 0.0771,$	$R_1 = 0.0359,$	$R_1 = 0.0407,$	$R_1 = 0.0533,$	$R_1 = 0.0883,$	
[all data]	$wR_2 = 0.2174$	$wR_2 = 0.0976$	$wR_2 = 0.0911$	$wR_2 = 0.1146$	$wR_2 = 0.1864$	
Largest diff.	1.05/-0.56	0.39/-0.39	0.61/-0.39	0.42/-0.48	1.91/-0.55	
peak/hole / e Å $^{-3}$						

2. UV-vis spectra of complexes K1 and 1–4 (Figure S1)

Figure S1: Plots of the UV-vis spectra recorded in THF (of K1 and 1–3) and 1,2-difluorobenzene (4).

3. Cyclic voltammograms of complexes K1 and 2–4 (Figures S2–S5)

125

Figure S2: The cyclic voltammograms of **K1** recorded in in CH₃CN/TBAH (a) and 1,2difluorobenzene (b) with different potential windows. The CV in CH₃CN/TBAH shows a reversible wave at $E_{1/2} = -1.57$ V and an irreversible redox wave at a peak potential of -0.07 V. The CV in 1,2difluorobenzene shows a reversible wave at $E_{1/2} = -1.69$ V and irreversible waves at peak potentials of -0.06 V and +0.47 V. Additional redox process are apparent at -1.1 to -1-4 V vs. Fc/Fc which are not observed when the measurement is performed in a smaller potential window. Conditions: Pt microdisk working electrode, acetonitrile/TBAH, T = 293 K, v = 100 mV s⁻¹; the potentials are referenced to the Fc/Fc⁺ couple.

135

Figure S3: The cyclic voltammogram of compound **2** recorded in CH₃CN/TBAH. Conditions: see Figure S2.

140

Figure S4: The cyclic voltammogram of compound 3 in CH₃CN/TBAH. Conditions: see Figure S2.

Figure S5: The cyclic voltammogram of compound 4 in CH₃CN/TBAH. Conditions: see Figure S2.

145

4. Crystallographic data for K1 and 1-4

4.1. Crystal and Refinement data of K1

Table S4.1.1 Crystal data and structure refinement for K1

Identification code	K1
Empirical formula	$C_{46}H_{55}FeKN_4O_6$
Formula weight	854.89
Temperature/K	123(2) K
Crystal system	monoclinic
Space group	$P2_{1}/n$
a/Å	10.8231(2)
b/Å	21.9105(2)
c/Å	20.3007(1)
$\alpha/^{\circ}$	90.00
$eta / ^{\circ}$	98.027(1)
γ/°	90.00
Volume/Å ³	4766.9(1)
Z	4
$\rho_{calc}mg/mm^3$	1.191
μ/mm^{-1}	3.699
F(000)	1808.0
Crystal size/mm ³	$0.49 \times 0.3553 \times 0.3271$
2Θ range for data collection	5.96 to 153.44°
Index ranges	$-13 \le h \le 13, -27 \le k \le 27, -25 \le l \le 25$
Reflections collected	96550
Independent reflections	9864 [R(int) = 0.0389]
Data/restraints/parameters	9864/18/569
Goodness-of-fit on F^2	1.042
Final <i>R</i> indexes $[I>2\sigma(I)]$	$R_1 = 0.0756, wR_2 = 0.2153$
Final R indexes [all data]	$R_1 = 0.0771, wR_2 = 0.2174$
Largest diff. peak/hole / e Å ⁻³	1.05/-0.56

Table S4.1.2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement Parameters (Å	$(10^{2} \times 10^{3})$
for K1. ${ m U}_{ m eq}$ is defined as 1/3 of of the trace of the orthogonalised ${ m U}_{ m IJ}$ tensor.	

Atom	x	у	z	U(eq)
C1	2301(3)	2914.8(13)	2851.3(13)	34.1(6)
C2	1022(3)	2734.3(13)	2955.5(15)	38.8(6)
C3	1510(3)	2501.2(13)	3623.9(15)	38.8(6)
C4	2788(3)	2685.4(13)	3532.3(14)	38.5(6)
C5	3259(5)	1246(2)	3009(2)	70.5(13)
C6	3336(4)	1543(2)	2409(3)	76.2(15)
C7	2128(5)	1554.3(16)	2034.1(18)	67.9(13)
C8	1318(4)	1255.6(17)	2418(2)	61.7(10)
C9	2020(5)	1067.3(16)	3007(2)	63.2(11)
C11	2835(3)	3254.9(13)	2344.9(15)	38.8(6)
C12	2086(3)	3428.4(15)	1763.5(16)	44.1(7)
C13	2589(4)	3778.6(18)	1308.4(18)	58.7(9)
C14	3817(4)	3959.4(16)	1415.9(19)	57.8(10)
C15	4528(4)	3764.6(18)	1992(2)	56.9(9)
C21	-219(3)	2715.0(14)	2598.5(16)	42.8(7)
C22	-1178(3)	2476(2)	2917.8(17)	56.8(9)
C23	-2368(4)	2441(2)	2584(2)	66.2(11)
C24	-2635(4)	2642(2)	1941(2)	60.6(9)
C25	-1650(4)	2864(2)	1639(2)	61.9(10)
C31	1060(3)	2359.7(14)	4252.2(15)	42.0(14)
C32	1390(3)	1861.2(13)	4662.7(17)	45.6(11)
C33	791(4)	1759.7(14)	5215.4(16)	54.8(13)
C34	-138(4)	2156.9(17)	5357.6(16)	48.9(19)
C35	-468(3)	2655.4(13)	4947.0(16)	43.0(11)
N3	131(3)	2756.8(11)	4394.3(13)	39.1(9)
C31A	774(2)	2364(2)	4143(2)	25(2)
C32A	-97(3)	1898(3)	4141(3)	54(3)
C33A	-670(3)	1792(3)	4702(3)	63(3)
C34A	-371(4)	2152(3)	5265(3)	58(5)
C35A	500(4)	2619(3)	5267(2)	58(3)
N3A	1072(3)	2724.9(17)	4706(2)	49(2)
C41	3963(2)	2608.4(13)	3957.3(11)	44.3(7)
C42	3922(2)	2361.8(13)	4574.8(11)	41.9(7)

This journal is © The Royal Society of Chemistry

[journal], [year], **[vol]**, 00–00 | **S11**

C43	5006(4)	2262(2)	4982.4(18)	57.1(9)
C44	6144(4)	2397(2)	4803.6(19)	63(1)
C45	6189(4)	2646(2)	4181.9(19)	67.1(11)
C101	10(5)	4481(2)	2473(2)	66.9(11)
C102	1229(5)	4804.1(18)	2623(2)	65.3(11)
C103	3142(4)	4771.2(19)	3322(2)	63.6(11)
C104	3892(4)	4386(2)	3833(2)	68.1(11)
C105	3958(5)	3995(3)	4922(3)	77.5(13)
C106	3139(5)	3666(3)	5332(3)	86.6(15)
C107	1494(6)	3838(3)	5958(3)	90.0(16)
C108	365(6)	4247(3)	5922(2)	90.4(17)
C109	-1445(5)	4495(3)	5232(3)	90.2(16)
C110	-2365(5)	4312(3)	4648(3)	72.5(16)
C210	-1960(20)	4006(7)	4730(5)	106(7)
C111	-2520(5)	4351(3)	3476(3)	72.2(15)
C211	-2280(30)	3932(12)	3530(5)	97(7)
C112	-1784(4)	4201(3)	2926(3)	78.7(13)
N1	4061(3)	3420.4(14)	2458.3(15)	53.5(7)
N2	-465(3)	2901.5(16)	1957.0(19)	61.0(8)
N42	5100(4)	2764.8(19)	3760.6(17)	67.5(9)
Fe1	2136.2(4)	2003.84(19)	2910.4(2)	33.47(15)
K1	781.3(8)	3919.7(4)	4081.4(4)	57.4(2)
01	-670(3)	4539.5(16)	3006.2(16)	74.7(9)
O2	1970(3)	4499.5(11)	3159.0(14)	59.1(7)
O3	3263(3)	4294.9(17)	4390.2(16)	74.8(8)
O4	2217(4)	4074.7(16)	5492.7(17)	84.5(10)
O5	-409(4)	4100.8(14)	5342.1(17)	76.3(9)
O6	-1753(3)	4237.8(18)	4096.6(19)	79.8(9)
C51	4328(8)	1122(3)	3540(4)	162(5)
C61	4451(7)	1836(3)	2160(5)	165(5)
C71	1760(10)	1821(3)	1351(2)	140(4)

Table	S4.1.3	Anisotropic	Displacement	Parameters	$(\text{\AA}^2 \times 10^3)$	for	K1.	The	Anisotropic	displacement	factor
expone	ent take	es the form: -2	$2\pi^{2}[h^{2}a^{*2}U_{11}+$.+2hka×b×U ₁	2						

Atom	U_{11}	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	42.7(15)	31.7(13)	28.4(13)	-2.1(10)	6.8(11)	-4.4(11)
C2	49.4(17)	29.4(13)	40.8(15)	0.2(11)	17.0(13)	1.7(11)
C3	50.7(17)	31.2(13)	36.4(14)	-2.3(11)	13.2(12)	-0.2(11)
C4	50.9(17)	35.5(14)	30.4(13)	-6.1(11)	10.2(12)	-3.4(12)
C5	76(3)	51(2)	77(3)	-28(2)	-15(2)	30(2)
C6	73(3)	51(2)	115(4)	-43(2)	51(3)	-12.2(19)
C7	132(4)	34.2(17)	38.1(17)	-9.2(13)	14(2)	6(2)
C8	55(2)	39.0(17)	87(3)	-29.3(18)	-2.2(19)	-0.8(15)
C9	114(4)	28.8(16)	52(2)	-3.9(14)	33(2)	6.4(17)
C11	52.8(17)	29.6(13)	36.9(14)	-5.3(11)	16.5(12)	0.1(12)
C12	53.8(18)	41.9(16)	38.3(15)	4.6(12)	12.6(13)	0.1(13)
C13	85(3)	53(2)	41.3(17)	8.0(15)	18.9(17)	9.8(19)
C14	85(3)	43.8(18)	53(2)	-1.8(15)	39.6(19)	-5.5(17)
C15	61(2)	55(2)	62(2)	-6.5(17)	30.0(18)	-14.3(16)
C21	48.1(17)	37.9(15)	44.3(16)	-7.0(12)	13.3(13)	2.5(12)
C22	47.4(19)	88(3)	35.1(16)	-8.0(16)	7.0(14)	-16.0(18)
C23	49(2)	101(3)	49(2)	-10(2)	7.1(16)	-15(2)
C24	51(2)	80(3)	50(2)	-9.6(18)	3.8(16)	-1.8(18)
C25	61(2)	63(2)	63(2)	11.4(19)	13.7(19)	11.3(18)
C31	53(3)	36(3)	35(2)	-4(2)	-2(2)	-5(2)
C32	56(3)	41(2)	41(2)	6.1(19)	9(2)	2(2)
C33	66(3)	51(3)	49(3)	12(2)	12(2)	1(2)
C34	56(3)	57(5)	36(3)	4(3)	14(3)	-8(3)
C35	47(3)	42(2)	41(2)	-6.8(19)	13(2)	-5.7(19)
N3	49(2)	33.8(18)	36.7(19)	-5.2(14)	13.2(17)	-4.3(15)
C31A	17(4)	30(5)	30(5)	4(4)	4(3)	5(3)
C32A	61(7)	49(6)	54(6)	-5(5)	14(5)	-4(5)
C33A	71(8)	53(7)	72(8)	7(6)	31(6)	-2(6)
C34A	74(10)	53(11)	54(8)	10(8)	33(8)	10(7)
C35A	87(9)	49(6)	42(6)	9(5)	29(6)	18(6)
N3A	78(7)	44(5)	25(4)	-4(3)	13(4)	-1(4)
C41	57.8(19)	42.6(16)	33.1(14)	-10.2(12)	8.3(13)	-0.1(13)
C42	37.3(15)	57.4(18)	30.6(13)	-3.1(12)	3.6(11)	6.4(13)

12.2(18)	2.6(14)	-3.2(16)	36.1(16)	77(3)	57(2)	C43
4(2)	4.3(16)	-11.1(19)	43.3(18)	91(3)	54(2)	C44
-7(2)	4.9(17)	-11.5(19)	42.8(19)	92(3)	66(3)	C45
6(2)	12(2)	-0.1(18)	56(2)	59(2)	86(3)	C101
2(2)	25(2)	5.4(16)	54(2)	46.1(19)	100(3)	C102
-15.7(18)	39(2)	-14.6(19)	77(3)	56(2)	66(2)	C103
-6.9(19)	28(2)	-20(2)	83(3)	75(3)	51(2)	C104
16(2)	0(2)	-21(2)	71(3)	89(3)	69(3)	C105
22(3)	2(3)	-1(3)	84(3)	85(3)	88(4)	C106
8(3)	22(3)	14(3)	72(3)	86(4)	114(4)	C107
16(3)	44(3)	-1(2)	54(2)	75(3)	150(5)	C108
8(3)	39(3)	-26(3)	83(3)	88(4)	106(4)	C109
14(3)	33(3)	4(3)	98(4)	72(4)	54(3)	C110
66(12)	33(12)	12(13)	113(15)	111(15)	99(14)	C210
-1(3)	4(3)	-22(3)	75(4)	81(4)	59(3)	C111
-49(12)	42(11)	-37(13)	115(14)	99(14)	87(13)	C211
-3(2)	1(2)	-23(3)	84(3)	88(3)	62(3)	C112
-10.8(13)	21.0(14)	-1.4(13)	52.5(16)	52.7(16)	59.0(18)	N1
7.2(14)	16.3(16)	20.1(16)	70(2)	59.7(19)	55.2(19)	N2
-11.7(19)	8.3(16)	-10.6(16)	47.4(17)	77(2)	78(2)	N42
0.46(16)	7.33(18)	-3.20(15)	30.5(2)	28.3(2)	42.3(3)	Fe1
-5.7(3)	23.6(4)	15.1(3)	66.9(5)	49.1(4)	60.5(5)	K1
-3.0(16)	13.9(14)	-26.5(16)	66.5(18)	87(2)	71.7(19)	01
-6.9(11)	29.8(13)	4.1(11)	65.4(16)	43.8(13)	73.8(17)	O2
10.5(16)	20.3(14)	-1.0(17)	68.9(18)	98(2)	61.0(17)	O3
14.3(19)	36.3(19)	5.3(15)	65.0(18)	67.9(19)	127(3)	O4
0.8(16)	27.4(18)	-9.0(14)	74(2)	55.5(16)	103(2)	05

150

Table S4.1.4 Bond Lengths for K1.

Atom Atom		Length/Å	Atom	Atom	Length/Å
C1	C2	1.483(4)	C35	N3	1.3900
C1	C4	1.496(4)	N3	K1	2.741(3)
C1	C11	1.453(4)	C31A	C32A	1.3900
C1	Fe1	2.009(3)	C31A	N3A	1.3900

C2	C3	1.477(4)	C31A	K1	3.410(5)
C2	C21	1.434(5)	C32A	C33A	1.3900
C2	Fe1	2.014(3)	C33A	C34A	1.3900
C2	K1	3.493(3)	C34A	C35A	1.3900
C3	C4	1.477(4)	C35A	N3A	1.3900
C3	C31	1.460(4)	N3A	K1	2.907(4)
C3	C31A	1.438(4)	C41	C42	1.3717
C3	Fe1	2.005(3)	C41	N42	1.389(4)
C3	K1	3.369(3)	C42	C43	1.356(4)
C4	C41	1.444(4)	C43	C44	1.364(6)
C4	Fe1	2.018(3)	C44	C45	1.382(6)
C5	C6	1.395(8)	C45	N42	1.381(6)
C5	C9	1.396(7)	C101	C102	1.491(7)
C5	Fe1	2.051(4)	C101	K1	3.479(4)
C5	C51	1.493(7)	C101	01	1.397(5)
C6	C7	1.418(7)	C102	O2	1.424(5)
C6	Fe1	2.028(4)	C103	C104	1.487(7)
C6	C61	1.514(7)	C103	O2	1.399(5)
C7	C8	1.413(7)	C104	O3	1.413(5)
C7	Fe1	2.032(3)	C105	C106	1.485(8)
C7	C71	1.506(6)	C105	O3	1.391(6)
C8	C9	1.386(6)	C106	K1	3.385(6)
C8	Fe1	2.055(3)	C106	O4	1.411(6)
C8	C81	1.518(7)	C107	C108	1.508(8)
C9	Fe1	2.067(4)	C107	O4	1.407(7)
C9	C91	1.508(6)	C108	O5	1.384(7)
C11	C12	1.388(5)	C109	C110	1.493(7)
C11	N1	1.364(4)	C109	C210	1.528(10)
C12	C13	1.371(5)	C109	O5	1.408(7)
C13	C14	1.375(6)	C110	06	1.388(7)
C14	C15	1.374(6)	C210	06	1.428(10)
C15	N1	1.362(5)	C111	C112	1.495(6)
C21	C22	1.401(5)	C111	06	1.431(7)
C21	N2	1.355(5)	C211	C112	1.524(10)
C22	C23	1.371(5)	C211	K1	3.35(3)

C23	C24	1.371(6)	C211	O6	1.385(9)
C24	C25	1.390(6)	C112	K1	3.430(5)
C25	N2	1.355(6)	C112	01	1.406(6)
C31	C32	1.3900	K1	01	2.849(4)
C31	N3	1.3900	K1	O2	2.729(3)
C31	K1	3.445(3)	K1	03	2.795(3)
C32	C33	1.3900	K1	O4	3.082(4)
C33	C34	1.3900	K1	05	3.048(3)

Table S4.1.5 Bond Angles for K1.

Atom	Atom	h Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	C1	C4	89.6(2)	C111	C112	K1	89.7(3)
C2	C1	Fe1	68.54(15)	C211	C112	K1	74.0(11)
C4	C1	Fe1	68.51(16)	01	C112	C111	109.6(4)
C11	C1	C2	135.1(3)	01	C112	C211	120.4(7)
C11	C1	C4	134.6(3)	01	C112	K1	54.3(2)
C11	C1	Fe1	126.8(2)	C15	N1	C11	118.5(3)
C1	C2	Fe1	68.19(16)	C25	N2	C21	119.1(3)
C1	C2	K1	92.94(17)	C45	N42	C41	119.3(3)
C3	C2	C1	90.1(2)	C1	Fe1	C2	43.27(12)
C3	C2	Fe1	68.12(16)	C1	Fe1	C4	43.62(11)
C3	C2	K1	72.89(15)	C1	Fe1	C5	138.95(18)
C21	C2	C1	139.7(3)	C1	Fe1	C6	113.36(16)
C21	C2	C3	130.1(3)	C1	Fe1	C7	114.76(14)
C21	C2	Fe1	118.6(2)	C1	Fe1	C8	143.06(16)
C21	C2	K1	101.68(18)	C1	Fe1	C9	177.62(16)
Fe1	C2	K1	136.09(14)	C2	Fe1	C4	62.78(13)
C2	C3	C4	90.6(2)	C2	Fe1	C5	171.68(17)
C2	C3	Fe1	68.76(16)	C2	Fe1	C6	148.0(2)
C2	C3	K1	82.35(16)	C2	Fe1	C7	119.71(16)
C4	C3	Fe1	68.93(16)	C2	Fe1	C8	115.83(15)
C4	C3	K1	92.40(17)	C2	Fe1	C9	137.73(16)
C31	C3	C2	139.1(3)	C3	Fe1	C1	62.93(12)
C31	C3	C4	126.9(3)	C3	Fe1	C2	43.12(12)
C31	C3	Fe1	134.7(2)	C3	Fe1	C4	43.08(12)

C31	C3	K1	80.55(16)	C3	Fe1	C5	128.68(17)
C31A	C3	C2	125.5(3)	C3	Fe1	C6	159.79(19)
C31A	C3	C4	140.6(3)	C3	Fe1	C7	159.27(19)
C31A	C3	C31	14.06(19)	C3	Fe1	C8	128.21(16)
C31A	C3	Fe1	133.9(3)	C3	Fe1	C9	116.11(14)
C31A	C3	K1	79.4(2)	C4	Fe1	C5	112.81(15)
Fe1	C3	K1	144.73(13)	C4	Fe1	C6	119.38(16)
C1	C4	Fe1	67.87(15)	C4	Fe1	C7	149.85(17)
C3	C4	C1	89.6(2)	C4	Fe1	C8	169.63(16)
C3	C4	Fe1	67.99(16)	C4	Fe1	C9	134.11(15)
C41	C4	C1	139.3(3)	C5	Fe1	C8	67.09(17)
C41	C4	C3	130.9(3)	C5	Fe1	C9	39.6(2)
C41	C4	Fe1	119.3(2)	C6	Fe1	C5	40.0(2)
C6	C5	C9	107.6(4)	C6	Fe1	C7	40.9(2)
C6	C5	Fe1	69.1(2)	C6	Fe1	C8	67.74(17)
C6	C5	C51	125.6(7)	C6	Fe1	C9	66.71(18)
C9	C5	Fe1	70.8(2)	C7	Fe1	C5	67.86(18)
C9	C5	C51	126.8(7)	C7	Fe1	C8	40.44(19)
C51	C5	Fe1	127.3(3)	C7	Fe1	C9	66.97(15)
C5	C6	C7	108.3(4)	C8	Fe1	C9	39.31(18)
C5	C6	Fe1	70.9(2)	C3	K1	C31A	24.49(8)
C5	C6	C61	129.5(7)	C3	K1	C106	82.79(11)
C7	C6	Fe1	69.7(2)	N3	K1	C3	44.26(8)
C7	C6	C61	122.1(7)	N3	K1	C31A	20.07(8)
C61	C6	Fe1	123.5(3)	N3	K1	N3A	22.71(9)
C6	C7	Fe1	69.4(2)	N3	K1	C106	82.22(13)
C6	C7	C71	127.3(6)	N3	K1	C211	79.1(4)
C8	C7	C6	107.0(4)	N3	K1	01	119.26(10)
C8	C7	Fe1	70.6(2)	N3	K1	03	119.41(10)
C8	C7	C71	125.7(6)	N3	K1	O4	89.96(9)
C71	C7	Fe1	125.9(3)	N3	K1	05	76.95(8)
C7	C8	Fe1	68.9(2)	N3	K1	06	86.90(10)
C7	C8	C81	127.9(5)	N3A	K1	C3	43.45(9)
C9	C8	C7	107.8(4)	N3A	K1	C31A	23.8
C9	C8	Fe1	70.8(2)	N3A	K1	C106	60.04(14)

_								
	C9	C8	C81	124.3(5)	N3A	K1	C211	101.2(4)
	C81	C8	Fe1	127.6(3)	N3A	K1	O4	71.56(11)
	C5	C9	Fe1	69.6(2)	N3A	K1	05	77.51(9)
	C5	C9	C91	123.0(6)	C106	K1	C31A	79.29(12)
	C8	C9	C5	109.3(4)	C211	K1	C3	100.0(5)
	C8	C9	Fe1	69.9(2)	C211	K1	C31A	90.7(5)
	C8	C9	C91	127.7(6)	C211	K1	C106	149.3(2)
	C91	C9	Fe1	129.2(3)	01	K1	C3	110.72(9)
	C12	C11	C1	120.0(3)	01	K1	C31A	120.03(9)
	N1	C11	C1	119.4(3)	01	K1	N3A	141.08(11)
	N1	C11	C12	120.6(3)	01	K1	C106	158.44(13)
	C13	C12	C11	119.1(3)	01	K1	C211	47.6(3)
	C12	C13	C14	121.4(4)	01	K1	O4	144.32(9)
	C15	C14	C13	117.3(3)	01	K1	05	109.19(10)
	N1	C15	C14	123.1(4)	O2	K1	C3	95.13(8)
	C22	C21	C2	118.6(3)	O2	K1	N3	138.80(8)
	N2	C21	C2	121.4(3)	O2	K1	C31A	119.61(9)
	N2	C21	C22	119.9(3)	O2	K1	N3A	133.30(8)
	C23	C22	C21	119.9(4)	O2	K1	C106	102.29(13)
	C24	C23	C22	120.7(4)	O2	K1	C211	107.8(2)
	C23	C24	C25	117.4(4)	02	K1	01	60.97(9)
	N2	C25	C24	123.0(4)	O2	K1	03	59.12(10)
	C3	C31	K1	74.73(16)	O2	K1	O4	111.21(10)
	C32	C31	C3	127.0(2)	02	K1	05	144.16(9)
	C32	C31	N3	120.0	02	K1	06	116.27(11)
	C32	C31	K1	148.40(14)	03	K1	C3	94.51(9)
	N3	C31	C3	112.8(2)	03	K1	C31A	107.03(9)
	N3	C31	K1	49.00(11)	03	K1	N3A	97.17(10)
	C33	C32	C31	120.0	03	K1	C106	43.93(13)
	C32	C33	C34	120.0	03	K1	C211	161.5(4)
	C33	C34	C35	120.0	03	K1	01	116.19(10)
	N3	C35	C34	120.0	03	K1	O4	54.20(10)
	C31	N3	K1	108.50(14)	03	K1	05	106.20(10)
	C35	N3	C31	120.0	03	K1	06	145.72(11)
	C35	N3	K1	119.96(15)	O4	K1	C3	104.53(9)

C3	C31A	K1	76.2(2)	O4	K1	C31A	94.56(9)
C32A	C31A	C3	126.6(2)	O4	K1	C106	24.64(11)
C32A	C31A	N3A	120.0	O4	K1	C211	131.1(2)
C32A	C31A	K1	137.71(9)	05	K1	C3	119.62(8)
N3A	C31A	C3	113.3(2)	05	K1	C31A	95.50(9)
N3A	C31A	K1	57.38(17)	05	K1	C106	75.77(12)
C31A	C32A	C33A	120.0	05	K1	C211	76.4(2)
C34A	C33A	C32A	120.0	05	K1	O4	54.72(10)
C35A	C34A	C33A	120.0	06	K1	C3	119.60(10)
C34A	C35A	N3A	120.0	06	K1	C31A	103.77(9)
C31A	N3A	K1	98.9(2)	06	K1	N3A	105.23(10)
C35A	N3A	C31A	120.0	06	K1	C106	131.41(13)
C35A	N3A	K1	118.33(14)	06	K1	C211	24.1(3)
C42	C41	C4	116.99(16)	06	K1	01	57.34(10)
C42	C41	N42	120.2(2)	06	K1	O4	109.02(11)
N42	C41	C4	122.8(3)	06	K1	05	55.64(11)
C43	C42	C41	119.0(2)	C101	01	C112	113.5(3)
C42	C43	C44	122.7(4)	C101	01	K1	104.8(3)
C43	C44	C45	118.5(4)	C112	01	K1	102.1(3)
N42	C45	C44	120.3(4)	C102	O2	K1	118.3(2)
C102	C101	K1	83.5(2)	C103	O2	C102	112.1(3)
01	C101	C102	110.2(4)	C103	O2	K1	122.3(2)
01	C101	K1	52.3(2)	C104	03	K1	114.6(3)
02	C102	C101	108.7(3)	C105	03	C104	114.8(4)
02	C103	C104	108.2(3)	C105	03	K1	115.7(3)
03	C104	C103	111.2(3)	C106	O4	K1	89.8(3)
03	C105	C106	111.4(4)	C107	O4	C106	113.5(4)
C105	C106	K1	86.9(3)	C107	04	K1	109.1(4)
O4	C106	C105	108.5(5)	C108	05	C109	111.6(4)
O4	C106	K1	65.6(3)	C108	05	K1	117.9(3)
O4	C107	C108	105.8(4)	C109	05	K1	111.5(3)
05	C108	C107	107.1(4)	C110	06	C210	33.3(9)
C110	C109	C210	31.0(8)	C110	06	C111	114.0(4)
O5	C109	C110	112.9(4)	C110	06	K1	127.6(3)
O5	C109	C210	83.2(10)	C210	06	C111	135.4(10)

O6	C110 C109	109.3(4)	C210	O6	K 1	101.2(11)
O6	C210 C109	105.3(8)	C111	O6	K1	118.4(3)
O6	C111 C112	108.4(4)	C211	O6	C110	122.6(9)
C112	C211 K1	80.0(10)	C211	O6	C210	118.6(8)
O6	C211 C112	109.2(8)	C211	O6	C111	39.7(13)
O6	C211 K1	56.6(11)	C211	O6	K1	99.3(14)
C111	C112 C211	36.9(12)				
C2	C1 C4	89.6(2)	C111	C112	K1	89.7(3)

4.2. Crystal and Refinement data of 1

Table S4.2.1 Crystal data and structure refinement for 1

Identification code	1
Empirical formula	$C_{34}H_{31}FeN_4$
Formula weight	551.49
Temperature/K	123(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	13.6884(2)
b/Å	14.1246(2)
c/Å	15.0838(2)
$\alpha /^{\circ}$	90.00
$eta/^{\circ}$	113.276(1)
$\gamma/^{\circ}$	90.00
Volume/Å ³	2679(1)
Z	4
$\rho_{calc} mg/mm^3$	1.367
μ/mm^{-1}	4.743
<i>F</i> (000)	1156.0
Crystal size/mm ³	$0.335 \times 0.174 \times 0.102$
2Θ range for data collection	7.4 to 147.36°
Index ranges	$-16 \le h \le 15, -17 \le k \le 17, -18 \le l \le 18$
Reflections collected	14409
Independent reflections	5200[R(int) = 0.0238]
Data/restraints/parameters	5200/0/352
Goodness-of-fit on F^2	1.043
Final <i>R</i> indexes [I> 2σ (I)]	$R_1 = 0.0341, wR_2 = 0.0959$
Final <i>R</i> indexes [all data]	$R_1 = 0.0359, wR_2 = 0.0976$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.39

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement Parameters (Å ² ×1	0 ³) for 1.
U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.	

Atom	x	У	Z	U(eq)
C1	1513.4(13)	1746.8(12)	3300.3(11)	19.6(3)
C2	821.3(14)	2500.0(12)	3310.3(13)	22.0(4)
C3	1333.6(16)	3373.2(13)	3274.0(12)	27.8(4)
C4	2332.8(15)	3152.3(14)	3232.8(12)	28.9(4)
C5	2444.9(14)	2152.2(14)	3255.0(12)	23.8(4)
C6	1291.7(16)	710.8(13)	3310.6(14)	30.2(4)
C7	-273.6(15)	2397.6(16)	3294.3(15)	34.2(5)
C8	858(2)	4344.3(16)	3205.2(15)	46.2(6)
C9	3107(2)	3851.8(19)	3138.3(16)	51.9(7)
C10	3372.3(15)	1606.0(18)	3235.1(14)	39.1(5)
C11	3563.1(13)	2712.3(12)	5745.6(12)	18.1(3)
C12	2948.9(12)	1854.5(12)	5746.9(11)	17.7(3)
C13	2086.1(14)	2451.4(11)	5782.0(12)	18.1(3)
C14	2697.5(12)	3308.2(12)	5781.3(11)	18.3(3)
C111	4609.3(12)	2902.5(12)	5732.8(11)	18.7(3)
C115	5710.7(14)	3957.8(14)	5412.6(14)	28.5(4)
C114	6516.3(13)	3298.8(14)	5616.7(13)	27.6(4)
C113	6351.0(14)	2408.5(13)	5910.2(14)	25.8(4)
C121	3173.5(12)	837.4(12)	5869.0(11)	19.0(3)
C125	4033.7(14)	-457.0(13)	5593.1(13)	28.2(4)
C124	3645.4(15)	-1052.4(14)	6102.3(15)	32.8(4)
C123	2997.5(15)	-671.8(14)	6520.2(15)	32.0(4)
C131	1066.8(13)	2230.1(13)	5840.7(12)	20.6(3)
C135	-287.8(14)	1151.2(15)	5531.9(14)	32.1(4)
C134	-835.8(15)	1736.5(17)	5905.4(16)	39.0(5)
C133	-400.1(18)	2604.0(16)	6264.4(18)	37.8(5)
C141	2567.2(13)	4315.7(12)	5931.4(12)	20.2(3)
C145	1434.8(15)	5576.1(14)	5713.8(14)	29.5(4)
C144	2261.7(16)	6191.9(14)	6200.6(15)	33.0(4)
C143	3285.0(16)	5834.3(14)	6579.5(15)	32.0(4)
N1	4774.0(11)	3780.3(11)	5469.0(11)	25.0(3)
C112	5387.9(13)	2200.3(13)	5965.4(12)	22.2(3)
N2	3804.6(11)	468.0(11)	5461.2(10)	23.2(3)

This journal is © The Royal Society of Chemistry [year]

C122	2762.0(13)	283.7(13)	6408.9(12)	24.7(4)
N3	643.7(11)	1378.4(11)	5492.0(11)	24.6(3)
C132	565.7(14)	2864.2(15)	6233.0(14)	27.8(4)
N4	1562.6(11)	4658.5(11)	5575.0(11)	25.3(3)
C142	3441.2(14)	4888.6(13)	6441.7(13)	25.9(4)
Fe1	2252.93(18)	2601.91(18)	4529.00(17)	16.33(9)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for 1. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+...+2hka\times b\times U_{12}]$

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	20.1(7)	21.5(9)	16.4(7)	-1.4(6)	6.4(6)	0.7(6)
C2	19.0(8)	27.6(9)	16.3(8)	-1.3(6)	3.6(7)	4.4(6)
C3	39.3(10)	21.7(9)	17.1(8)	2.3(7)	5.6(7)	4.6(8)
C4	35.3(10)	32.7(10)	17.4(8)	1.8(7)	9.1(7)	-9.6(8)
C5	20.5(8)	35.3(10)	16.6(8)	-0.5(7)	8.3(6)	-0.2(7)
C6	36.5(10)	22.5(9)	29.5(9)	-4.1(7)	10.7(8)	-1.7(8)
C7	19.2(9)	56.8(14)	23.6(10)	-4.7(8)	5.4(7)	9.3(8)
C8	75.0(16)	26.3(11)	26.7(10)	4.5(8)	8.9(10)	15.6(11)
C9	68.8(16)	55.5(15)	30.6(11)	0.3(10)	18.8(11)	-35.3(13)
C10	26.2(9)	66.7(16)	29.2(10)	1.7(10)	16.1(8)	10.5(10)
C11	15.3(8)	19.7(8)	17.5(8)	0.0(6)	4.8(6)	2.3(6)
C12	14.9(7)	21.5(8)	16.3(7)	0.8(6)	5.8(6)	1.6(6)
C13	17.0(8)	20.7(8)	17.0(8)	0.1(6)	7.1(6)	1.6(6)
C14	15.4(7)	21.4(8)	17.5(7)	-1.5(6)	6.0(6)	0.8(6)
C111	16.9(7)	20.7(8)	18.2(7)	-2.4(6)	6.7(6)	-0.4(6)
C115	23.8(8)	26.6(9)	37.7(10)	1.6(8)	14.9(7)	-3.4(7)
C114	17.7(8)	36.2(11)	30.5(9)	-2.0(8)	11.5(7)	-2.8(7)
C113	17.9(8)	32.4(10)	26.7(9)	-0.7(7)	8.5(7)	5.5(7)
C121	15.5(7)	19.9(8)	19.1(7)	0.1(6)	4.0(6)	0.6(6)
C125	27.1(9)	22.8(9)	33.4(9)	-2.3(7)	10.5(7)	5.7(7)
C124	32.4(10)	19.9(9)	40.7(11)	3.7(8)	8.5(8)	5.1(8)
C123	29.7(9)	27.1(10)	37.7(10)	9.8(8)	11.7(8)	-0.9(8)
C131	15.8(8)	26.7(9)	19.7(8)	5.1(7)	7.4(6)	2.5(6)
C135	22.5(8)	35.6(11)	38.8(10)	4.5(8)	12.7(8)	-5.1(8)
C134	23.6(9)	47.9(13)	51.8(12)	8.7(10)	21.6(9)	0.2(9)
C133	31.2(11)	46.5(13)	45.6(12)	5.6(9)	25.7(10)	11.8(9)

This journal is © The Royal Society of Chemistry

[journal], [year], [vol], 00–00 | S23

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013 CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS

C141	20.7(8)	20.7(8)	20.5(7)	0.0(6)	9.7(6)	2.5(6)
C145	29.4(9)	26.3(10)	35.8(10)	1.4(8)	15.9(8)	9.9(7)
C144	43.5(11)	19.0(9)	46.7(11)	-1.8(8)	28.7(9)	3.7(8)
C143	34.2(10)	25.6(10)	43.0(11)	-10.9(8)	22.4(9)	-7.9(8)
N1	20.5(7)	22.7(8)	34.0(8)	1.0(6)	13.0(6)	-0.4(6)
C112	19.0(8)	23.4(9)	23.1(8)	0.2(7)	7.2(6)	2.2(7)
N2	21.6(7)	22.4(8)	25.9(7)	-0.5(6)	9.7(6)	2.8(6)
C122	20.8(8)	26.3(9)	26.8(8)	4.7(7)	9.1(7)	2.4(7)
N3	18.6(7)	27.4(8)	28.2(7)	2.8(6)	9.8(6)	-1.4(6)
C132	25.6(9)	30.6(10)	31.0(9)	0.9(8)	15.2(7)	4.3(8)
N4	21.8(7)	25.0(8)	28.1(7)	-0.3(6)	8.9(6)	5.1(6)
C142	22.3(8)	25.0(9)	32.7(9)	-4.6(7)	13.4(7)	0.7(7)
Fe1	15.30(14)	16.60(15)	16.90(15)	0.41(9)	6.16(11)	0.52(9)

Table 4 Bond Lengths for 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	C2	1.429(2)	C14	Fe1	2.0063(16)
C1	C5	1.424(2)	C111	N1	1.348(2)
C1	C6	1.496(2)	C111	C112	1.395(2)
C1	Fe1	2.1061(16)	C115	C114	1.382(3)
C2	C3	1.431(3)	C115	N1	1.342(2)
C2	C7	1.496(3)	C114	C113	1.381(3)
C2	Fe1	2.0959(18)	C113	C112	1.385(3)
C3	C4	1.428(3)	C121	N2	1.348(2)
C3	C8	1.504(3)	C121	C122	1.398(2)
C3	Fe1	2.1146(17)	C125	C124	1.379(3)
C4	C5	1.420(3)	C125	N2	1.340(2)
C4	C9	1.496(3)	C124	C123	1.384(3)
C4	Fe1	2.1466(18)	C123	C122	1.382(3)
C5	C10	1.496(3)	C131	N3	1.349(2)
C5	Fe1	2.1365(17)	C131	C132	1.394(3)
C11	C12	1.475(2)	C135	C134	1.378(3)
C11	C14	1.472(2)	C135	N3	1.339(2)
C11	C111	1.465(2)	C134	C133	1.377(3)
C11	Fe1	2.0018(16)	C133	C132	1.391(3)

C12	C13	1.469(2)	C141	N4	1.353(2)
C12	C121	1.465(2)	C141	C142	1.397(2)
C12	Fe1	2.0034(16)	C145	C144	1.386(3)
C13	C14	1.472(2)	C145	N4	1.335(2)
C13	C131	1.466(2)	C144	C143	1.383(3)
C13	Fe1	2.0027(17)	C143	C142	1.381(3)
C14	C141	1.463(2)			

Table 5 Bond Angles for 1.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	C1	C6	126.18(16)	N2	C121	C122	121.84(16)
C2	C1	Fe1	69.74(10)	C122	C121	C12	120.58(15)
C5	C1	C2	108.13(16)	N2	C125	C124	123.93(17)
C5	C1	C6	125.68(16)	C125	C124	C123	118.30(18)
C5	C1	Fe1	71.54(10)	C122	C123	C124	119.00(18)
C6	C1	Fe1	125.51(12)	N3	C131	C13	116.03(15)
C1	C2	C3	107.73(16)	N3	C131	C132	122.08(16)
C1	C2	C7	126.30(17)	C132	C131	C13	121.89(17)
C1	C2	Fe1	70.51(10)	N3	C135	C134	123.8(2)
C3	C2	C7	125.85(17)	C133	C134	C135	118.28(18)
C3	C2	Fe1	70.84(10)	C134	C133	C132	119.45(19)
C7	C2	Fe1	127.17(13)	N4	C141	C14	116.98(15)
C2	C3	C8	125.72(19)	N4	C141	C142	121.77(16)
C2	C3	Fe1	69.44(10)	C142	C141	C14	121.24(15)
C4	C3	C2	107.80(16)	N4	C145	C144	124.20(17)
C4	C3	C8	126.3(2)	C143	C144	C145	118.15(17)
C4	C3	Fe1	71.64(10)	C142	C143	C144	118.87(18)
C8	C3	Fe1	128.30(13)	C115	N1	C111	117.78(15)
C3	C4	C9	125.9(2)	C113	C112	C111	118.98(17)
C3	C4	Fe1	69.21(10)	C125	N2	C121	117.66(15)
C5	C4	C3	108.23(15)	C123	C122	C121	119.25(17)
C5	C4	C9	125.8(2)	C135	N3	C131	117.78(16)
C5	C4	Fe1	70.25(9)	C133	C132	C131	118.59(19)
C9	C4	Fe1	128.23(13)	C145	N4	C141	117.43(16)
C1	C5	C10	125.22(19)	C143	C142	C141	119.56(17)

 C1	C5	Fe1	69.24(9)	C1	Fe1	C3	66.34(7)
C4	C5	C1	108.11(15)	C1	Fe1	C4	65.54(7)
C4	C5	C10	126.67(18)	C1	Fe1	C5	39.21(7)
C4	C5	Fe1	71.03(10)	C2	Fe1	C1	39.75(6)
C10	C5	Fe1	125.34(12)	C2	Fe1	C3	39.72(7)
C12	C11	Fe1	68.45(9)	C2	Fe1	C4	65.96(7)
C14	C11	C12	90.13(13)	C2	Fe1	C5	66.13(7)
C14	C11	Fe1	68.62(9)	C3	Fe1	C4	39.15(8)
C111	C11	C12	135.35(15)	C3	Fe1	C5	65.74(7)
C111	C11	C14	134.52(16)	C5	Fe1	C4	38.72(8)
C111	C11	Fe1	121.92(12)	C11	Fe1	C1	142.78(7)
C11	C12	Fe1	68.33(9)	C11	Fe1	C2	176.19(7)
C13	C12	C11	89.74(13)	C11	Fe1	C3	141.37(7)
C13	C12	Fe1	68.46(9)	C11	Fe1	C4	117.20(7)
C121	C12	C11	135.56(14)	C11	Fe1	C5	117.62(7)
C121	C12	C13	133.62(15)	C11	Fe1	C12	43.22(7)
C121	C12	Fe1	129.20(12)	C11	Fe1	C13	62.49(7)
C12	C13	C14	90.36(13)	C11	Fe1	C14	43.08(6)
C12	C13	Fe1	68.51(9)	C12	Fe1	C1	113.19(7)
C14	C13	Fe1	68.59(9)	C12	Fe1	C2	135.15(7)
C131	C13	C12	132.66(15)	C12	Fe1	C3	172.53(7)
C131	C13	C14	136.92(15)	C12	Fe1	C4	148.11(7)
C131	C13	Fe1	123.08(12)	C12	Fe1	C5	119.02(7)
C11	C14	C13	89.77(13)	C12	Fe1	C14	62.70(7)
C11	C14	Fe1	68.30(9)	C13	Fe1	C1	125.11(7)
C13	C14	Fe1	68.33(9)	C13	Fe1	C2	113.87(7)
C141	C14	C11	135.34(15)	C13	Fe1	C3	130.55(7)
C141	C14	C13	134.08(15)	C13	Fe1	C4	164.55(7)
C141	C14	Fe1	128.26(12)	C13	Fe1	C5	156.60(7)
N1	C111	C11	116.80(14)	C13	Fe1	C12	43.02(6)
N1	C111	C112	121.85(15)	C13	Fe1	C14	43.07(7)
C112	C111	C11	121.33(16)	C14	Fe1	C1	167.21(7)
N1	C115	C114	123.95(18)	C14	Fe1	C2	133.67(7)
C113	C114	C115	117.87(16)	C14	Fe1	C3	116.01(7)
C114	C113	C112	119.54(17)	C14	Fe1	C4	124.88(7)

N2	C121	C12	117.56(15)	C14	Fe1	C5	153.55(7)

4.3. Crystal and Refinement data of 2

Table S4.3.1 Crystal data and structure refinement for 2

Identification code	2
Empirical formula	$C_{46}H_{55}Cl_2FeKN_4O_6Zn$
Formula weight	991.16
Temperature/K	123(2)
Crystal system	monoclinic
Space group	$P2_{1}/c$
a/Å	16.4571(2)
b/Å	16.5968(2)
c/Å	17.0934(2)
$\alpha/^{\circ}$	90.00
$eta /^{\circ}$	94.918(1)
γ/°	90.00
Volume/Å ³	4651.6(1)
Z	4
$\rho_{calc}mg/mm^3$	1.415
μ/mm^{-1}	5.405
<i>F</i> (000)	2064.0
Crystal size/mm ³	$0.232\times0.159\times0.078$
2Θ range for data collection	7.44 to 147.58°
Index ranges	$-20 \le h \le 20, -17 \le k \le 20, -21 \le l \le 20$
Reflections collected	27914
Independent reflections	9169 [R(int) = 0.0351]
Data/restraints/parameters	9169/0/551
Goodness-of-fit on F^2	1.041
Final <i>R</i> indexes $[I>2\sigma(I)]$	$R_1 = 0.0336, wR_2 = 0.0857$
Final R indexes [all data]	$R_1 = 0.0407, wR_2 = 0.0911$
Largest diff. peak/hole / e Å ⁻³	0.61/-0.39

Table S4.3.2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement Parameters (Å ² ×10 ⁴)	0 ³)
for 2. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.	

Atom	x	У	Z	U(eq)
C1	-4941.0(13)	-312.0(15)	6888.3(14)	32.1(5)
C2	-4497.6(14)	-777.1(14)	6362.4(14)	32.6(5)
C3	-4150.6(13)	-228.7(14)	5834.8(13)	29.7(5)
C4	-4379.4(12)	562.9(13)	6034.3(13)	27.5(4)
C5	-4864.0(12)	522.8(14)	6687.8(14)	29.3(5)
C6	-5454.0(14)	-646.3(17)	7492.7(18)	46.0(7)
C7	-4453.2(17)	-1684.5(15)	6342.8(17)	44.8(6)
C8	-3641.6(16)	-438.4(16)	5173.7(15)	41.1(6)
C9	-4174.1(15)	1310.5(15)	5604.0(14)	36.3(5)
C10	-5250.3(14)	1218.5(16)	7067.6(16)	39.9(6)
C11	-2542.4(11)	-242.0(12)	7281.8(12)	20.7(4)
C12	-2723.9(11)	619.7(12)	7429.6(12)	20.2(4)
C13	-3258.7(11)	377.2(12)	8041.5(12)	21.9(4)
C14	-3070.7(12)	-478.1(12)	7897.5(12)	21.1(4)
C15	530.5(19)	-2224.9(16)	6829.8(17)	50.2(7)
C16	-147.6(18)	-2201.3(18)	7351.5(19)	52.1(7)
C17	-461.5(15)	-1862.9(17)	8622(2)	50.3(7)
C18	-83.4(17)	-1772.6(15)	9439.9(18)	45.9(7)
C19	936.5(19)	-1052.8(17)	10193.7(15)	46.8(7)
C20	1351.3(19)	-255.4(17)	10258.1(15)	45.5(6)
C21	2250.5(19)	591.9(19)	9649.2(19)	55.7(8)
C22	2752.1(17)	666.8(19)	8964(2)	53.7(8)
C23	2667.7(19)	839.1(19)	7592(2)	58.5(8)
C24	2156(2)	620.0(18)	6861(2)	57.2(8)
C25	1645(2)	-506(2)	6128.7(17)	58.8(8)
C26	1438(2)	-1373(2)	6213.2(17)	57.6(8)
C111	-2134.8(11)	-716.6(12)	6729.4(12)	21.0(4)
C112	-2321.6(13)	-1542.3(13)	6610.3(13)	26.7(4)
C113	-1958.9(13)	-1973.5(13)	6052.5(13)	28.7(4)
C114	-1399.4(13)	-1598.6(14)	5600.1(13)	29.8(5)
C115	-1210.9(13)	-808.8(13)	5756.3(12)	27.1(4)
C121	-2584.3(11)	1395.8(12)	7091.3(11)	20.2(4)
C122	-3090.9(12)	2058.2(13)	7234.3(13)	25.6(4)

This journal is © The Royal Society of Chemistry

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013 CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS

C123	-2960.6(13)	2794.1(13)	6897.6(13)	28.1(4)
C124	-2340.8(13)	2883.3(13)	6403.3(13)	28.4(4)
C125	-1854.5(12)	2226.6(13)	6291.0(13)	25.2(4)
C131	-3547.0(12)	807.2(12)	8707.6(12)	24.1(4)
C133	-3396.2(15)	1890.3(14)	9637.2(14)	35.0(5)
C134	-4064.8(15)	1599.3(15)	9982.8(15)	38.2(5)
C135	-4445.1(16)	923.8(16)	9663.8(17)	42.7(6)
C141	-3143.4(12)	-1198.6(12)	8376.3(12)	21.9(4)
C142	-3813.9(13)	-1312.0(13)	8811.0(13)	28.0(4)
C143	-3836.6(14)	-1975.8(14)	9289.3(14)	34.1(5)
C144	-3203.5(15)	-2527.0(14)	9323.4(15)	35.7(5)
C145	-2566.2(14)	-2380.7(13)	8873.5(15)	34.1(5)
N1	-1558.1(10)	-374.5(10)	6311.1(10)	22.0(3)
N2	-1956.8(10)	1502.6(10)	6636(1)	21.0(3)
N3	-4244(5)	546(3)	8985(4)	27.8(7)
C132	-3157(8)	1485(6)	9034(10)	27.8(7)
C137	-4140(10)	491(6)	9144(10)	27.8(7)
N3A	-3077(13)	1494(10)	8950(18)	27.8(7)
N4	-2519.9(11)	-1733.6(11)	8401.7(11)	28.1(4)
01	827.6(13)	-1429.2(11)	6748.5(10)	46.9(5)
O2	169.5(9)	-1965.8(10)	8115(1)	36.6(4)
03	421.1(11)	-1076.3(10)	9482.9(10)	37.8(4)
O4	1837.8(11)	-160.7(10)	9614.1(10)	38.5(4)
05	2237.5(10)	669.6(11)	8264.4(12)	44.8(4)
O6	2024.5(12)	-225.6(12)	6861.7(11)	48.4(5)
Cl1	-189.0(3)	1058.2(3)	5743.0(3)	34.39(13)
Cl2	-430.5(3)	589.0(3)	7856.2(3)	33.27(12)
K1	1030.5(3)	-521.2(3)	8109.2(3)	29.01(11)
Fe1	-3741.41(18)	11.86(18)	6999.10(19)	20.44(8)
Zn1	-1043.33(15)	689.97(16)	6634.26(15)	21.28(8)

Table S4.3.3 Anisotropic Displacement Parameters (Å²×10³) for 2. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+...+2hka\times b\times U_{12}]$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
C1	21.6(9)	35.7(12)	37.9(13)	9.6(10)	-3.2(9)	-4.7(9)
C2	31.2(10)	28.4(11)	35.6(13)	2.3(9)	-12.8(10)	-5.1(9)

This journal is © The Royal Society of Chemistry [year]

C3 31.3(10) 30.9(11) $25.0(11)$ $0.8(9)$ $8.7(9)$ $0.7(9)$ C4 23.5(9) 29.3(11) 28.4(11) 4.1(8) 5.4(8) -1.4(8) C5 18.2(9) 34.0(12) 34.7(12) 7.6(9) -2.8(8) 0.2(8) C6 23.2(10) 56.8(17) 58.1(18) 23.3(13) 3.3(11) -8.6(11) C7 49.4(14) 29.0(13) 52.2(16) 1.9(11) -18.3(13) -10.4(1) C8 48.2(14) 44.4(14) 29.3(13) -5.7(10) -5.2(11) 4.7(11) C9 37.8(12) 36.4(13) 32.9(13) 11.9(10) -7.4(10) -8.8(10) C10 23.5(10) 46.8(15) 49.3(15) 47.7(12) 2.1(10) 8.8(10) C11 19.7(8) 2.9(10) 19.7(10) -1.8(7) 1.4(7) 0.4(7) C12 17.9(8) 2.9(10) 21.2(10) -0.1(7) 1.7(8) 1.9(7) C13 21.0(8) 21.2(10) 23.7(10) <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>							
C4 23,5(9) 29,3(1) 28,4(1) 4,1(8) -5,4(8) -1,4(8) C5 18,2(9) 34,0(12) 34,7(12) 7,6(9) -2,8(8) 0,2(8) C6 23,2(10) 56,8(17) 58,1(18) 23,3(13) 3,3(11) -8,6(11) C7 49,4(14) 29,0(13) 52,2(16) 1.9(11) -18,3(13) -10,4(1) C8 48,2(14) 44,4(14) 29,3(13) -5,7(10) -5,2(11) 4,7(11) C9 37,8(12) 36,4(13) 32,9(13) 11,9(10) -7,4(10) -3(1) C10 23,5(10) 46,8(15) 49,3(15) 4,7(12) 2,1(10) 8,8(10) C11 19,7(8) 20,4(9) 21,9(10) 1,8(7) 1,4(7) 0,5(7) C13 21,0(8) 21,2(10) 2,1(7) 1,4(7) 0,4(7) C14 21,8(9) 20,2(10) 21,2(10) -1,1(7) 1,7(3) -22,5(14) -2,7(12) C15 70,7(19) 37,0(14) 39,0(15) -9,0(11)	 C3	31.3(10)	30.9(11)	25.0(11)	-0.8(9)	-8.7(9)	-0.7(9)
C5 18.2(9) 34.0(12) 34.7(12) 7.6(9) -2.8(8) 0.2(8) C6 23.2(10) 56.8(17) 58.1(18) 23.3(13) 3.3(11) -8.6(11) C7 49.4(14) 29.0(13) 52.2(16) 1.9(11) -18.3(13) -10.4(1) C8 48.2(14) 44.4(14) 29.3(13) -5.7(10) -5.2(11) 4.7(11) C9 37.8(12) 36.4(13) 32.9(13) 11.9(10) -7.4(10) -3(1) C10 23.5(10) 46.8(15) 49.3(15) 4.7(12) 2.1(10) 8.8(10) C11 19.7(8) 20.4(9) 21.9(10) 1.6(7) 1.4(7) -0.5(7) C13 21.0(8) 21.2(10) 23.7(10) 0.2(8) 3.4(8) -0.4(7) C14 21.8(9) 20.2(10) 21.2(10) -0.1(7) 1.7(8) 1.9(7) C15 70.7(19) 37.0(14) 39.0(15) -9.0(11) -18.0(14) 7.7(13) C16 46.9(14) 42.3(15) 62.5(19) 4.	C4	23.5(9)	29.3(11)	28.4(11)	4.1(8)	-5.4(8)	-1.4(8)
C623.2(10)56.8(17)58.1(18)23.3(13)3.3(11) $-8.6(11)$ C749.4(14)29.0(13)52.2(16)1.9(11) $-18.3(13)$ $-10.4(1)$ C848.2(14)44.4(14)29.3(13) $-5.7(10)$ $-5.2(11)$ $4.7(11)$ C937.8(12)36.4(13)32.9(13) $11.9(10)$ $-7.4(10)$ $-3(1)$ C1023.5(10)46.8(15)49.3(15) $4.7(12)$ $2.1(10)$ $8.8(10)$ C1119.7(8)20.4(9)21.9(10) $1.6(7)$ $1.4(7)$ $0.5(7)$ C1217.9(8)22.9(10)19.7(10) $-1.8(7)$ $1.4(7)$ $0.5(7)$ C1321.0(8)21.2(10)23.7(10) $0.2(8)$ $3.4(8)$ $-0.4(7)$ C1421.8(9)20.2(10)21.2(10) $-0.1(7)$ $1.7(8)$ $1.9(7)$ C1570.7(19)37.0(14)39.0(15) $-9.0(11)$ $-18.0(14)$ $7.7(13)$ C1646.9(14)42.3(15)62.5(19) $-4.7(13)$ $-2.2.5(14)$ $-2.1(12)$ C1728.9(11)33.7(14)90(2) $-1.3(14)$ 12.6(13) $-0.2(12)$ C1646.9(14)42.0(14)26.5(13) $-7.0(11)$ 5.8(12) $13.5(14)$ $2.2(12)$ C2066.4(17)42.0(14)26.5(13) $-7.0(11)$ 5.8(12) $14.2(12)$ C2156.4(17)53.2(17) $75(2)$ $-14.8(15)$ $1.8(14)$ $-12.4(1)$ C2350.1(16)46.5(17)83(2) $10.1(15)$ $32.4(17)$ $-4.4(13)$ C24<	C5	18.2(9)	34.0(12)	34.7(12)	7.6(9)	-2.8(8)	0.2(8)
C7 $49.4(14)$ $29.0(13)$ $52.2(16)$ $1.9(11)$ $-18.3(13)$ $-10.4(1)$ $C8$ $48.2(14)$ $44.4(14)$ $29.3(13)$ $-5.7(10)$ $-5.2(11)$ $4.7(11)$ $C9$ $37.8(12)$ $36.4(13)$ $32.9(13)$ $11.9(10)$ $-7.4(10)$ $-3(1)$ $C10$ $23.5(10)$ $46.8(15)$ $49.3(15)$ $4.7(12)$ $2.1(10)$ $8.8(10)$ $C11$ $19.7(8)$ $20.4(9)$ $21.9(10)$ $1.6(7)$ $1.4(7)$ $0.1(7)$ $C12$ $17.9(8)$ $22.9(10)$ $19.7(10)$ $-1.8(7)$ $1.4(7)$ $-0.5(7)$ $C13$ $21.0(8)$ $21.2(10)$ $23.7(10)$ $0.2(8)$ $3.4(8)$ $-0.4(7)$ $C14$ $21.8(9)$ $20.2(10)$ $21.2(10)$ $-0.1(7)$ $1.7(8)$ $1.9(7)$ $C15$ $70.7(19)$ $37.0(14)$ $39.0(15)$ $-9.0(11)$ $-18.0(14)$ $7.7(13)$ $C16$ $46.9(14)$ $42.3(15)$ $62.5(19)$ $-4.7(13)$ $-22.5(14)$ $-2.7(12)$ $C17$ $28.9(11)$ $33.7(14)$ $90(2)$ $-1.3(14)$ $12.6(13)$ $-0.2(16)$ $C18$ $48.1(14)$ $29.2(13)$ $65.5(19)$ $5.1(12)$ $33.5(14)$ $2.5(11)$ $C19$ $74.7(19)$ $41.0(14)$ $26.5(13)$ $4.8(10)$ $16.0(13)$ $12.2(12)$ $C20$ $66.4(17)$ $42.0(14)$ $28.5(13)$ $-7.0(11)$ $5.8(12)$ $14.2(12)$ $C21$ $56.4(17)$ $53.(19)$ $7.6(2)$ $14.8(15)$ $1.8(14)$ $-12.4(1)$ $C22$ 36.8	C6	23.2(10)	56.8(17)	58.1(18)	23.3(13)	3.3(11)	-8.6(11)
C8 $48.2(14)$ $44.4(14)$ $29.3(13)$ $-5.7(10)$ $-5.2(11)$ $4.7(11)$ $C9$ $37.8(12)$ $36.4(13)$ $32.9(13)$ $11.9(10)$ $-7.4(10)$ $-3(1)$ $C10$ $23.5(10)$ $46.8(15)$ $49.3(15)$ $4.7(12)$ $2.1(10)$ $8.8(10)$ $C11$ $19.7(8)$ $20.4(9)$ $21.9(10)$ $1.6(7)$ $1.4(7)$ $0.1(7)$ $C12$ $17.9(8)$ $22.9(10)$ $19.7(10)$ $-1.8(7)$ $1.4(7)$ $-0.5(7)$ $C13$ $21.0(8)$ $21.2(10)$ $23.7(10)$ $0.2(8)$ $3.4(8)$ $-0.4(7)$ $C14$ $21.8(9)$ $20.2(10)$ $21.2(10)$ $-0.1(7)$ $1.7(8)$ $1.9(7)$ $C15$ $70.7(19)$ $37.0(14)$ $39.0(15)$ $-9.0(11)$ $-18.0(14)$ $7.7(13)$ $C16$ $46.9(14)$ $42.3(15)$ $62.5(19)$ $-4.7(13)$ $-22.5(14)$ $-2.7(12)$ $C17$ $28.9(11)$ $33.7(14)$ $90(2)$ $-1.3(14)$ $12.6(13)$ $-0.2(10)$ $C18$ $48.1(14)$ $29.2(13)$ $65.5(19)$ $5.1(12)$ $33.5(14)$ $2.5(11)$ $C19$ $74.7(19)$ $41.0(14)$ $26.5(13)$ $4.8(10)$ $16.0(13)$ $12.2(12)$ $C20$ $66.4(17)$ $42.0(14)$ $28.5(13)$ $-7.0(11)$ $5.8(12)$ $14.2(13)$ $C21$ $56.4(17)$ $54.1(18)$ $55.3(19)$ $-21.2(14)$ $-2.6(15)$ $-13.5(1)$ $C22$ $36.8(13)$ $48.5(17)$ $75(2)$ $-14.8(15)$ $1.8(14)$ $-12.4(1)$ $C23$ 5	C7	49.4(14)	29.0(13)	52.2(16)	1.9(11)	-18.3(13)	-10.4(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	48.2(14)	44.4(14)	29.3(13)	-5.7(10)	-5.2(11)	4.7(11)
C10 $23.5(10)$ $46.8(15)$ $49.3(15)$ $4.7(12)$ $2.1(10)$ $8.8(10)$ C11 $19.7(8)$ $20.4(9)$ $21.9(10)$ $1.6(7)$ $1.4(7)$ $0.1(7)$ C12 $17.9(8)$ $22.9(10)$ $19.7(10)$ $-1.8(7)$ $1.4(7)$ $-0.5(7)$ C13 $21.0(8)$ $21.2(10)$ $23.7(10)$ $0.2(8)$ $3.4(8)$ $-0.4(7)$ C14 $21.8(9)$ $20.2(10)$ $21.2(10)$ $-0.1(7)$ $1.7(8)$ $1.9(7)$ C15 $70.7(19)$ $37.0(14)$ $39.0(15)$ $-9.0(11)$ $-18.0(14)$ $7.7(13)$ C16 $46.9(14)$ $42.3(15)$ $62.5(19)$ $-4.7(13)$ $-22.5(14)$ $-2.7(12)$ C17 $28.9(11)$ $33.7(14)$ $90(2)$ $-1.3(14)$ $12.6(13)$ $-0.2(10)$ C18 $48.1(14)$ $29.2(13)$ $65.5(19)$ $5.1(12)$ $33.5(14)$ $2.5(11)$ C19 $74.7(19)$ $41.0(14)$ $26.5(13)$ $4.8(10)$ $16.0(13)$ $12.2(12)$ C20 $66.4(17)$ $42.0(14)$ $28.5(13)$ $-7.0(11)$ $5.8(12)$ $14.2(13)$ C21 $56.4(17)$ $54.1(18)$ $55.3(19)$ $-21.2(14)$ $-2.6(15)$ $-13.5(1)$ C22 $36.8(13)$ $48.5(17)$ $75(2)$ $-14.8(15)$ $1.8(14)$ $-12.4(1)$ C23 $50.1(16)$ $46.5(17)$ $83(2)$ $10.1(15)$ $32.4(17)$ $-4.4(13)$ C24 $66.9(19)$ $49.0(17)$ $60(2)$ $19.2(14)$ $31.2(16)$ $48.(14)$ C25 $79(2)$ $69(2)$ 30	C9	37.8(12)	36.4(13)	32.9(13)	11.9(10)	-7.4(10)	-3(1)
C1119.7(8)20.4(9)21.9(10)1.6(7)1.4(7)0.1(7)C1217.9(8)22.9(10)19.7(10) $-1.8(7)$ 1.4(7) $-0.5(7)$ C1321.0(8)21.2(10)23.7(10)0.2(8)3.4(8) $-0.4(7)$ C1421.8(9)20.2(10)21.2(10) $-0.1(7)$ 1.7(8)1.9(7)C1570.7(19)37.0(14)39.0(15) $-9.0(11)$ $-18.0(14)$ 7.7(13)C1646.9(14)42.3(15)62.5(19) $4.7(13)$ $-22.5(14)$ $-2.7(12)$ C1728.9(11)33.7(14)90(2) $-1.3(14)$ 12.6(13) $-0.2(16)$ C1848.1(14)29.2(13)65.5(19) $5.1(12)$ 33.5(14)2.5(11)C1974.7(19)41.0(14)26.5(13)4.8(10)16.0(13)12.2(13)C2066.4(17)42.0(14)28.5(13) $-7.0(11)$ $5.8(12)$ 14.2(13)C2156.4(17)54.1(18)55.3(19) $-21.2(14)$ $-2.6(15)$ $-13.5(14)$ C2236.8(13)48.5(17)75(2) $-14.8(15)$ $1.8(14)$ $-12.4(1)$ C2350.1(16)46.5(17)83(2)10.1(15)32.4(17) $-4.4(13)$ C2466.9(19)49.0(17)60(2)19.2(14)31.2(16)4.8(14)C2579(2)69(2)30.6(14)11.6(13)17.8(15)18.0(17)C11229.9(10)24.(1)26.0(11) $-2.1(8)$ $1.5(9)$ $-1.0(8)$ C11333.6(10)22.1(10)29.5(11) <td< td=""><td>C10</td><td>23.5(10)</td><td>46.8(15)</td><td>49.3(15)</td><td>4.7(12)</td><td>2.1(10)</td><td>8.8(10)</td></td<>	C10	23.5(10)	46.8(15)	49.3(15)	4.7(12)	2.1(10)	8.8(10)
C1217.9(8)22.9(10)19.7(10) $-1.8(7)$ $1.4(7)$ $-0.5(7)$ C1321.0(8)21.2(10)23.7(10)0.2(8)3.4(8) $-0.4(7)$ C1421.8(9)20.2(10)21.2(10) $-0.1(7)$ 1.7(8) $1.9(7)$ C1570.7(19)37.0(14)39.0(15) $-9.0(11)$ $-18.0(14)$ $7.7(13)$ C1646.9(14)42.3(15)62.5(19) $4.7(13)$ $-22.5(14)$ $-2.7(12)$ C1728.9(11)33.7(14)90(2) $-1.3(14)$ $12.6(13)$ $-0.2(10)$ C1848.1(14)29.2(13)65.5(19) $5.1(12)$ $33.5(14)$ $2.5(11)$ C1974.7(19)41.0(14)26.5(13)4.8(10) $16.0(13)$ $12.2(12)$ C2066.4(17)42.0(14)28.5(13) $-7.0(11)$ $5.8(12)$ $14.2(12)$ C21 $56.4(17)$ 54.1(18) $55.3(19)$ $-21.2(14)$ $-2.6(15)$ $-13.5(1)$ C22 $36.8(13)$ $48.5(17)$ $75(2)$ $-14.8(15)$ $1.8(14)$ $-12.4(1)$ C23 $50.1(16)$ $46.5(17)$ $83(2)$ $10.1(15)$ $32.4(17)$ $-4.4(13)$ C24 $66.9(19)$ $49.0(17)$ $60(2)$ $19.2(14)$ $31.2(16)$ $4.8(14)$ C25 $79(2)$ $69(2)$ $30.6(14)$ $11.6(13)$ $17.8(15)$ $18.0(17)$ C111 $21.3(8)$ $22.3(10)$ $28.7(14)$ $-2.5(18)$ $3.8(8)$ $3.8(8)$ C124 $84(2)$ $60.3(19)$ $28.7(14)$ $-2.6(8)$ $-1.9(9)$ $1.9(8)$	C11	19.7(8)	20.4(9)	21.9(10)	1.6(7)	1.4(7)	0.1(7)
C1321.0(8)21.2(10)23.7(10) $0.2(8)$ $3.4(8)$ $-0.4(7)$ C1421.8(9)20.2(10)21.2(10) $-0.1(7)$ $1.7(8)$ $1.9(7)$ C1570.7(19) $37.0(14)$ $39.0(15)$ $-9.0(11)$ $-18.0(14)$ $7.7(13)$ C16 $46.9(14)$ $42.3(15)$ $62.5(19)$ $-4.7(13)$ $-22.5(14)$ $-2.7(12)$ C17 $28.9(11)$ $33.7(14)$ $90(2)$ $-1.3(14)$ $12.6(13)$ $-0.2(10)$ C18 $48.1(14)$ $29.2(13)$ $65.5(19)$ $5.1(12)$ $33.5(14)$ $2.5(11)$ C19 $74.7(19)$ $41.0(14)$ $26.5(13)$ $4.8(10)$ $16.0(13)$ $12.2(13)$ C20 $66.4(17)$ $42.0(14)$ $28.5(13)$ $-7.0(11)$ $5.8(12)$ $14.2(12)$ C21 $56.4(17)$ $54.1(18)$ $55.3(19)$ $-21.2(14)$ $-2.6(15)$ $-13.5(1)$ C22 $36.8(13)$ $48.5(17)$ $75(2)$ $-14.8(15)$ $1.8(14)$ $-12.4(1)$ C23 $50.1(16)$ $46.5(17)$ $83(2)$ $10.1(15)$ $32.4(17)$ $-4.4(13)$ C24 $66.9(19)$ $49.0(17)$ $60(2)$ $19.2(14)$ $31.2(16)$ $48.(14)$ C25 $79(2)$ $69(2)$ $30.6(14)$ $11.6(13)$ $17.8(15)$ $18.0(17)$ C112 $29.9(10)$ $24.(1)$ $26.0(11)$ $-2.5(8)$ $-1.9(9)$ $1.9(8)$ C113 $33.6(10)$ $22.1(10)$ $29.5(11)$ $-6.5(8)$ $-1.9(9)$ $1.9(8)$ C114 $34.2(11)$ $31.4(11)$ $21.6(1)$	C12	17.9(8)	22.9(10)	19.7(10)	-1.8(7)	1.4(7)	-0.5(7)
C1421.8(9)20.2(10)21.2(10) $-0.1(7)$ $1.7(8)$ $1.9(7)$ C1570.7(19)37.0(14)39.0(15) $-9.0(11)$ $-18.0(14)$ $7.7(13)$ C1646.9(14)42.3(15) $62.5(19)$ $-4.7(13)$ $-22.5(14)$ $-2.7(12)$ C1728.9(11)33.7(14)90(2) $-1.3(14)$ $12.6(13)$ $-0.2(10)$ C1848.1(14)29.2(13) $65.5(19)$ $5.1(12)$ $33.5(14)$ $2.5(11)$ C1974.7(19)41.0(14) $26.5(13)$ $4.8(10)$ $16.0(13)$ $12.2(13)$ C20 $66.4(17)$ $42.0(14)$ $28.5(13)$ $-7.0(11)$ $5.8(12)$ $14.2(13)$ C21 $56.4(17)$ $54.1(18)$ $55.3(19)$ $-21.2(14)$ $-2.6(15)$ $-13.5(1)$ C22 $36.8(13)$ $48.5(17)$ $75(2)$ $-14.8(15)$ $1.8(14)$ $-12.4(13)$ C23 $50.1(16)$ $46.5(17)$ $83(2)$ $10.1(15)$ $32.4(17)$ $-4.4(13)$ C24 $66.9(19)$ $49.0(17)$ $60(2)$ $19.2(14)$ $31.2(16)$ $4.8(14)$ C25 $79(2)$ $69(2)$ $30.6(14)$ $11.6(13)$ $17.8(15)$ $18.0(17)$ C112 $29.9(10)$ $24(1)$ $26.0(11)$ $-2.1(8)$ $1.5(9)$ $-1.0(8)$ C114 $34.2(11)$ $31.0(11)$ $24.4(11)$ $-8.8(8)$ $3.0(9)$ $5.7(9)$ C115 $28.7(10)$ $31.4(11)$ $21.5(10)$ $-2.5(8)$ $3.8(8)$ $3.8(8)$ C114 $34.2(11)$ $31.0(11)$ $24.4(11)$ $-8.$	C13	21.0(8)	21.2(10)	23.7(10)	0.2(8)	3.4(8)	-0.4(7)
C15 $70.7(19)$ $37.0(14)$ $39.0(15)$ $-9.0(11)$ $-18.0(14)$ $7.7(13)$ C16 $46.9(14)$ $42.3(15)$ $62.5(19)$ $-4.7(13)$ $-22.5(14)$ $-2.7(12)$ C17 $28.9(11)$ $33.7(14)$ $90(2)$ $-1.3(14)$ $12.6(13)$ $-0.2(10)$ C18 $48.1(14)$ $29.2(13)$ $65.5(19)$ $5.1(12)$ $33.5(14)$ $2.5(11)$ C19 $74.7(19)$ $41.0(14)$ $26.5(13)$ $4.8(10)$ $16.0(13)$ $12.2(12)$ C20 $66.4(17)$ $42.0(14)$ $28.5(13)$ $-7.0(11)$ $5.8(12)$ $14.2(12)$ C21 $56.4(17)$ $54.1(18)$ $55.3(19)$ $-21.2(14)$ $-2.6(15)$ $-13.5(1)$ C22 $36.8(13)$ $48.5(17)$ $75(2)$ $-14.8(15)$ $1.8(14)$ $-12.4(1)$ C23 $50.1(16)$ $46.5(17)$ $83(2)$ $10.1(15)$ $32.4(17)$ $-4.4(13)$ C24 $66.9(19)$ $49.0(17)$ $60(2)$ $19.2(14)$ $31.2(16)$ $4.8(14)$ C25 $79(2)$ $69(2)$ $30.6(14)$ $11.6(13)$ $17.8(15)$ $18.0(17)$ C112 $29.9(10)$ $24(1)$ $26.0(11)$ $-2.1(8)$ $1.5(9)$ $-1.0(8)$ C113 $33.6(10)$ $22.1(10)$ $29.5(11)$ $-6.5(8)$ $-1.9(9)$ $1.9(8)$ C114 $34.2(11)$ $31.0(11)$ $24.4(11)$ $-8.8(8)$ $3.0(9)$ $5.7(9)$ C115 $28.7(10)$ $31.4(11)$ $21.5(10)$ $-2.5(8)$ $3.8(8)$ $3.8(8)$ C114 $34.2(11)$ $31.0(11)$	C14	21.8(9)	20.2(10)	21.2(10)	-0.1(7)	1.7(8)	1.9(7)
C16 $46.9(14)$ $42.3(15)$ $62.5(19)$ $-4.7(13)$ $-22.5(14)$ $-2.7(12)$ C17 $28.9(11)$ $33.7(14)$ $90(2)$ $-1.3(14)$ $12.6(13)$ $-0.2(10)$ C18 $48.1(14)$ $29.2(13)$ $65.5(19)$ $5.1(12)$ $33.5(14)$ $2.5(11)$ C19 $74.7(19)$ $41.0(14)$ $26.5(13)$ $4.8(10)$ $16.0(13)$ $12.2(12)$ C20 $66.4(17)$ $42.0(14)$ $28.5(13)$ $-7.0(11)$ $5.8(12)$ $14.2(12)$ C21 $56.4(17)$ $54.1(18)$ $55.3(19)$ $-21.2(14)$ $-2.6(15)$ $-13.5(14)$ C22 $36.8(13)$ $48.5(17)$ $75(2)$ $-14.8(15)$ $1.8(14)$ $-12.4(14)$ C23 $50.1(16)$ $46.5(17)$ $83(2)$ $10.1(15)$ $32.4(17)$ $-4.4(13)$ C24 $66.9(19)$ $49.0(17)$ $60(2)$ $19.2(14)$ $31.2(16)$ 48.144 C25 $79(2)$ $69(2)$ $30.6(14)$ $11.6(13)$ $17.8(15)$ $18.0(17)$ C16 $84(2)$ $60.3(19)$ $28.7(14)$ $-2.2(12)$ $8.4(14)$ $24.8(17)$ C111 $21.3(8)$ $22.3(10)$ $18.8(10)$ $-0.3(7)$ $-1.4(7)$ $1.7(7)$ C112 $29.9(10)$ $24.(1)$ $26.0(11)$ $-2.1(8)$ $1.5(9)$ $-1.0(8)$ C113 $33.6(10)$ $22.1(10)$ $29.5(11)$ $-6.5(8)$ $-1.9(9)$ $1.9(8)$ C114 $34.2(11)$ $31.4(11)$ $21.5(10)$ $-2.5(8)$ $3.7(8)$ $2.5(8)$ C122 $25.0(9)$ $25.8(10)$ <td>C15</td> <td>70.7(19)</td> <td>37.0(14)</td> <td>39.0(15)</td> <td>-9.0(11)</td> <td>-18.0(14)</td> <td>7.7(13)</td>	C15	70.7(19)	37.0(14)	39.0(15)	-9.0(11)	-18.0(14)	7.7(13)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	46.9(14)	42.3(15)	62.5(19)	-4.7(13)	-22.5(14)	-2.7(12)
C1848.1(14)29.2(13) $65.5(19)$ $5.1(12)$ $33.5(14)$ $2.5(11)$ C19 $74.7(19)$ $41.0(14)$ $26.5(13)$ $4.8(10)$ $16.0(13)$ $12.2(13)$ C20 $66.4(17)$ $42.0(14)$ $28.5(13)$ $-7.0(11)$ $5.8(12)$ $14.2(13)$ C21 $56.4(17)$ $54.1(18)$ $55.3(19)$ $-21.2(14)$ $-2.6(15)$ $-13.5(14)$ C22 $36.8(13)$ $48.5(17)$ $75(2)$ $-14.8(15)$ $1.8(14)$ $-12.4(16)$ C23 $50.1(16)$ $46.5(17)$ $83(2)$ $10.1(15)$ $32.4(17)$ $-4.4(13)$ C24 $66.9(19)$ $49.0(17)$ $60(2)$ $19.2(14)$ $31.2(16)$ $4.8(14)$ C25 $79(2)$ $69(2)$ $30.6(14)$ $11.6(13)$ $17.8(15)$ $18.0(17)$ C26 $84(2)$ $60.3(19)$ $28.7(14)$ $-2.2(12)$ $8.4(14)$ $24.8(17)$ C111 $21.3(8)$ $22.3(10)$ $18.8(10)$ $-0.3(7)$ $-1.4(7)$ $1.7(7)$ C112 $29.9(10)$ $24(1)$ $26.0(11)$ $-2.1(8)$ $1.5(9)$ $-1.0(8)$ C113 $33.6(10)$ $22.1(10)$ $29.5(11)$ $-6.5(8)$ $3.0(9)$ $5.7(9)$ C114 $34.2(11)$ $31.0(11)$ $24.4(11)$ $-8.8(8)$ $3.0(9)$ $5.7(9)$ C115 $28.7(10)$ $31.4(11)$ $21.5(10)$ $-2.5(8)$ $3.8(8)$ $3.8(8)$ C121 $20.5(8)$ $20.9(9)$ $18.7(9)$ $-1.6(7)$ $-1.0(7)$ $-0.6(7)$ C122 $25.0(9)$ $25.8(10)$ $26.2($	C17	28.9(11)	33.7(14)	90(2)	-1.3(14)	12.6(13)	-0.2(10)
C1974.7(19)41.0(14)26.5(13)4.8(10)16.0(13)12.2(13)C2066.4(17)42.0(14)28.5(13)-7.0(11)5.8(12)14.2(13)C2156.4(17)54.1(18)55.3(19)-21.2(14)-2.6(15)-13.5(1C2236.8(13)48.5(17)75(2)-14.8(15)1.8(14)-12.4(1)C2350.1(16)46.5(17)83(2)10.1(15)32.4(17)-4.4(13)C2466.9(19)49.0(17)60(2)19.2(14)31.2(16)4.8(14)C2579(2)69(2)30.6(14)11.6(13)17.8(15)18.0(17)C1229.9(10)24.1126.0(11)-2.2(12)8.4(14)24.8(17)C11431.3(610)22.1(10)29.5(11)-6.5(8)-1.9(9)1.9(8)C11434.2(11)31.0(11)24.4(11)-8.8(8)3.0(9)5.7(9)C11528.7(10)31.4(11)21.5(10)-2.5(8)3.8(8)3.8(8)C12120.5(8)20.9(9)18.7(9)-1.6(7)-1.0(7)-0.6(7)C12225.0(9)25.8(10)26.2(11)-0.5(8)3.7(8)2.5(8)C12329.8(10)19.7(10)34.2(12)-0.6(8)-0.5(9)3.8(8)C12430.9(10)20(1)33.6(12)5.2(8)-1.7(9)-2.6(8)C12525.2(9)25.3(10)25.2(11)3.1(8)2.4(8)-2.5(8)C12430.9(10)20(1)33.6(12)5.2(8)-1.7(9)-2.6(8)C	C18	48.1(14)	29.2(13)	65.5(19)	5.1(12)	33.5(14)	2.5(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19	74.7(19)	41.0(14)	26.5(13)	4.8(10)	16.0(13)	12.2(13)
C21 $56.4(17)$ $54.1(18)$ $55.3(19)$ $-21.2(14)$ $-2.6(15)$ $-13.5(1)$ C22 $36.8(13)$ $48.5(17)$ $75(2)$ $-14.8(15)$ $1.8(14)$ $-12.4(1)$ C23 $50.1(16)$ $46.5(17)$ $83(2)$ $10.1(15)$ $32.4(17)$ $-4.4(13)$ C24 $66.9(19)$ $49.0(17)$ $60(2)$ $19.2(14)$ $31.2(16)$ $4.8(14)$ C25 $79(2)$ $69(2)$ $30.6(14)$ $11.6(13)$ $17.8(15)$ $18.0(17)$ C26 $84(2)$ $60.3(19)$ $28.7(14)$ $-2.2(12)$ $8.4(14)$ $24.8(17)$ C111 $21.3(8)$ $22.3(10)$ $18.8(10)$ $-0.3(7)$ $-1.4(7)$ $1.7(7)$ C112 $29.9(10)$ $24(1)$ $26.0(11)$ $-2.1(8)$ $1.5(9)$ $-1.0(8)$ C113 $33.6(10)$ $22.1(10)$ $29.5(11)$ $-6.5(8)$ $-1.9(9)$ $1.9(8)$ C114 $34.2(11)$ $31.0(11)$ $24.4(11)$ $-8.8(8)$ $3.0(9)$ $5.7(9)$ C115 $28.7(10)$ $31.4(11)$ $21.5(10)$ $-2.5(8)$ $3.8(8)$ $3.8(8)$ C121 $20.5(8)$ $20.9(9)$ $18.7(9)$ $-1.6(7)$ $-1.0(7)$ $-0.6(7)$ C122 $25.0(9)$ $25.8(10)$ $26.2(11)$ $-0.5(8)$ $-0.5(9)$ $3.8(8)$ C123 $29.8(10)$ $19.7(10)$ $34.2(12)$ $-0.6(8)$ $-0.5(9)$ $3.8(8)$ C124 $30.9(10)$ $20(1)$ $33.6(12)$ $5.2(8)$ $-1.7(9)$ $-2.6(8)$ C124 $30.9(10)$ $20.3(10)$ $25.2(11)$ <	C20	66.4(17)	42.0(14)	28.5(13)	-7.0(11)	5.8(12)	14.2(13)
C22 $36.8(13)$ $48.5(17)$ $75(2)$ $-14.8(15)$ $1.8(14)$ $-12.4(13)$ C23 $50.1(16)$ $46.5(17)$ $83(2)$ $10.1(15)$ $32.4(17)$ $-4.4(13)$ C24 $66.9(19)$ $49.0(17)$ $60(2)$ $19.2(14)$ $31.2(16)$ $4.8(14)$ C25 $79(2)$ $69(2)$ $30.6(14)$ $11.6(13)$ $17.8(15)$ $18.0(17)$ C26 $84(2)$ $60.3(19)$ $28.7(14)$ $-2.2(12)$ $8.4(14)$ $24.8(17)$ C111 $21.3(8)$ $22.3(10)$ $18.8(10)$ $-0.3(7)$ $-1.4(7)$ $1.7(7)$ C112 $29.9(10)$ $24(1)$ $26.0(11)$ $-2.1(8)$ $1.5(9)$ $-1.0(8)$ C113 $33.6(10)$ $22.1(10)$ $29.5(11)$ $-6.5(8)$ $-1.9(9)$ $1.9(8)$ C114 $34.2(11)$ $31.0(11)$ $24.4(11)$ $-8.8(8)$ $3.0(9)$ $5.7(9)$ C115 $28.7(10)$ $31.4(11)$ $21.5(10)$ $-2.5(8)$ $3.8(8)$ $3.8(8)$ C121 $20.5(8)$ $20.9(9)$ $18.7(9)$ $-1.6(7)$ $-1.0(7)$ $-0.6(7)$ C122 $25.0(9)$ $25.8(10)$ $26.2(11)$ $-0.5(8)$ $3.7(8)$ $2.5(8)$ C123 $29.8(10)$ $19.7(10)$ $34.2(12)$ $-0.6(8)$ $-0.5(9)$ $3.8(8)$ C124 $30.9(10)$ $20(1)$ $33.6(12)$ $5.2(8)$ $-1.7(9)$ $-2.6(8)$ C124 $30.9(10)$ $20.1(1)$ $32.6(12)$ $5.2(8)$ $-1.7(9)$ $-2.6(8)$ C124 $30.9(10)$ $20.1(1)$ $32.6(12)$ <t< td=""><td>C21</td><td>56.4(17)</td><td>54.1(18)</td><td>55.3(19)</td><td>-21.2(14)</td><td>-2.6(15)</td><td>-13.5(14)</td></t<>	C21	56.4(17)	54.1(18)	55.3(19)	-21.2(14)	-2.6(15)	-13.5(14)
C2350.1(16)46.5(17)83(2)10.1(15)32.4(17)-4.4(13)C2466.9(19)49.0(17)60(2)19.2(14)31.2(16)4.8(14)C2579(2)69(2)30.6(14)11.6(13)17.8(15)18.0(17)C2684(2)60.3(19)28.7(14)-2.2(12)8.4(14)24.8(17)C11121.3(8)22.3(10)18.8(10)-0.3(7)-1.4(7)1.7(7)C11229.9(10)24(1)26.0(11)-2.1(8)1.5(9)-1.0(8)C11333.6(10)22.1(10)29.5(11)-6.5(8)-1.9(9)1.9(8)C11434.2(11)31.0(11)24.4(11)-8.8(8)3.0(9)5.7(9)C11528.7(10)31.4(11)21.5(10)-2.5(8)3.8(8)3.8(8)C12120.5(8)20.9(9)18.7(9)-1.6(7)-1.0(7)-0.6(7)C12225.0(9)25.8(10)26.2(11)-0.5(8)3.7(8)2.5(8)C12329.8(10)19.7(10)34.2(12)-0.6(8)-0.5(9)3.8(8)C12430.9(10)20(1)33.6(12)5.2(8)-1.7(9)-2.6(8)C12525.2(9)25.3(10)25.2(11)3.1(8)3.0(8)3.1(8)3.0(8)	C22	36.8(13)	48.5(17)	75(2)	-14.8(15)	1.8(14)	-12.4(12)
C24 $66.9(19)$ $49.0(17)$ $60(2)$ $19.2(14)$ $31.2(16)$ $4.8(14)$ $C25$ $79(2)$ $69(2)$ $30.6(14)$ $11.6(13)$ $17.8(15)$ $18.0(17)$ $C26$ $84(2)$ $60.3(19)$ $28.7(14)$ $-2.2(12)$ $8.4(14)$ $24.8(17)$ $C111$ $21.3(8)$ $22.3(10)$ $18.8(10)$ $-0.3(7)$ $-1.4(7)$ $1.7(7)$ $C112$ $29.9(10)$ $24(1)$ $26.0(11)$ $-2.1(8)$ $1.5(9)$ $-1.0(8)$ $C113$ $33.6(10)$ $22.1(10)$ $29.5(11)$ $-6.5(8)$ $-1.9(9)$ $1.9(8)$ $C114$ $34.2(11)$ $31.0(11)$ $24.4(11)$ $-8.8(8)$ $3.0(9)$ $5.7(9)$ $C115$ $28.7(10)$ $31.4(11)$ $21.5(10)$ $-2.5(8)$ $3.8(8)$ $3.8(8)$ $C121$ $20.5(8)$ $20.9(9)$ $18.7(9)$ $-1.6(7)$ $-1.0(7)$ $-0.6(7)$ $C122$ $25.0(9)$ $25.8(10)$ $26.2(11)$ $-0.5(8)$ $3.7(8)$ $2.5(8)$ $C123$ $29.8(10)$ $19.7(10)$ $34.2(12)$ $-0.6(8)$ $-0.5(9)$ $3.8(8)$ $C124$ $30.9(10)$ $20(1)$ $33.6(12)$ $5.2(8)$ $-1.7(9)$ $-2.6(8)$ $C125$ $25.2(9)$ $25.3(10)$ $25.4(11)$ $0.3(8)$ $3.1(8)$ $2.0(8)$	C23	50.1(16)	46.5(17)	83(2)	10.1(15)	32.4(17)	-4.4(13)
C2579(2)69(2)30.6(14)11.6(13)17.8(15)18.0(17)C2684(2)60.3(19)28.7(14)-2.2(12)8.4(14)24.8(17)C11121.3(8)22.3(10)18.8(10)-0.3(7)-1.4(7)1.7(7)C11229.9(10)24(1)26.0(11)-2.1(8)1.5(9)-1.0(8)C11333.6(10)22.1(10)29.5(11)-6.5(8)-1.9(9)1.9(8)C11434.2(11)31.0(11)24.4(11)-8.8(8)3.0(9)5.7(9)C11528.7(10)31.4(11)21.5(10)-2.5(8)3.8(8)3.8(8)C12120.5(8)20.9(9)18.7(9)-1.6(7)-1.0(7)-0.6(7)C12225.0(9)25.8(10)26.2(11)-0.5(8)3.7(8)2.5(8)C12329.8(10)19.7(10)34.2(12)-0.6(8)-0.5(9)3.8(8)C12430.9(10)20(1)33.6(12)5.2(8)-1.7(9)-2.6(8)C12525.2(9)25.3(10)25.2(11)3.1(8)2.4(8)-2.5(8)C13124.9(9)22.3(10)25.4(11)0.3(8)3.1(8)3.0(8)	C24	66.9(19)	49.0(17)	60(2)	19.2(14)	31.2(16)	4.8(14)
C2684(2)60.3(19)28.7(14)-2.2(12)8.4(14)24.8(17)C11121.3(8)22.3(10)18.8(10)-0.3(7)-1.4(7)1.7(7)C11229.9(10)24(1)26.0(11)-2.1(8)1.5(9)-1.0(8)C11333.6(10)22.1(10)29.5(11)-6.5(8)-1.9(9)1.9(8)C11434.2(11)31.0(11)24.4(11)-8.8(8)3.0(9)5.7(9)C11528.7(10)31.4(11)21.5(10)-2.5(8)3.8(8)3.8(8)C12120.5(8)20.9(9)18.7(9)-1.6(7)-1.0(7)-0.6(7)C12225.0(9)25.8(10)26.2(11)-0.5(8)3.7(8)2.5(8)C12329.8(10)19.7(10)34.2(12)-0.6(8)-0.5(9)3.8(8)C12430.9(10)20(1)33.6(12)5.2(8)-1.7(9)-2.6(8)C12525.2(9)25.3(10)25.2(11)3.1(8)3.0(8)3.1(8)3.0(8)	C25	79(2)	69(2)	30.6(14)	11.6(13)	17.8(15)	18.0(17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C26	84(2)	60.3(19)	28.7(14)	-2.2(12)	8.4(14)	24.8(17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C111	21.3(8)	22.3(10)	18.8(10)	-0.3(7)	-1.4(7)	1.7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C112	29.9(10)	24(1)	26.0(11)	-2.1(8)	1.5(9)	-1.0(8)
C11434.2(11)31.0(11)24.4(11)-8.8(8)3.0(9)5.7(9)C11528.7(10)31.4(11)21.5(10)-2.5(8)3.8(8)3.8(8)C12120.5(8)20.9(9)18.7(9)-1.6(7)-1.0(7)-0.6(7)C12225.0(9)25.8(10)26.2(11)-0.5(8)3.7(8)2.5(8)C12329.8(10)19.7(10)34.2(12)-0.6(8)-0.5(9)3.8(8)C12430.9(10)20(1)33.6(12)5.2(8)-1.7(9)-2.6(8)C12525.2(9)25.3(10)25.2(11)3.1(8)2.4(8)-2.5(8)C13124.9(9)22.3(10)25.4(11)0.3(8)3.1(8)3.0(8)	C113	33.6(10)	22.1(10)	29.5(11)	-6.5(8)	-1.9(9)	1.9(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C114	34.2(11)	31.0(11)	24.4(11)	-8.8(8)	3.0(9)	5.7(9)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C115	28.7(10)	31.4(11)	21.5(10)	-2.5(8)	3.8(8)	3.8(8)
C122 25.0(9) 25.8(10) 26.2(11) -0.5(8) 3.7(8) 2.5(8) C123 29.8(10) 19.7(10) 34.2(12) -0.6(8) -0.5(9) 3.8(8) C124 30.9(10) 20(1) 33.6(12) 5.2(8) -1.7(9) -2.6(8) C125 25.2(9) 25.3(10) 25.2(11) 3.1(8) 2.4(8) -2.5(8) C131 24.9(9) 22.3(10) 25.4(11) 0.3(8) 3.1(8) 3.0(8)	C121	20.5(8)	20.9(9)	18.7(9)	-1.6(7)	-1.0(7)	-0.6(7)
C123 29.8(10) 19.7(10) 34.2(12) -0.6(8) -0.5(9) 3.8(8) C124 30.9(10) 20(1) 33.6(12) 5.2(8) -1.7(9) -2.6(8) C125 25.2(9) 25.3(10) 25.2(11) 3.1(8) 2.4(8) -2.5(8) C131 24.9(9) 22.3(10) 25.4(11) 0.3(8) 3.1(8) 3.0(8)	C122	25.0(9)	25.8(10)	26.2(11)	-0.5(8)	3.7(8)	2.5(8)
C12430.9(10)20(1)33.6(12)5.2(8)-1.7(9)-2.6(8)C12525.2(9)25.3(10)25.2(11)3.1(8)2.4(8)-2.5(8)C13124.9(9)22.3(10)25.4(11)0.3(8)3.1(8)3.0(8)	C123	29.8(10)	19.7(10)	34.2(12)	-0.6(8)	-0.5(9)	3.8(8)
C12525.2(9)25.3(10)25.2(11)3.1(8)2.4(8)-2.5(8)C13124.9(9)22.3(10)25.4(11)0.3(8)3.1(8)3.0(8)	C124	30.9(10)	20(1)	33.6(12)	5.2(8)	-1.7(9)	-2.6(8)
C13124.9(9)22.3(10)25.4(11)0.3(8)3.1(8)3.0(8)	C125	25.2(9)	25.3(10)	25.2(11)	3.1(8)	2.4(8)	-2.5(8)
	C131	24.9(9)	22.3(10)	25.4(11)	0.3(8)	3.1(8)	3.0(8)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013 CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS

C133	42.0(12)	29.7(12)	32.9(13)	-7.8(9)	1.5(10)	1.1(10)
C134	44.0(13)	39.1(13)	32.9(13)	-11.1(10)	12.0(11)	7.2(11)
C135	41.9(13)	41.6(14)	47.8(16)	-8.6(12)	23.3(12)	0.3(11)
C141	25.5(9)	19.1(9)	20.7(10)	0.2(7)	0.4(8)	-1.1(7)
C142	26.6(10)	27.2(11)	30.8(12)	3.5(9)	5.6(9)	-0.6(8)
C143	33.6(11)	34.1(12)	35.2(13)	7.9(10)	6.3(10)	-5.4(9)
C144	40.3(12)	29.1(12)	36.9(13)	13.1(10)	-0.7(10)	-4.4(10)
C145	35.0(11)	24.8(11)	42.1(14)	6.3(9)	0.8(10)	4.5(9)
N1	23.3(8)	22.6(8)	20.4(8)	-1.6(6)	2.9(7)	1.5(6)
N2	21.4(7)	20.4(8)	21.1(8)	1.0(6)	1.3(6)	-0.3(6)
N3	30(2)	30.3(8)	23(3)	-2.8(11)	6.2(9)	1.3(8)
C132	30(2)	30.3(8)	23(3)	-2.8(11)	6.2(9)	1.3(8)
C137	30(2)	30.3(8)	23(3)	-2.8(11)	6.2(9)	1.3(8)
N3A	30(2)	30.3(8)	23(3)	-2.8(11)	6.2(9)	1.3(8)
N4	29.7(9)	24.2(9)	30.6(10)	2.9(7)	3.5(8)	2.7(7)
01	70.9(12)	38.3(10)	30.9(9)	-2.2(7)	0.3(9)	11.8(9)
O2	28.1(7)	35.0(9)	45.4(10)	0.1(7)	-3.8(7)	1.2(7)
O3	47.8(9)	28.1(8)	39.4(10)	5.0(7)	15.4(8)	1.7(7)
O4	46.8(9)	36.5(9)	31.6(9)	-7.4(7)	0.3(7)	3.9(8)
05	32.0(8)	44.6(11)	59.4(12)	2.9(9)	13.3(8)	-3.8(7)
06	60.1(11)	45.3(11)	41.9(11)	12.1(8)	17.4(9)	7.5(9)
Cl1	39.7(3)	29.9(3)	36.6(3)	0.3(2)	21.1(2)	-1.3(2)
C12	34.8(3)	39.4(3)	24.5(3)	-2.9(2)	-4.0(2)	9.2(2)
K1	29.8(2)	29.5(2)	28.0(2)	1.61(18)	3.68(18)	1.79(17)
Fe1	19.34(14)	19.33(16)	22.35(17)	1.85(12)	0.12(12)	-0.89(11)
Zn1	21.64(13)	22.30(14)	20.37(14)	-0.37(10)	4.49(10)	0.97(10)

165

Table S4.3.4 Bond Lengths for 2.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	C2	1.431(4)	C24	K1	3.499(3)
C1	C5	1.435(3)	C25	C26	1.489(5)
C1	C6	1.496(3)	C25	O6	1.429(4)
C1	Fe1	2.039(2)	C26	01	1.418(4)
C2	C3	1.434(3)	C111	C112	1.415(3)
C2	C7	1.508(3)	C111	N1	1.361(3)

C2	Fe1	2.053(2)	C112	C113	1.369(3)
C3	C4	1.416(3)	C113	C114	1.398(3)
C3	C8	1.504(3)	C114	C115	1.368(3)
C3	Fe1	2.084(2)	C115	N1	1.356(3)
C4	C5	1.429(3)	C121	C122	1.414(3)
C4	C9	1.496(3)	C121	N2	1.357(3)
C4	Fe1	2.088(2)	C122	C123	1.375(3)
C5	C10	1.493(3)	C123	C124	1.387(3)
C5	Fe1	2.061(2)	C124	C125	1.375(3)
C11	C12	1.487(3)	C124	$K1^1$	3.471(2)
C11	C14	1.474(3)	C125	N2	1.355(3)
C11	C111	1.439(3)	C131	N3	1.350(11)
C11	Fe1	2.0350(18)	C131	C132	1.389(11)
C12	C13	1.479(3)	C131	C137	1.38(2)
C12	C121	1.438(3)	C131	N3A	1.419(17)
C12	Fe1	2.0376(19)	C133	C134	1.380(4)
C13	C14	1.478(3)	C133	C132	1.319(10)
C13	C131	1.457(3)	C134	C135	1.374(4)
C13	Fe1	1.983(2)	C135	C137	1.28(2)
C14	C141	1.460(3)	C141	C142	1.395(3)
C14	Fe1	1.987(2)	C141	N4	1.355(3)
C15	C16	1.488(5)	C142	C143	1.374(3)
C15	01	1.419(3)	C143	C144	1.384(3)
C16	O2	1.418(3)	C144	C145	1.374(3)
C17	C18	1.489(5)	C145	N4	1.349(3)
C17	O2	1.419(3)	N1	Zn1	2.0158(17)
C17	K1	3.482(3)	N2	Zn1	2.0198(16)
C18	03	1.421(3)	01	K1	2.7676(19)
C19	C20	1.489(4)	O2	K1	2.7855(17)
C19	03	1.421(3)	03	K1	2.7878(17)
C20	O4	1.424(3)	O4	K1	2.8557(18)
C21	C22	1.494(5)	05	K1	2.7986(18)
C21	O4	1.420(3)	O6	K1	2.8395(19)
C22	05	1.406(4)	Cl1	Zn1	2.2447(6)
C23	C24	1.491(5)	Cl2	K1	3.0306(7)

C23	05	1.428(4)	C12	Zn1	2.2465(6)	
C24	O6	1.420(4)	K1	C124 ²	3.471(2)	

¹-X,1/2+Y,3/2-Z; ²-X,-1/2+Y,3/2-Z

Table S4.3.5 Bond Angles for 2.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	C1	C5	108.1(2)	C125	N2	Zn1	118.11(13)
C2	C1	C6	125.6(2)	C131	C132	C133	124.6(5)
C2	C1	Fe1	70.06(12)	C135	C137	C131	120.0(9)
C5	C1	C6	126.1(2)	C145	N4	C141	117.35(19)
C5	C1	Fe1	70.32(12)	C15	01	K1	116.24(15)
C6	C1	Fe1	129.27(17)	C26	01	C15	113.1(2)
C1	C2	C3	107.7(2)	C26	01	K1	117.74(18)
C1	C2	C7	125.5(2)	C16	O2	C17	111.4(2)
C1	C2	Fe1	69.00(13)	C16	O2	K1	112.39(16)
C3	C2	C7	126.7(2)	C17	O2	K1	107.32(14)
C3	C2	Fe1	70.89(12)	C18	O3	K1	118.42(15)
C7	C2	Fe1	128.33(16)	C19	O3	C18	111.7(2)
C2	C3	C8	127.1(2)	C19	O3	K1	118.66(15)
C2	C3	Fe1	68.57(12)	C20	O4	K1	115.09(15)
C4	C3	C2	108.0(2)	C21	O4	C20	111.3(2)
C4	C3	C8	124.9(2)	C21	O4	K1	113.96(16)
C4	C3	Fe1	70.32(12)	C22	05	C23	112.4(2)
C8	C3	Fe1	127.35(16)	C22	05	K1	116.70(16)
C3	C4	C5	108.83(19)	C23	05	K1	117.37(18)
C3	C4	C9	125.1(2)	C24	O6	C25	112.1(2)
C3	C4	Fe1	69.99(12)	C24	06	K1	105.57(16)
C5	C4	C9	126.0(2)	C25	06	K1	111.46(17)
C5	C4	Fe1	68.82(12)	Zn1	C12	K1	117.74(2)
C9	C4	Fe1	129.20(15)	C17	K1	C24	157.08(8)
C1	C5	C10	126.4(2)	C124 ²	K1	C17	83.61(6)
C1	C5	Fe1	68.70(12)	C124 ²	K1	C24	102.06(7)
C4	C5	C1	107.3(2)	01	K1	C17	80.01(7)
C4	C5	C10	126.2(2)	01	K1	C24	79.30(7)
C4	C5	Fe1	70.91(12)	01	K1	C124 ²	79.28(5)

C10	C5	Fe1	127.71(16)	01	K1	O2	60.63(6)
C12	C11	Fe1	68.68(10)	01	K1	03	120.12(6)
C14	C11	C12	89.71(15)	01	K1	O4	152.18(6)
C14	C11	Fe1	66.76(10)	01	K1	05	119.85(6)
C111	C11	C12	138.56(18)	01	K1	O6	59.91(6)
C111	C11	C14	131.26(18)	01	K1	Cl2	100.03(4)
C111	C11	Fe1	117.03(14)	O2	K1	C17	22.89(6)
C11	C12	Fe1	68.49(10)	O2	K1	C24	139.82(7)
C13	C12	C11	89.93(15)	O2	K1	C124 ²	69.40(5)
C13	C12	Fe1	66.44(10)	O2	K1	03	59.52(5)
C121	C12	C11	138.73(18)	O2	K1	O4	112.00(5)
C121	C12	C13	130.77(18)	O2	K1	05	164.73(5)
C121	C12	Fe1	116.93(13)	O2	K1	O6	118.52(6)
C12	C13	Fe1	70.40(11)	O2	K1	C12	97.26(4)
C14	C13	C12	89.88(15)	03	K1	C17	42.64(7)
C14	C13	Fe1	68.29(11)	03	K1	C24	160.01(7)
C131	C13	C12	132.26(18)	03	K1	C124 ²	78.85(5)
C131	C13	C14	133.42(18)	03	K1	O4	58.91(5)
C131	C13	Fe1	136.04(14)	03	K1	05	117.20(6)
C11	C14	C13	90.47(15)	03	K1	06	164.09(6)
C11	C14	Fe1	70.25(11)	03	K1	Cl2	89.02(4)
C13	C14	Fe1	67.99(11)	O4	K1	C17	101.01(7)
C141	C14	C11	134.39(18)	O4	K1	C24	101.89(7)
C141	C14	C13	131.69(18)	O4	K1	C124 ²	73.27(5)
C141	C14	Fe1	134.58(14)	O4	K1	Cl2	107.66(4)
01	C15	C16	108.5(2)	05	K1	C17	159.70(7)
O2	C16	C15	108.9(2)	05	K1	C24	42.87(7)
C18	C17	K1	85.70(14)	05	K1	C124 ²	95.43(5)
O2	C17	C18	108.5(2)	05	K1	O4	59.67(6)
O2	C17	K1	49.79(11)	05	K1	06	59.95(6)
O3	C18	C17	109.0(2)	05	K1	Cl2	97.59(4)
03	C19	C20	108.9(2)	O6	K1	C17	139.79(7)
O4	C20	C19	109.0(2)	06	K1	C24	23.01(7)
O4	C21	C22	109.5(2)	O6	K1	C124 ²	85.76(6)
05	C22	C21	109.5(2)	O6	K1	O4	112.75(6)

05	C23	C24	110.0(2)	O6	K1	C12	106.79(4)
C23	C24	K1	84.93(16)	Cl2	K1	C17	81.77(5)
O6	C24	C23	108.4(3)	Cl2	K1	C24	92.22(6)
O6	C24	K1	51.42(12)	Cl2	K1	C124 ²	165.25(4)
O6	C25	C26	108.4(2)	C1	Fe1	C2	40.95(10)
01	C26	C25	107.9(2)	C1	Fe1	C3	68.28(9)
C112	C111	C11	121.11(18)	C1	Fe1	C4	67.97(9)
N1	C111	C11	120.12(18)	C1	Fe1	C5	40.99(9)
N1	C111	C112	118.76(18)	C2	Fe1	C3	40.55(9)
C113	C112	C111	120.3(2)	C2	Fe1	C4	67.66(9)
C112	C113	C114	120.0(2)	C2	Fe1	C5	68.68(9)
C115	C114	C113	117.9(2)	C3	Fe1	C4	39.69(9)
N1	C115	C114	122.9(2)	C5	Fe1	C3	67.87(9)
C122	C121	C12	120.67(18)	C5	Fe1	C4	40.28(9)
N2	C121	C12	120.20(17)	C11	Fe1	C1	151.50(9)
N2	C121	C122	119.13(18)	C11	Fe1	C2	121.68(9)
C123	C122	C121	120.2(2)	C11	Fe1	C3	114.48(9)
C122	C123	C124	119.9(2)	C11	Fe1	C4	133.61(8)
C123	C124	$K1^1$	114.17(14)	C11	Fe1	C5	167.44(9)
C125	C124	C123	117.87(19)	C11	Fe1	C12	42.83(8)
C125	C124	$K1^1$	106.32(13)	C12	Fe1	C1	157.39(9)
N2	C125	C124	123.1(2)	C12	Fe1	C2	161.65(9)
C13	C131	N3A	114.5(5)	C12	Fe1	C3	128.90(9)
N3	C131	C13	117.4(3)	C12	Fe1	C4	114.22(8)
N3	C131	C137	13.4(4)	C12	Fe1	C5	125.47(9)
N3	C131	N3A	127.9(6)	C13	Fe1	C1	118.31(9)
C132	C131	C13	122.7(3)	C13	Fe1	C2	148.14(9)
C132	C131	N3	119.8(3)	C13	Fe1	C3	171.31(9)
C132	C131	C137	114.5(8)	C13	Fe1	C4	135.34(9)
C132	C131	N3A	8.2(9)	C13	Fe1	C5	112.80(9)
C137	C131	C13	121.9(6)	C13	Fe1	C11	62.88(8)
C137	C131	N3A	122.7(6)	C13	Fe1	C12	43.15(8)
C132	C133	C134	117.3(4)	C13	Fe1	C14	43.72(8)
C135	C134	C133	117.9(2)	C14	Fe1	C1	115.67(9)
C137	C135	C134	122.8(8)	C14	Fe1	C2	114.84(9)

C142	C141	C14	121.04(18)	C14	Fe1	C3	140.56(9)
N4	C141	C14	117.17(18)	C14	Fe1	C4	176.36(8)
N4	C141	C142	121.74(19)	C14	Fe1	C5	142.59(9)
C143	C142	C141	119.2(2)	C14	Fe1	C11	42.99(8)
C142	C143	C144	119.8(2)	C14	Fe1	C12	62.52(8)
C145	C144	C143	117.9(2)	N1	Zn1	N2	106.87(7)
N4	C145	C144	124.1(2)	N1	Zn1	Cl1	109.00(5)
C111	N1	Zn1	121.16(13)	N1	Zn1	C12	109.52(5)
C115	N1	C111	120.03(18)	N2	Zn1	Cl1	109.19(5)
C115	N1	Zn1	117.73(14)	N2	Zn1	C12	108.86(5)
C121	N2	Zn1	121.11(13)	Cl1	Zn1	C12	113.20(2)
C125	N2	C121	119.63(17)				

¹-X,1/2+Y,3/2-Z; ²-X,-1/2+Y,3/2-Z

4.4. Crystal and Refinement data of 3

Table S4.4.1 Crystal data and structure refinement for 3

Identification code	3
Empirical formula	$C_{46}H_{55}Cl_2Fe_2KN_4O_6$
Formula weight	981.64
Temperature/K	123(2)
Crystal system	monoclinic
Space group	$P2_{1}/c$
a/Å	16.4365(9)
b/Å	16.5146(8)
c/Å	17.1501(8)
$\alpha/^{\circ}$	90.00
$eta / ^{\circ}$	95.109(5)
$\gamma/^{\circ}$	90.00
Volume/Å ³	4636.8(4)
Z	4
$ ho_{ m calc} m mg/mm^3$	1.406
μ/mm^{-1}	7.295
<i>F</i> (000)	2048.0
Crystal size/mm ³	$0.38 \times 0.143 \times 0.039$
2Θ range for data collection	7.44 to 148.36°
Index ranges	$-20 \le h \le 19, -18 \le k \le 20, -21 \le l \le 21$
Reflections collected	19283
Independent reflections	9059 [R(int) = 0.0384]
Data/restraints/parameters	9059/0/550
Goodness-of-fit on F^2	1.027
Final <i>R</i> indexes $[I>2\sigma(I)]$	$R_1 = 0.0419, wR_2 = 0.1053$
Final R indexes [all data]	$R_1 = 0.0533, wR_2 = 0.1146$
Largest diff. peak/hole / e Å-3	0.42/-0.48

Table S4.4.2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement Parameters (Å ² ×10 ³)
for 3. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
C1	618.6(15)	556.3(17)	1023.8(15)	28.1(5)
C2	133.9(14)	517.8(17)	1674.4(16)	28.9(5)
C3	58.8(16)	-322.2(19)	1876.2(17)	34.0(6)
C4	505.7(17)	-787.6(17)	1354.8(17)	33.4(6)
C5	850.5(16)	-242.0(18)	832.0(15)	30.7(6)
C6	820.2(18)	1305.6(19)	597.1(17)	36.9(6)
C7	-252.2(17)	1212(2)	2051.1(19)	40.2(7)
C8	-448.6(18)	-658(2)	2479(2)	48.2(8)
C9	559(2)	-1694.1(19)	1339(2)	45.8(8)
C10	1363(2)	-446(2)	176.3(17)	41.9(7)
C11	2270.4(13)	622.3(15)	2417.1(13)	20.1(5)
C12	2457.7(14)	-241.2(15)	2279.1(13)	20.5(4)
C13	1927.9(14)	-477.1(15)	2888.8(14)	21.9(5)
C14	1739.6(14)	381.3(15)	3029.6(14)	21.4(5)
C111	2405.4(13)	1397.5(15)	2076.3(13)	20.3(4)
C112	1898.9(15)	2068.8(16)	2216.9(15)	26.5(5)
C113	2020.1(16)	2801.1(16)	1874.4(16)	29.3(5)
C114	2639.5(16)	2885.1(16)	1372.2(15)	28.1(5)
C115	3122.2(15)	2230.1(16)	1267.8(15)	27.6(5)
C121	2860.2(14)	-721.0(15)	1724.6(13)	21.5(5)
C122	2678.4(15)	-1549.1(16)	1617.2(15)	26.7(5)
C123	3040.3(16)	-1985.6(17)	1061.8(15)	30.0(5)
C124	3591.0(17)	-1607.0(18)	607.2(16)	31.9(6)
C125	3772.3(16)	-806.4(17)	750.1(15)	28.9(5)
C131	1863.8(14)	-1199.7(15)	3368.8(14)	22.1(5)
C132	1188.5(15)	-1316.7(16)	3791.9(15)	27.6(5)
C133	1172.0(17)	-1982.6(18)	4270.3(17)	34.8(6)
C134	1805.3(19)	-2525.5(18)	4318.5(18)	36.8(6)
C135	2448.0(18)	-2376.2(17)	3876.0(17)	34.1(6)
C141	1446.3(15)	814.8(16)	3692.4(14)	24.1(5)
C143	543(2)	929(2)	4633(2)	43.3(7)
C144	916.5(19)	1609.4(19)	4950.2(17)	38.9(7)

C145	1587.1(19)	1900.2(18)	4604.9(17)	35.6(6)
C146	1856.7(16)	1499.3(16)	3977.9(15)	27.8(5)
C200	4866(2)	-2171(2)	2341(2)	57.8(10)
C201	5534(3)	-2203(2)	1828(2)	57.9(10)
C202	6457(3)	-1351(3)	1230(2)	65.8(12)
C203	6677(3)	-489(3)	1151(2)	67.0(12)
C204	7188(3)	634(2)	1897(3)	64.4(11)
C205	7697(2)	843(2)	2631(3)	67.0(12)
C206	7775(2)	663(3)	4000(3)	62.5(11)
C207	7263(3)	589(3)	4671(3)	61.9(10)
C208	6359(3)	-262(2)	5267.3(18)	51.6(9)
C209	5942(3)	-1062(2)	5193.2(18)	52.9(9)
C210	4928(2)	-1768(2)	4430(2)	52.7(9)
C211	4553(2)	-1849(2)	3615(3)	59.2(11)
N1	3029.5(12)	1505.4(13)	1620.0(12)	22.0(4)
N2	3430.9(12)	-370.7(13)	1306.3(12)	23.4(4)
N3	2491.2(14)	-1726.9(14)	3405.6(13)	30.0(5)
N4	782.6(15)	529.7(15)	4012.8(15)	36.8(5)
01	5180.2(12)	-1955.4(13)	3106.8(13)	41.1(5)
O2	5843.0(17)	-1404.9(15)	1758.2(13)	52.5(6)
03	7050.8(17)	-211.2(16)	1888.8(15)	53.8(6)
O4	7265.6(13)	672.2(14)	3293.6(16)	48.8(6)
05	6853.8(15)	-167.3(14)	4631.0(13)	42.3(5)
06	5436.3(14)	-1077.1(13)	4479.1(13)	41.7(5)
C11	4838.2(4)	1068.2(4)	732.2(4)	39.45(17)
C12	4626.0(4)	604.6(5)	2879.5(4)	39.45(17)
K1	6071.2(3)	-528.4(4)	3129.1(3)	30.61(13)
Fe1	1257.3(2)	8.5(2)	1991.6(2)	20.43(10)
Fe2	3989.7(2)	698.9(2)	1653.3(2)	21.79(10)

Table S4.4.3 Anisotropic Displacement Parameters (Å²×10³) for 3. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+...+2hka\times b\times U_{12}]$

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U_{12}
C1	20.2(11)	31.3(13)	31.2(12)	6.4(11)	-5.9(9)	-2.1(10)
C2	14.2(10)	35.3(14)	36.5(13)	6.3(11)	-1.0(9)	1.4(10)
C3	18.7(11)	37.0(15)	44.9(15)	11.1(13)	-5.2(10)	-8.7(11)

This journal is © The Royal Society of Chemistry [year]

 C4	27.4(12)	29.2(14)	40.7(14)	2.5(12)	-12.6(11)	-4.7(11)
C5	26.7(12)	34.5(14)	28.8(12)	-0.4(11)	-8.3(10)	-2.4(11)
C6	34.3(14)	37.8(16)	36.8(14)	11.6(12)	-6.3(11)	-5.4(12)
C7	21.4(12)	47.4(18)	51.8(17)	4.5(14)	3.1(11)	10.0(12)
C8	20.2(12)	61(2)	63(2)	23.7(18)	1.5(13)	-9.9(14)
C9	47.1(17)	28.6(15)	57.2(19)	3.7(14)	-21.1(15)	-9.9(14)
C10	43.0(16)	48.4(18)	32.9(14)	-6.6(13)	-3.9(12)	6.6(15)
C11	13.5(9)	23.1(12)	23.8(11)	-1.6(9)	1.6(8)	-0.9(9)
C12	17.1(10)	20.4(11)	23.7(11)	1.6(9)	0.1(8)	1.4(9)
C13	15.9(10)	23.7(12)	26.3(11)	-0.7(10)	3.0(9)	1.6(9)
C14	17.6(10)	21.7(12)	25.3(11)	1.0(9)	4.0(9)	-0.8(9)
C111	15.4(9)	21.4(11)	23.7(11)	-1.8(9)	-0.8(8)	0.1(9)
C112	21.9(11)	25.9(13)	31.8(12)	-0.3(10)	3.6(9)	2(1)
C113	26.5(12)	23.0(12)	38.0(13)	-0.4(11)	-0.1(10)	3.2(10)
C114	28.1(12)	22.0(12)	33.5(13)	4.7(10)	-0.8(10)	-2.3(10)
C115	22.5(11)	28.1(13)	31.9(12)	3.9(11)	1.6(9)	-2.5(10)
C121	16.4(10)	25.2(12)	22.6(11)	0.2(9)	0.4(8)	2.3(9)
C122	25.6(11)	25.4(13)	28.9(12)	-0.7(10)	0.8(9)	-0.8(10)
C123	30.5(12)	25.3(13)	33.3(13)	-9.0(11)	-2.2(10)	4.1(11)
C124	31.7(13)	33.7(14)	30.4(12)	-9.0(11)	2.9(10)	4.7(12)
C125	25.5(11)	33.5(14)	27.8(12)	-2.0(11)	3.2(10)	5.1(11)
C131	19.5(10)	20.7(11)	25.6(11)	-1.2(9)	-0.5(9)	-1.5(9)
C132	23.4(11)	27.4(13)	32.3(12)	5.4(11)	4.4(10)	0.7(10)
C133	28.7(13)	34.3(15)	41.9(15)	8.3(13)	5.0(11)	-6.5(12)
C134	40.4(15)	27.9(14)	41.5(15)	12.6(12)	-0.3(12)	-2.1(12)
C135	31.9(13)	25.5(13)	44.3(15)	7.6(12)	0.8(11)	3.6(11)
C141	20.7(10)	24.6(12)	27.2(11)	-0.5(10)	3.6(9)	4(1)
C143	40.0(15)	40.8(17)	52.3(18)	-7.2(15)	21.8(14)	2.0(14)
C144	40.3(15)	40.4(16)	37.3(14)	-10.0(13)	11.1(12)	8.1(13)
C145	38.8(15)	32.9(14)	35.0(14)	-8.5(12)	2.1(12)	0.8(12)
C146	26.8(12)	27.2(13)	29.6(12)	-1.2(11)	3.9(10)	-0.7(11)
C200	44.6(18)	44.5(19)	78(3)	-9.3(18)	-27.8(18)	-0.4(16)
C201	74(3)	42.7(19)	52(2)	-13.4(16)	-22.0(19)	9.4(19)
C202	90(3)	74(3)	34.1(16)	-3.7(18)	9.5(18)	29(3)
C203	88(3)	81(3)	34.2(16)	13.0(19)	19.3(18)	23(3)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013 CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS

C204	65(2)	53(2)	81(3)	24(2)	37(2)	9(2)
C205	49(2)	46(2)	113(4)	12(2)	44(2)	-4.0(17)
C206	33.8(17)	55(2)	97(3)	-22(2)	-0.2(18)	-11.0(16)
C207	57(2)	54(2)	72(2)	-25(2)	-4.7(19)	-9.9(19)
C208	76(2)	47.5(19)	30.9(14)	-6.7(14)	5.5(15)	19.5(19)
C209	85(3)	45.9(19)	30.8(15)	7.7(14)	22.4(16)	18.6(19)
C210	49.7(19)	31.7(16)	83(3)	3.8(17)	40.9(19)	3.7(15)
C211	26.0(14)	33.7(17)	120(4)	0(2)	19.7(18)	2.7(13)
N1	16.9(8)	22(1)	26.9(10)	0.6(8)	2.1(7)	-1.2(8)
N2	22.5(9)	24.4(10)	23.8(9)	-1.8(8)	4.8(8)	2.2(8)
N3	25.9(10)	26.9(11)	37.0(12)	3.6(9)	2.5(9)	3.9(9)
N4	33.0(12)	32.1(12)	47.8(14)	-8.6(11)	17(1)	-2.7(10)
01	25.3(9)	38.5(11)	58.3(13)	-1.3(10)	-2.7(9)	1.9(9)
O2	73.8(17)	47.4(13)	34.9(11)	-3.8(10)	-2.9(11)	15.5(13)
03	59.3(15)	52.9(14)	52.2(13)	16.6(12)	21.4(11)	11.2(13)
O4	29.9(10)	45.1(13)	73.6(16)	4.9(12)	16.3(11)	-1.8(10)
05	49.6(12)	37.7(11)	38.2(11)	-7.8(9)	-3.1(9)	5.6(10)
06	50.4(12)	30.7(10)	46.5(11)	5.5(9)	18.7(10)	4.5(10)
Cl1	43.3(4)	32.8(3)	46.3(4)	0.5(3)	26.9(3)	-0.8(3)
C12	34.2(3)	53.4(4)	29.5(3)	-3.5(3)	-4.5(2)	12.7(3)
K 1	26.9(3)	32.8(3)	32.4(3)	1.8(2)	4.0(2)	0.6(2)
Fe1	14.75(16)	20.50(19)	25.62(19)	2.23(14)	-0.53(13)	-0.76(14)
Fe2	16.72(17)	24.2(2)	24.76(19)	-0.22(15)	3.82(13)	1.15(14)

Table S4.4.4 Bond Lengths for 3.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	C2	1.429(4)	C132	C133	1.374(4)
C1	C5	1.419(4)	C133	C134	1.371(4)
C1	C6	1.490(4)	C134	C135	1.377(4)
C1	Fe1	2.089(2)	C135	N3	1.347(4)
C2	C3	1.438(4)	C141	C146	1.383(4)
C2	C7	1.486(4)	C141	N4	1.349(3)
C2	Fe1	2.058(2)	C143	C144	1.369(5)
C3	C4	1.431(4)	C143	N4	1.341(4)
C3	C8	1.492(4)	C144	C145	1.383(4)

C3	Fe1	2.037(3)	C145	C146	1.370(4)
C4	C5	1.424(4)	C200	C201	1.468(6)
C4	C9	1.500(4)	C200	01	1.413(4)
C4	Fe1	2.051(3)	C201	O2	1.421(5)
C5	C10	1.502(4)	C202	C203	1.478(7)
C5	Fe1	2.082(3)	C202	O2	1.418(5)
C11	C12	1.482(3)	C203	03	1.432(5)
C11	C14	1.479(3)	C204	C205	1.488(7)
C11	C111	1.433(3)	C204	03	1.415(5)
C11	Fe1	2.029(2)	C204	K1	3.495(4)
C12	C13	1.472(3)	C205	04	1.421(5)
C12	C121	1.443(3)	C206	C207	1.490(6)
C12	Fe1	2.033(2)	C206	O4	1.410(5)
C13	C14	1.476(3)	C207	05	1.417(5)
C13	C131	1.459(3)	C208	C209	1.489(6)
C13	Fe1	1.981(2)	C208	05	1.426(4)
C14	C141	1.461(3)	C209	O6	1.418(4)
C14	Fe1	1.981(2)	C210	C211	1.483(6)
C111	C112	1.420(3)	C210	06	1.412(4)
C111	N1	1.356(3)	C211	01	1.418(4)
C112	C113	1.367(4)	C211	K1	3.471(4)
C113	C114	1.398(4)	N1	Fe2	2.062(2)
C114	C115	1.363(4)	N2	Fe2	2.054(2)
C114	$K1^1$	3.430(3)	01	K1	2.773(2)
C115	N1	1.355(3)	O2	K1	2.758(2)
C121	C122	1.408(4)	03	K1	2.829(2)
C121	N2	1.360(3)	O4	K1	2.787(2)
C122	C123	1.372(4)	05	K1	2.838(2)
C123	C124	1.394(4)	O6	K1	2.775(2)
C124	C125	1.373(4)	Cl1	Fe2	2.2814(7)
C125	N2	1.356(3)	Cl2	K1	3.0243(9)
C131	C132	1.393(3)	Cl2	Fe2	2.2690(7)
C131 C131	C132 N3	1.393(3) 1.347(3)	Cl2 Kl	Fe2 C114 ²	2.2690(7) 3.430(3)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	C1	C6	125.8(3)	C143	N4	C141	117.2(3)
C2	C1	Fe1	68.65(14)	C200	01	C211	112.1(3)
C5	C1	C2	108.6(2)	C200	01	K1	112.1(2)
C5	C1	C6	125.6(3)	C211	01	K1	107.35(19)
C5	C1	Fe1	69.85(14)	C201	O2	C202	113.1(3)
C6	C1	Fe1	129.19(18)	C201	O2	K1	115.9(2)
C1	C2	C3	107.3(3)	C202	O2	K1	117.4(2)
C1	C2	C7	126.5(3)	C203	03	K1	112.1(2)
C1	C2	Fe1	71.04(14)	C204	03	C203	112.3(3)
C3	C2	C7	126.2(3)	C204	03	K1	106.0(2)
C3	C2	Fe1	68.66(14)	C205	O4	K1	117.2(2)
C7	C2	Fe1	127.5(2)	C206	O4	C205	112.9(3)
C2	C3	C8	126.2(3)	C206	O4	K1	116.0(2)
C2	C3	Fe1	70.23(14)	C207	05	C208	111.1(3)
C4	C3	C2	107.9(2)	C207	05	K1	113.8(2)
C4	C3	C8	125.7(3)	C208	05	K1	115.4(2)
C4	C3	Fe1	70.05(15)	C209	06	K1	118.7(2)
C8	C3	Fe1	128.9(2)	C210	06	C209	111.3(3)
C3	C4	C9	125.6(3)	C210	06	K1	118.6(2)
C3	C4	Fe1	68.98(15)	Fe2	C12	K1	117.72(3)
C5	C4	C3	108.0(2)	C114 ²	K1	C204	102.97(8)
C5	C4	C9	126.4(3)	C114 ²	K1	C211	84.34(7)
C5	C4	Fe1	71.04(15)	C211	K1	C204	156.63(12)
C9	C4	Fe1	128.05(19)	01	K1	C114 ²	70.62(6)
C1	C5	C4	108.2(3)	01	K1	C204	139.80(10)
C1	C5	C10	124.2(3)	01	K1	C211	22.95(8)
C1	C5	Fe1	70.38(15)	01	K1	03	118.84(8)
C4	C5	C10	127.6(3)	01	K1	O4	166.52(7)
C4	C5	Fe1	68.67(15)	01	K1	05	112.78(7)
C10	C5	Fe1	127.28(19)	01	K1	O6	59.78(7)
C12	C11	Fe1	68.74(12)	01	K1	Cl2	96.70(5)
C14	C11	C12	89.92(19)	O2	K 1	C114 ²	81.13(7)

Table S4.4.5 Bond Angles for 3.

Electronic Supplementary Material (ESI) for Dalton Transactions

This journal is © The Royal Society of Chemistry 2013 CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS

66.66(13)

138.8(2)

130.8(2)

116.85(16)

68.45(12)

89.82(19)

66.62(12)

138.4(2)

131.1(2)

116.34(16)

70.38(13)

90.45(19)

68.15(13)

134.0(2)

131.8(2)

134.94(17)

70.09(13)

89.81(18)

68.12(13)

132.6(2)

133.4(2)

120.9(2)

120.4(2)

118.7(2)

120.5(2)

119.7(2)

117.8(2)

123.5(2)

121.0(2)

119.5(2)

119.5(2)

120.1(2)

112.95(18)

106.56(17)

135.89(17)

O2

O2

O2

O2

O2

O2

O2

O2

O3

O3

O3

O3

O3

O4

O4

O4

O4

O4

04

05

05

05

05

06

06

06

06

06

06

06

Cl2

Cl2

Cl2

C2

C2

K1

K1

K1

K1

K1

K1

K1

K1

K1

K1

K1

K1

K1

Fe1

Fe1

C204

C211

01

O3

04

05

06

Cl2

C114²

C204

C211

05

Cl2

C114²

C204

C211

03

05

Cl2

C114²

C204

C211

Cl2

 $C114^{2}$

C204

C211

03

04

05

Cl2

 $C114^{2}$

C204

C211

C1

C5

79.16(10)

80.13(10)

60.70(8)

59.97(9)

120.06(8)

154.19(7)

120.47(8)

99.12(6)

87.05(7)

22.89(9)

140.03(10)

113.66(8)

105.75(6)

95.98(7)

42.87(10)

159.68(10)

60.09(8)

60.02(8)

96.40(5)

73.39(6)

102.31(10)

101.05(9)

106.57(5)

79.19(7)

42.50(9)

165.79(7)

117.50(8)

59.01(7)

88.34(5)

165.46(5)

91.30(7)

81.40(6)

40.30(11)

67.94(11)

[journal], [year], [vol], 00-00 | \$45

160.17(10)

Fe1

C12

C14

Fe1

Fe1

C11

Fe1

C11

C13

Fe1

Fe1

C12

Fe1

C12

C14

Fe1

Fe1

C11

Fe1

C11

C13

Fe1

C11

C11

C112

C111

C114

 $K1^1$

C113

 $K1^1$

C114

C12

C12

C122

C121

This journal is © The Royal Society of Chemistry

C11

C11

C11

C11

C12

C12

C12

C12

C12

C12

C13

C13

C13

C13

C13

C13

C14

C14

C14

C14

C14

C14

C111

C111

C111

C112

C113

C114

C114

C114

C115

C121

C121

C121

C122

C14

C111

C111

C111

C11

C13

C13

C121

C121

C121

C12

C14

C14

C131

C131

C131

C11

C13

C13

C141

C141

C141

C112

N1

N1

C113

C112

C113

C115

C115

C122

N2

N2

C123

N1

C122	C123	C124	119.7(3)	C3	Fe1	C1	68.02(11)
C125	C124	C123	118.3(2)	C3	Fe1	C2	41.11(11)
N2	C125	C124	122.7(3)	C3	Fe1	C4	40.97(13)
C132	C131	C13	120.6(2)	C3	Fe1	C5	68.18(12)
N3	C131	C13	117.5(2)	C4	Fe1	C1	67.57(11)
N3	C131	C132	121.9(2)	C4	Fe1	C2	68.75(11)
C133	C132	C131	118.8(2)	C4	Fe1	C5	40.29(11)
C134	C133	C132	120.3(3)	C5	Fe1	C1	39.78(11)
C133	C134	C135	117.7(3)	C11	Fe1	C1	114.05(10)
N3	C135	C134	123.8(3)	C11	Fe1	C2	125.40(11)
C146	C141	C14	119.4(2)	C11	Fe1	C3	157.61(12)
N4	C141	C14	118.7(2)	C11	Fe1	C4	161.42(11)
N4	C141	C146	121.8(2)	C11	Fe1	C5	128.77(10)
N4	C143	C144	124.5(3)	C11	Fe1	C12	42.81(9)
C143	C144	C145	117.4(3)	C12	Fe1	C1	133.52(10)
C146	C145	C144	119.6(3)	C12	Fe1	C2	167.35(11)
C145	C146	C141	119.4(3)	C12	Fe1	C3	151.47(11)
01	C200	C201	109.6(3)	C12	Fe1	C4	121.64(11)
O2	C201	C200	108.1(3)	C12	Fe1	C5	114.43(10)
O2	C202	C203	108.2(3)	C13	Fe1	C1	176.29(10)
O3	C203	C202	108.4(3)	C13	Fe1	C2	142.66(10)
C205	C204	K1	84.4(2)	C13	Fe1	C3	115.68(11)
O3	C204	C205	108.3(3)	C13	Fe1	C4	114.91(11)
03	C204	K1	51.06(16)	C13	Fe1	C5	140.41(11)
O4	C205	C204	110.4(3)	C13	Fe1	C11	62.67(10)
O4	C206	C207	109.3(3)	C13	Fe1	C12	43.00(9)
05	C207	C206	109.5(3)	C13	Fe1	C14	43.73(10)
05	C208	C209	108.7(3)	C14	Fe1	C1	135.38(11)
06	C209	C208	108.6(3)	C14	Fe1	C2	112.85(11)
06	C210	C211	108.9(3)	C14	Fe1	C3	118.48(11)
C210	C211	K1	85.53(19)	C14	Fe1	C4	148.37(11)
01	C211	C210	109.1(3)	C14	Fe1	C5	171.34(11)
01	C211	K1	49.69(15)	C14	Fe1	C11	43.25(9)
C111	N1	C115	119.6(2)	C14	Fe1	C12	62.81(9)
C111	N1	Fe2	121.03(16)	N1	Fe2	Cl1	108.76(6)

C115	N1	Fe2	117.81(16)	N1	Fe2	Cl2	111.01(6)
C121	N2	Fe2	121.63(16)	N2	Fe2	N1	103.06(8)
C125	N2	C121	119.6(2)	N2	Fe2	Cl1	108.32(6)
C125	N2	Fe2	117.25(17)	N2	Fe2	Cl2	111.52(6)
C135	N3	C131	117.5(2)	Cl2	Fe2	Cl1	113.60(3)

¹1-X,1/2+Y,1/2-Z; ²1-X,-1/2+Y,1/2-Z 180

4.5. Crystal and Refinement data of 4

Table S4.5.1 Crystal data and structure refinement for 4

Identification code	4
Empirical formula	$C_{54}H_{71}Cl_4FeKN_4O_8Zn_2$
Formula weight	1271.64
Temperature/K	123(2)
Crystal system	monoclinic
Space group	$P2_{1}/m$
a/Å	13.8686(8)
b/Å	14.3500(5)
c/Å	16.1195(7)
$\alpha /^{\circ}$	90.00
β /°	114.168(6)
$\gamma^{\prime \circ}$	90.00
Volume/Å ³	2926.8(2)
Z	2
$ ho_{ m calc} m mg/mm^3$	1.443
μ/mm^{-1}	5.669
<i>F</i> (000)	1320.0
Crystal size/mm ³	$0.191 \times 0.098 \times 0.026$
2Θ range for data collection	17.78 to 133.18°
Index ranges	$-14 \le h \le 16, -17 \le k \le 17, -19 \le l \le$
Reflections collected	15832
Independent reflections	5331 [R(int) = 0.0517]
Data/restraints/parameters	5331/25/366
Goodness-of-fit on F^2	1.018
Final <i>R</i> indexes $[I>2\sigma(I)]$	$R_1 = 0.0654, wR_2 = 0.1678$
Final R indexes [all data]	$R_1 = 0.0883, wR_2 = 0.1864$
Largest diff. peak/hole / e $Å^{-3}$	1.91/-0.55

Table S4.5.2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 4. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
O4	161(7)	3326(6)	4066(6)	57(2)
C400	856(13)	3399(12)	3636(11)	86(5)
C401	834(12)	2456(16)	3197(11)	110(6)
C402	-320(14)	2254(15)	2833(13)	129(9)
C403	-676(13)	2859(18)	3408(16)	163(12)
C1	6254(4)	2994(4)	10115(4)	42.1(13)
C2	5467(4)	3309(4)	9263(4)	39.8(12)

19

C3	4988(6)	2500	8726(5)	40.2(17)
C4	6897(5)	3596(5)	10919(4)	53.9(16)
C5	5134(5)	4301(5)	8989(5)	52.2(15)
C6	4056(7)	2500	7828(6)	51(2)
C7	7926(4)	3010(3)	9046(3)	27.3(10)
C8	7071(4)	3019(3)	8122(3)	29.1(10)
C71	8466(4)	3747(3)	9688(3)	28.7(10)
C72	7987(4)	4609(3)	9675(3)	35.0(11)
C73	8523(4)	5288(4)	10293(4)	43.7(13)
C74	9529(5)	5112(4)	10938(4)	48.0(15)
C75	9957(4)	4263(4)	10939(3)	38.3(12)
C81	6658(4)	3774(4)	7469(3)	31.6(11)
C82	7228(5)	4610(4)	7599(3)	37.9(12)
C83	6787(5)	5376(4)	7053(4)	47.1(14)
C84	5795(5)	5301(4)	6358(4)	45.3(14)
C85	5310(5)	4442(4)	6212(3)	42.3(13)
N1	9462(3)	3594(3)	10313(3)	28.3(8)
N2	5711(3)	3691(3)	6744(3)	35.1(10)
Cl1	11849.5(15)	2500	11436.4(14)	45.0(5)
Cl2	10454.9(17)	2500	8875.1(12)	38.9(4)
C13	5621.4(17)	2500	4930.2(12)	41.4(4)
Cl4	3309.8(18)	2500	5462.4(17)	69.3(7)
Fe1	6565.8(9)	2500	9027.6(7)	29.2(3)
Zn1	10315.3(7)	2500	10209.5(6)	29.1(2)
Zn2	5063.3(8)	2500	6075.9(6)	37.0(3)
K1	0	5000	5000	52.7(5)
01	1786(6)	5906(6)	4983(5)	67.9(19)
O2	-116(5)	5914(5)	3421(4)	50.7(15)
O3	-1940(5)	5213(4)	3552(4)	47.6(14)
C201	1751(8)	6176(7)	4159(6)	48(2)
C202	653(11)	6503(11)	3515(10)	86(4)
C203	-1139(10)	6212(9)	2867(8)	66(3)
C204	-1972(12)	5577(11)	2775(10)	75(4)
C205	-2794(12)	4705(11)	3551(10)	81(4)
C206	2747(9)	5589(9)	5593(7)	57(3)

011	2179(10)	5375(8)	5821(8)	40(3)
012	1012(10)	5931(8)	4062(8)	44(3)
013	-1079(9)	5199(8)	3113(7)	39(2)
C221	2600(17)	6046(16)	5462(14)	51(5)
C222	2159(16)	5798(15)	4413(13)	51(5)
C223	589(13)	5823(12)	3166(11)	37(3)
C224	-714(12)	5913(10)	2771(9)	27(3)
C225	-2124(14)	5272(13)	2796(11)	29(4)
C226	-2616(14)	4496(12)	3249(11)	34(3)
O5	5053(18)	2500	2366(12)	203(8)
C301	4163(8)	3037(10)	954(7)	131(6)
C302	4891(13)	3306(8)	1839(7)	127(5)

Table S4.5.3 Anisotropic Displacement Parame	ters (Å ² ×10 ³) for 4	. The Anisotropic disp	lacement factor exponent
takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}++2hka\times b\times U_{12}]$			-

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
04	58(6)	52(5)	56(5)	0(4)	18(5)	-7(4)
C400	94(13)	85(12)	75(10)	3(9)	31(10)	12(10)
C401	112(12)	129(14)	83(9)	-50(17)	33(9)	20(20)
C402	146(16)	150(20)	83(11)	-17(13)	38(12)	30(17)
C403	200(20)	160(30)	120(17)	-18(16)	47(18)	50(20)
C1	33(3)	61(3)	32(3)	-8(2)	13(2)	1(3)
C2	29(3)	52(3)	38(3)	-5(2)	13(2)	6(2)
C3	34(4)	50(4)	37(4)	0	14(3)	0
C4	43(3)	78(4)	38(3)	-16(3)	15(3)	-4(3)
C5	42(3)	57(4)	57(4)	-2(3)	18(3)	16(3)
C6	33(4)	69(6)	44(4)	0	6(4)	0
C7	26(2)	28(2)	27(2)	-0.2(19)	10.0(19)	3(2)
C8	25(2)	30(3)	28(2)	-3.2(19)	6.5(19)	-2(2)
C71	27(2)	31(2)	25(2)	0.5(19)	6.6(19)	-1(2)
C72	30(3)	32(2)	36(3)	1(2)	6(2)	3(2)
C73	35(3)	34(3)	49(3)	-6(2)	5(3)	5(2)
C74	39(3)	33(3)	53(3)	-16(3)	0(3)	0(2)
C75	32(3)	37(3)	32(2)	-4(2)	-1(2)	3(2)
C81	29(3)	37(3)	24(2)	2(2)	7(2)	7(2)
C82	40(3)	37(3)	31(2)	6(2)	9(2)	-2(2)

_							
	C83	57(4)	39(3)	36(3)	5(2)	9(3)	-1(3)
	C84	57(4)	39(3)	34(3)	10(2)	13(3)	10(3)
	C85	42(3)	46(3)	28(2)	4(2)	4(2)	10(3)
	N1	26(2)	28.5(19)	25.8(18)	-0.5(16)	6.1(16)	-2.4(17)
	N2	34(2)	39(2)	24.8(19)	-3.9(17)	4.4(18)	3.3(19)
	Cl1	27.9(9)	45.1(10)	48.6(10)	0	1.9(8)	0
	C12	56.7(12)	28.7(8)	37.7(9)	0	26.0(9)	0
	C13	52.0(12)	37.8(9)	31.8(8)	0	14.5(8)	0
	Cl4	30.8(11)	107(2)	52.5(12)	0	-0.4(9)	0
	Fe1	23.5(6)	35.0(6)	24.8(5)	0	5.6(4)	0
	Zn1	26.0(5)	29.8(5)	29.0(5)	0	8.5(4)	0
	Zn2	30.4(5)	42.2(5)	29.2(5)	0	2.8(4)	0
	K1	37.0(9)	78.6(13)	34.3(8)	14.6(9)	6.3(7)	-10.8(9)
	05	270(20)	189(18)	148(14)	0	82(15)	0
	C301	76(6)	228(16)	105(7)	80(9)	54(6)	54(8)
	C302	211(15)	81(7)	77(6)	-7(5)	49(8)	37(8)

Table S4.5.4 Bond Lengths for 4.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O4	C400	1.402(9)	Fe1	$C2^1$	2.071(6)
O4	C403	1.383(10)	Fe1	$C7^1$	2.013(5)
O4	K1	2.892(9)	Fe1	$C8^1$	2.004(5)
C400	C401	1.522(10)	Zn1	$N1^1$	2.013(4)
C401	C402	1.491(10)	Zn2	$N2^1$	2.023(4)
C402	C403	1.493(9)	K1	O1 ²	2.807(8)
C1	$C1^1$	1.417(13)	K1	01	2.807(8)
C1	C2	1.434(8)	K1	O2	2.808(6)
C1	C4	1.508(8)	K1	$O2^2$	2.808(6)
C1	Fe1	2.094(5)	K1	O3 ²	2.764(6)
C2	C3	1.438(7)	K1	03	2.764(6)
C2	C5	1.506(9)	K1	O11 ²	2.811(12)
C2	Fe1	2.071(6)	K1	011	2.811(12)
C3	$C2^1$	1.438(7)	K1	O12 ²	2.789(13)
C3	C6	1.494(11)	K1	012	2.789(13)
C3	Fe1	2.037(8)	K1	O13 ²	2.801(11)
C7	$C7^1$	1.464(9)	K1	013	2.801(11)

This journal is © The Royal Society of Chemistry

C7	C8	1.476(6)	01	C201	1.366(12)
C7	C71	1.454(7)	01	C206	1.370(13)
C7	Fe1	2.013(5)	O2	C202	1.320(15)
C8	$C8^1$	1.490(10)	O2	C203	1.399(13)
C8	C81	1.454(7)	03	C204	1.341(15)
C8	Fe1	2.004(5)	03	C205	1.391(15)
C71	C72	1.400(7)	C201	C202	1.524(17)
C71	N1	1.354(6)	C203	C204	1.430(19)
C72	C73	1.374(8)	C205	C206 ²	1.418(18)
C73	C74	1.380(8)	C206	C205 ²	1.418(18)
C74	C75	1.356(8)	011	C221	1.37(2)
C75	N1	1.357(6)	011	C226 ²	1.38(2)
C81	C82	1.404(8)	012	C222	1.47(2)
C81	N2	1.359(6)	012	C223	1.33(2)
C82	C83	1.385(8)	013	C224	1.356(18)
C83	C84	1.377(8)	013	C225	1.33(2)
C84	C85	1.378(9)	C221	C222	1.58(3)
C85	N2	1.349(7)	C223	C224	1.66(2)
N1	Zn1	2.013(4)	C225	C226	1.63(2)
N2	Zn2	2.023(4)	C226	O11 ²	1.38(2)
Cl1	Zn1	2.234(2)	05	C302 ¹	1.398(13)
C12	Zn1	2.2371(19)	05	C302	1.398(13)
C13	Zn2	2.276(2)	C301	C301 ¹	1.54(3)
Cl4	Zn2	2.219(2)	C301	C302	1.423(15)
Fe1	$C1^1$	2.094(5)			

185

¹+X,1/2-Y,+Z; ²-X,1-Y,1-Z

Table S4.5.5 Bond Angles for 4.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C400	04	K1	114.2(8)	N2	Zn2	Cl4	113.83(13)
C403	O4	C400	100.8(14)	$N2^1$	Zn2	Cl4	113.83(13)
C403	O4	K1	125.6(10)	Cl4	Zn2	C13	108.25(9)
O4	C400	C401	106.1(11)	01	K1	O1 ²	180.0
C402	C401	C400	99.7(8)	O1 ²	K1	O2	120.1(2)
C401	C402	C403	102.6(6)	01	K1	O2	59.9(2)
O4	C403	C402	111.8(11)	01	K1	$O2^2$	120.1(2)

 $C1^1$	C1	C2	108.4(3)	O1 ²	K1	$O2^2$	59.9(2)
$C1^1$	C1	C4	125.0(4)	01	K1	011	29.9(3)
$C1^1$	C1	Fe1	70.22(18)	$O1^2$	K1	011	150.1(3)
C2	C1	C4	126.4(6)	01	K1	O11 ²	150.1(3)
C2	C1	Fe1	69.0(3)	O1 ²	K1	O11 ²	29.9(3)
C4	C1	Fe1	131.3(4)	O2	K1	$O2^2$	180.000(1)
C1	C2	C3	107.8(5)	$O2^2$	K1	011	90.6(3)
C1	C2	C5	127.0(5)	O2	K1	O11 ²	90.6(3)
C1	C2	Fe1	70.7(3)	O2	K1	011	89.4(3)
C3	C2	C5	125.2(5)	$O2^2$	K1	O11 ²	89.4(3)
C3	C2	Fe1	68.3(4)	O3 ²	K1	01	60.1(2)
C5	C2	Fe1	129.5(4)	03	K1	01	119.9(2)
C2	C3	$C2^1$	107.7(7)	03	K 1	O1 ²	60.1(2)
C2	C3	C6	125.9(3)	O3 ²	K1	O1 ²	119.9(2)
$C2^1$	C3	C6	125.9(3)	O3 ²	K1	$O2^2$	60.53(19)
C2	C3	Fe1	70.8(4)	03	K1	$O2^2$	119.47(19)
$C2^1$	C3	Fe1	70.8(4)	O3 ²	K1	O2	119.47(19)
C6	C3	Fe1	130.5(6)	03	K1	O2	60.53(19)
$C7^1$	C7	C8	90.5(3)	03	K1	O3 ²	180.000(1)
$C7^1$	C7	Fe1	68.67(13)	O3 ²	K1	011	30.3(3)
C8	C7	Fe1	68.2(3)	O3 ²	K1	O11 ²	149.7(3)
C71	C7	$C7^1$	136.6(3)	03	K1	011	149.7(3)
C71	C7	C8	132.7(4)	03	K1	O11 ²	30.3(3)
C71	C7	Fe1	118.7(3)	O3 ²	K1	012	88.8(3)
C7	C8	$C8^1$	89.5(3)	03	K1	012	91.2(3)
C7	C8	Fe1	68.7(3)	O3 ²	K1	O12 ²	91.2(3)
$C8^1$	C8	Fe1	68.18(14)	03	K1	O12 ²	88.8(3)
C81	C8	C7	130.7(4)	03	K1	O13 ²	146.2(3)
C81	C8	$C8^1$	138.1(3)	$O3^2$	K1	013	146.2(3)
C81	C8	Fe1	130.7(4)	03	K1	013	33.8(3)
C72	C71	C7	121.9(4)	$O3^2$	K1	O13 ²	33.8(3)
N1	C71	C7	118.9(4)	O11 ²	K1	011	180.0(3)
N1	C71	C72	119.2(4)	012	K1	$O1^2$	150.3(3)
C73	C72	C71	120.3(5)	O12 ²	K1	O1 ²	29.7(3)
C72	C73	C74	119.7(5)	012	K1	01	29.7(3)

Electronic Supplementary Material (ESI) for Dalton Transactions

This journal is © The Royal Society of Chemistry 2013 CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS

 $O12^{2}$ C75 C74 C73 01 K1 150.3(3) 118.2(5) $O12^{2}$ $O2^2$ C74 C75 N1 123.2(5)K1 30.7(3)C82 C81 C8 012 K1 **O**2 30.7(3) 119.8(4) N2 C81 C8 $O12^{2}$ K1 **O**2 120.8(5) 149.3(3) $O2^2$ N2 C81 C82 119.4(5) O12 K1 149.3(3) $O12^{2}$ C83 C82 C81 120.5(5) **K**1 011 121.3(4) C84 C82 011 C83 119.3(6) 012 K1 58.7(4) C83 C84 C85 $O12^{2}$ K1 $O11^{2}$ 117.7(5)58.7(4) N2 C85 C84 O12 K1 011^{2} 124.1(5)121.3(3) C71 012 K1 $O12^{2}$ N1 C75 180.000(1)119.3(4)C71 $O12^{2}$ O13² N1 Zn1 K1 61.7(3)121.3(3)O13² C75 N1 Zn1 012 K1 118.3(3) 118.5(3)C81 N2 Zn2 012 013 K1 61.7(3) 126.4(3) $O12^{2}$ C85 N2 C81 K1 013 118.3(3) 118.6(5)C85 N2 Zn2 111.0(3) 013 **K**1 01 91.4(3) $C1^1$ $O13^{2}$ C1 Fe1 K1 01 39.6(4) 88.6(3) $C1^1$ $O1^2$ C2 Fe1 O13² K1 67.4(2)91.4(3) $C2^1$ $O1^2$ $C1^1$ Fe1 40.3(2)013 **K**1 88.6(3) C2 $O13^{2}$ Fe1 C1 40.3(2)K1 02 147.0(3) $C2^1$ $O13^{2}$ $O2^2$ Fe1 C1 **K**1 33.0(3) 67.4(2) $O2^2$ C2 $C2^1$ Fe1 68.2(3)013 **K**1 147.0(3) C3 Fe1 C1 68.3(3)013 K1 O2 33.0(3)O13² C3 Fe1 $C1^1$ 011 68.3(3)K1 61.0(3) C3 C2 Fe1 41.0(2)013 K1 011 119.0(3) $C2^1$ C3 Fe1 41.0(2) O13 K1 $O11^{2}$ 61.0(3) $C7^1$ C1 O13² $O11^{2}$ Fe1 128.7(2)K1 119.0(3) C7 $O13^{2}$ C1 O13 **K**1 180.000(2)Fe1 112.2(2) $C7^1$ $C1^1$ Fe1 C201 01 K1 112.2(2)117.4(6) $C1^1$ C7 C201 C206 Fe1 128.7(2)01 115.4(9) $C7^1$ C2 C206 Fe1 01 K1 163.2(2)116.3(7)C7 Fe1 C2123.3(2)C202 **O**2 K1 116.8(7) $C7^1$ $C2^1$ Fe1 C202 **O**2 C203 123.3(2)116.0(9) C7 $C2^1$ Fe1 163.2(2)C203 **O**2 K1 112.9(6) $C7^1$ Fe1 C3 155.77(17) C204 O3 K1 118.7(8) C7 Fe1 C3 155.77(17) C204 O3 C205 120.1(10)

$C7^1$	Fe1	C7	42.7(3)	C205	03	K1	118.5(7)	
C8	Fe1	C1	137.6(2)	01	C201	C202	112.2(10)	
$C8^1$	Fe1	C1	171.8(2)	02	C202	C201	114.6(11)	
C8	Fe1	$C1^1$	171.8(2)	02	C203	C204	115.9(11)	
$C8^1$	Fe1	$C1^1$	137.6(2)	03	C204	C203	115.8(12)	
$C8^1$	Fe1	C2	147.7(2)	03	C205	C206 ²	117.1(12)	
C8	Fe1	$C2^1$	147.7(2)	01	C206	C205 ²	116.2(11)	
C8	Fe1	C2	115.4(2)	C221	011	K 1	119.8(11)	
$C8^1$	Fe1	$C2^1$	115.4(2)	C221	011	C226 ²	106.9(13)	
$C8^1$	Fe1	C3	119.2(2)	C226 ²	011	K 1	116.5(10)	
C8	Fe1	C3	119.2(2)	C222	012	K1	115.8(10)	
C8	Fe1	C7	43.12(18)	C223	012	K1	116.0(10)	
$C8^1$	Fe1	C7	62.64(19)	C223	O12	C222	109.3(14)	
$C8^1$	Fe1	$C7^1$	43.12(18)	C224	O13	K 1	113.3(9)	
C8	Fe1	$C7^1$	62.64(19)	C225	O13	K 1	116.0(9)	
$C8^1$	Fe1	C8	43.6(3)	C225	O13	C224	108.4(13)	
$N1^1$	Zn1	N1	102.5(2)	011	C221	C222	104.4(16)	
$N1^1$	Zn1	C11	107.80(12)	012	C222	C221	105.5(16)	
N1	Zn1	C11	107.80(12)	012	C223	C224	109.5(13)	
$N1^1$	Zn1	C12	111.39(12)	013	C224	C223	108.4(12)	
N1	Zn1	C12	111.39(12)	013	C225	C226	111.5(14)	
Cl1	Zn1	C12	115.16(9)	O11 ²	C226	C225	108.5(13)	
N2	Zn2	$N2^1$	115.2(2)	C302 ¹	05	C302	111.7(15)	
N2	Zn2	C13	101.97(13)	C302	C301	C301 ¹	105.7(7)	
$N2^1$	Zn2	C13	101.97(13)	05	C302	C301	104.8(13)	
¹ +X,1/2-Y,+Z; ² -X,1-Y,1-Z								

S1R. J. Kern, J. Inorg. Nucl. Chem., 1962, 24, 1105.

E. W. Ainscough, A. M. Broide, J. M. Husbans, J. Chem. Soc., Dalton Trans., 1985, 151. S2

E.-M. Schnöckelborg, M. M. Khusniyarov, B. de Bruin, F. Hartl, T. Langer, M. Eul, S. Schulz, R. Pöttgen, R. Wolf, **S**3 Inorg. Chem., 2012, 51, 6719.

S4M. Badruz Zaman, M. D. Smith, D. M. Ciurtin, H.-C. zur Loye, Inorg. Chem., 2002, 41, 4895.

S5 Sheldrick, G. M. Acta Cryst., 2008, A64, 112-122.

A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarno, C. Giacovazzo, A. G. G. Moliterni, G. Polidori, R. Spagna, J. **S**6 Appl. Cryst. 1999, 32, 115-119.