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Scheme S1. Chemical structures of tris-homoleptic iridium complexes from ref. 1.
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Figure S1. (a) Correlation of Epy with Hammett constants o ; (b) correlation of emission energy with

Hammett constants o, [Ir(4-CF;-ppy)s] and [Ir(5-OMe-ppy);] are not used for the linear regression shown

on the graph; (c) correlation of emission energy with Hammett constants o, [Ir(4-CFs-ppy);] and [Ir(5-

OMe-ppy)s] are used for the linear regression shown on the graph. Data from ref. 1.
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Figure S2. Correlation of 4., with ororaL (Eq. 10) for data used in Figure 1.
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Figure S3. [Ir(R-ppy).(acac)](a) Correlation of Eoy with Hammett constants o ; (b) correlation of A,
with Hammett constants o.
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Figure S4. [Ir(R-ppy).(Pic)](a) Correlation of Eoy with Hammett constants o ; (b) correlation of 4., with
Hammett constants o.
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Figure S5. [Pt(R-ppy)(acac)](a) Correlation of Eox with Hammett constants o ; (b) correlation of A, with
Hammett constants o ; data point for [Pt(2-(2,4-difluorophenyl)-4-N, N-dimethylaminopyridine)(acac)] is
singled out as a triangle and not taken into account for the linear regression.
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Figure S6. Cyclic voltammograms of (left) 1-4 and (right) 5-7 in dimethylformamide at 1 V s
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Table S2. Crystallographic data for 1,2,3,4,6,and 7.
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Computational details.

Full geometry optimizations of the iridium compounds in their singlet ground state were
performed with density functional theory (DFT) using the M06 functional® with the relativistic
effective core potential and basis set LANL2DZ® for the iridium, the TZVP® basis set for the
remaining atoms, an ultrafine integration grid, and tight geometrical convergence criteria. No
symmetry constraints were applied during the geometry optimizations, which were carried out
with the Gaussian 09 package.” The nature of the stationary points located was further checked
by analytical computations of harmonic vibrational frequencies at the same level of theory.
Condensed-phase effects were taken into account using a self-consistent reaction-field (SCRF)
model in which the solvent is implicitly represented by a dielectric continuum characterized by
its relative static dielectric permittivity €. Within the different approaches that can be followed to
calculate the electrostatic potential created by the polarized continuum in the cavity, we have
employed the integral equation formalism of the polarizable continuum model (IEFPCM).° A
relative permittivity of 35.688 (37.219, LR-TDDFT and (U-)DFT) was employed to simulate
acetonitrile (N, N-dimethylformamide, ionization energy and electron affinity),” the solvents used

in the experimental work.

(-6.46 eV) (-6.38 eV) (-6.17 eV)

LUMO LUMO+1 LUMO+2
(1.75 eV) (-1.69 eV) (-1.63 V)

Figure S7. Contour plots of selected Kohn-Sham orbitals for the geometry optimized EB343, using
DFT/MO6/IEF-PCM(ACN). (Isovalue set to 0.03 a.u., orbital energies are provided in eV).
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Figure S7 provides the frontier Kohn-Sham (KS) orbitals of EB343. The three highest
occupied orbitals consist mostly in 5d(Ir) orbitals with contributions from the 2,3’-pyridine
ligands. The first three unoccupied orbitals are close in energy and are delocalized over the
ancillary and the 6’-methoxy-2’-methyl-2,3’-bipyridine ligands.

Vertical electronic transitions from the ground state geometry of EB343 were computed within
linear-response time-dependent density functional theory (LR-TDDFT), using the same
functional and basis sets (non-equilibrium solvation’ has been used for the LR-TDDFT
calculations of absorption spectra). Interestingly, the first allowed transition (3.32 eV, =0.014,
GS->S)) possesses a HOMO -> LUMO+1 character (87%), while the transition to the first triplet
(2.89 eV, GS->T)) is composed by several occupied to virtual orbital transitions with no strong

dominant contribution.

Figure S8. Contour plots of the spin density of EB343 at its optimized T; geometry, using U-DFT/M05-
2X/IEF-PCM(ACN). (Isovalue set to 0.0008 a.u.).

To gain insights into the phosphorescence behavior of the different iridium compounds, we
optimized the geometry of the first triplet state using unrestricted DFT (U-DFT) with the same
basis set as described before. As suggested by a recent work,® we used the xc-functional M05-
2X’ for this task, due to its excellent performance for the emission spectra for a series of iridium-
based compounds. At the minimum energy structure, we computed the difference in energy
between the triplet (T;) and singlet (So) with the inclusion of implicit solvent and obtained an
estimation of the first phosphorescence band. In addition, the adiabatic energy differences were
computed by taking the difference between the energy at the optimized T; geometry and the
energy at the optimized GS geometry. The character of the T, state can be described as being
mostly of ligand-centered type (see Figure S8 for a spin density plot at the T; optimized

geometry). The computed vertical electronic energy difference between the T, and the GS (at the
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T, geometry) lies at 2.41 eV for EB343 and 2.65 eV for FIrPic. We note that the geometry of a
low-lying triplet state, formed by populating an orbital located on the pic ligand, was also
optimized. At its optimized geometry, this triplet state lies at 0.1 eV from the corresponding

geometry optimized T, state.

Figure S9. Contour plots of selected Kohn-Sham orbitals, HOMO (left) and LUMO (right), at the
geometry optimized T, state of EB343, using LR-TDDFT/M05-2X/IEF-PCM(ACN). (Isovalue set to
0.03 a.u.).

Geometry optimization of EB343 in its T; electronic state was further undertaken using LR-
TDDFT/MO05-2X/IEF-PCM(ACN) with an ultrafine grid and the default convergence criteria in
Gaussian09. The LR-TDDFT optimized T; geometry exhibits a similar character as the one
obtained from the U-DFT optimization, with a dominant HOMO->LUMO contribution (91%)
(Figure S9).

Figure S10. Contour plots of the spin density of EB343" (left) and FIrPic" (right) at their respective
optimized GS geometry, using U-DFT/MO6/IEF-PCM(DMF). (Isovalue at 0.003 a.u.).
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The vertical IE of EB343 was obtained by computing the energy of the cationic species
EB343" at the ground state optimized geometry of EB343, using an unrestricted
U-DFT/MO6/IEF-PCM(DMF) calculations with the same parameters as described above, and
subtracting it from the energy of the geometry optimized EB343 (DFT/M06/IEF-PCM(DMF)).
EB343 shows a vertical IE of 5.89 eV, close to the 5.78 eV of FIrPic computed in the same way.
The spin density resulting from this calculation is mostly localized on the Ir center, with some
contributions from the 2,3’-bipyridine ligands (Figure S10, left), a localization similar to the spin

density of FIrPic" (Figure S10, right).
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Figure S11. Comparison between computed vertical ionization energy ((U-)DFT/MO06/IEF-PCM(DMF))

and experimental oxidation potential for the complete series of iridium complexes.

We note that the computed vertical IEs for the different iridium compounds proposed in this
work follow closely the trend in oxidation potential obtained experimentally (Figure S11). Based
on the same level of theory, the vertical ionization potential and electron affinity were computed
for the freely optimized 6’-methoxy-2’-methyl-2,3’-bipyridine and 2,4-difluorophenylpyridine
ligands (from their anionic state). We observed that both their vertical ionization potential (4.11
eV vs 4.17 eV, respectively) and electron affinity (—0.95 eV in both cases) are almost

degenerate, in agreement with the experimental predictions.
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Figure S12. Emission spectra from screening procedure with [Ir(L7),(u—CD)].
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2-(2,4-Dimethoxyphenyl)-pyridine (L.3). A flask was charged with 2 4-dimethoxyphenyl-
boronic acid (98%, 1.00 g, 5.38 mmol), 2-bromopyridine (99%, 0.88 g, 5.38 mmol, 1.0 eq.) and
Pd(PPh,), (97%, 0.32 g, 3.02 x 10* mol, 5%). The solids were degassed with nitrogen and
dissolved in a 3:7 mixture of 2M aqueous Na,CO, and THF (8 and 19 mL, respectively). After
further degassing the mixture was warmed up to 80 °C and refluxed for 18 hours under vigorous
stirring. Then it was cooled down to RT and extracted with CH,Cl, and water. The organic layer
was decanted, dried over MgSO,, filtered and evaporated to dryness. Purification by
chromatography, (1) silica prepared in hexane / THF 80:20, isocratic elution with hexane / THF
80:20, and (2) silica prepared in hexane / CH,Cl, / Et,0 50:30:20, isocratic elution with hexane /
CH,CI, / Et,0 50:30:20, afforded L3 as a colorless oil (0.82 g, 71%). 'H NMR (CDCl,, 400
MHz): & 8.64 (broad ddd, 1H, J = 4.8 Hz); 7.78 (d, 1H,J = 8.0 Hz); 7.75 (d, 1H, J = 8.5 Hz);
7.64 (ddd, 1H,J =7.7, 1.9 Hz); 7.13 (dd, 1H, J = 4.8, 2.6 Hz); 6.60 (dd, 1H, J = 8.3, 2.3 Hz);
6.54 (d, 1H, J = 2.3 Hz); 3.84 (s, 3H); 3.83 (s, 3H). Data are identical to the published ones."

2-(4-Methoxy-2-methylphenyl)-pyridine (L.4). A flask was charged with 24-
dimethoxyphenyl-boronic acid (98%, 1.00 g, 2.36 mmol), 2-bromopyridine (99%, 0.94 g, 2.36
mmol, 1.0 eq.) and Pd(PPh,), (97%,0.35 g, 1.95 x 10~ mol, 5%). The solids were degassed with
nitrogen and dissolved in a 3:7 mixture of 2M aqueous Na,CO,; and THF (9 and 20 mL,
respectively). After further degassing the mixture was warmed up to 80 °C and refluxed for 18
hours under vigorous stirring. Then it was cooled down to RT and extracted with CH,Cl, and
water. The organic layer was decanted, dried over MgSQ,, filtered and evaporated to dryness.
Purification by chromatography, (1) silica prepared in hexane / Et,O 70:30, isocratic elution with
hexane / Et,0 70:30, and (2) silica prepared in hexane / EtOAc 70:30, isocratic elution with
hexane / EtOAc 70:30, afforded L4 as a colorless oil (1.07 g, 90%). 'H NMR (CDCl,, 400
MHz): § 8.65 (broad ddd, 1H, J = 4.1 Hz); 7.67 (ddd, 1H,J = 7.7, 1.6 Hz); 7.33 (m, 2H); 7.16
(ddd, 1H, J = 4.1, 1.2 Hz); 6.80 (m, 2H); 3.82 (s, 3H); 2.36 (s, 3H). Data are identical to the
published ones."
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2’,6’-Difluoro-2,3’-bipyridine (L5). A flask was charged with 2,6-difluoro-3-pyridinyl-
boronic acid (96%, 1.00 g, 6.04 mmol), 2-bromopyridine (99%, 0.98 g, 6.04 mmol, 1.0 eq.) and
Pd(PPh,), (97%, 360 mg, 3.02 x 10~ mol, 5%). The solids were degassed with nitrogen and
dissolved in a 3:7 mixture of 2M aqueous Na,CO, and THF (9 and 21 mL, respectively). After
further degassing the mixture was warmed up to 80 °C and refluxed for 18 hours under vigorous
stirring. Then it was cooled down to RT and extracted with CH,Cl, and water. The organic layer
was decanted, dried over MgSO,, filtered and evaporated to dryness. Purification by
chromatography, silica prepared in hexane / Et,0 80:20, isocratic elution with hexane / Et,O
80:20, afforded L5 as a white crystalline solid (0.99 g, 85%). 'H NMR (CDCl,, 400 MHz): &
8.70 (ddd, 1H,J =4.8, 1.8, 1.2 Hz); 8.67 (ddd, 1H,J = 8.0, 6.4, 1.6 Hz); 7.85 (m, 1H, J = 8.0,
32,12 Hz); 7.78 (ddd, 1H,J =8.2,6.4, 1.8 Hz); 7.29 (ddd, 1H,J =4.8,2.6, 1.2 Hz); 6.96 (ddd,
1H,J=8.2,3.2,1.6 Hz). Data are identical to the published ones."”

2’,6’-Dimethoxy-2,3’-bipyridine (L.6). 2,6-Dimethoxy-3-pyridinyl-boronic acid. Anhydrous
diisopropylamine (99.5%, 2.2 mL, 15.4 mmol, 1.1 eq.) was charged in an oven-dried two-necked
flask, degassed with nitrogen and dissolved in anhydrous THF (30 mL - 2 mL/mmol). The
solution was cooled down to -10 °C and n-BuLi (2.5M, 6.8 mL, 16.8 mmol, 1.2 eq.) was added
drop wise. After 30 minutes of stirring at 0 °C, it was cooled down to -78 °C. 2,6-Dimethoxy-
pyridine (98%, 2.0 g, 14.0 mmol) was added over a 30-min period and the resulting mixture was
stirred during 3 hours at -78 °C. Then B(O'Pr); (98%, 4.3 mL, 18.2 mmol, 1.3 eq.) was added
and the solution was allowed to warm to RT overnight. Water (150 mL) was added and the

organic was removed under vacuum. The remaining solution was filtered and then acidified to
pH ~ 6 using 37% HCI to promote precipitation. The solid was collected by filtration and dried

under vacuum (2.06 g, 80%). 'H NMR (d,-DMSO, 400 MHz): 6 7.87 (d, 1H, J = 7.9 Hz); 7.54
(s,2H); 6.37 (d, 1H,J =7.9 Hz); 3.90 (s, 3H); 3.87 (s, 3H); 3.32 (s, 3H). Data are identical to the
published ones.” 2’,6’-Dimethoxy-2,3’-bipyridine. A two-necked flask was charged with 2.6-

dimethoxy-3-pyridinyl-boronic acid (1.00 g, 5.46 mmol), 2-bromopyridine (99%, 0.87 g, 5.46
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mmol, 1.0 eq.) and Pd(PPh,), (97%, 325 mg, 2.74 x 10~ mmol, 5%). The solids were degassed
with nitrogen and dissolved in a 3:7 mixture of 2M aqueous Na,CO; and PhMe (8 + 19 mL,
respectively). After further degassing the mixture was warmed up to 80 °C and refluxed for 18
hours under vigorous stirring. Then it was cooled down to RT and extracted with CH,Cl, and
water. The organic layer was decanted, dried over MgSQ,, filtered and evaporated to dryness.
Purification by chromatography, (1) silica prepared in hexane / Et,O 80:20, elution with hexane /
Et,0 80:20, (2) silica prepared in CH,Cl, / Et,O 95:5, elution with CH,Cl, / Et,0 95:5, afforded
L6 as a white solid (605 mg, 51%). 'H NMR (CDCl,, 400 MHz, 25 °C): 6 8.63 (ddd, 1H,J =
48,1.8,1.2Hz); 8.23 (d, 1H,J = 8.2 Hz); 7.93 (broad d, 1H, J = 8.0 Hz); 7.67 (ddd, 1H,J = 7.6,
1.9 Hz); 7.13 (ddd, 1H,J =7.5,4.8,1.2 Hz); 6.43 (d, 1H, J = 8.2 Hz); 4.02 (s, 3H); 3.96 (s, 3H).
Data are identical to the published ones."*

6’-Methoxy-2’-methyl-2,3’-bipyridine (L7). 3-Bromo-6-methoxy-2-methyl-pyridine. 2-
Methoxy-6-methyl-pyridine (98%, 2.00 g, 159 mmol) was suspended in 0.15 M aqueous
Na,HPO, (32 mL) and bromine (2.54 g, 15.9 mmol, 1.0 eq.) was added drop wise. The resulting
solution was stirred for 4 hours at RT. Then it was partitioned between CH,Cl, and water. The
organic layer was decanted, washed with 10% aqueous NaOH (32 mL), then dried over MgSO,,
filtered and evaporated to dryness. Purification was achieved by distillation under reduced
pressure. The compound (2.06 g, 95% overall yield) was isolated as a mixture of 2 isomers, the
desired 3-bromo-6-methoxy-2-methylpyridine (95%) contaminated by 5-bromo-6-methoxy-2-
methylpyridine (5%). 'H NMR (CDCl,, 400 MHz): & 7.59 (d, 1H, J = 8.6 Hz); 6.44 (d, 1H,J =
8.6 Hz); 3.87 (s, 3H); 2.52 (s, 3H). Impurity: 6 7.62 (d, 1H,J = 7.6 Hz); 6.59 (d, 1H,J = 7.6 Hz);
3.97 (s, 3H); 2.39 (s, 3H). Data are identical to the published ones."”> 6-Methoxy-2-methyl-3-
pyridinyl-boronic acid. The mixture and 3- and 5-bromo-6-methoxy-2-methylpyridine (2.00 g,
10.0 mmol) was charged in an oven-dried two-necked flask, degassed with nitrogen, dissolved in
anhydrous THF (20 mL - 2 mL/mmol) and cooled down to -78 °C. n-BuLi (2.5M, 4.4 mL, 11.0

mmol, 1.1 eq.) was added over a 30-min period and the mixture was reacted for 3 hours at -78

S13



Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2014

°C. After addition of B(O'Pr), (98%, 3.5 mL, 15.0 mmol, 1.5 eq.), it was reacted for another 5
hours at -78 °C and then allowed to warm to RT overnight. AcOH (1.5 mL) and water (4.0 mL)
were added and the mixture was stirred for another 2 hours at RT. After decantation, the organic
layer was evaporated to dryness (bath at 50 °C) with addition of 'BuOH (3 x 15.0 mL) aliquots.
The white solid obtained was triturated with Et,O, filtered and dried under vacuum affording the
title compound (1.52 g, 92%). 'H NMR (CD,0D, 400 MHz): 8 7.83 (broad s, 1H, J = 8.0 Hz);
6.56 (d, 1H,J = 8.0 Hz); 3.83 (s, 3H); 2.44 (s, 3H). Data are identical to the published ones.” 6’-
Methoxy-2’-methyl-2,3’-bipyridine. A two-necked flask was charged with 6-methoxy-2-methyl-
3-pyridinyl-boronic acid (1.00 g, 5.96 mmol), 2-bromopyridine (99%, 0.96 g, 5.96 mmol, 1.0
eq.) and Pd(PPh,), (97%, 355 mg, 3.00 x 10~ mol, 5%). The solids were degassed with nitrogen
and dissolved in a 3:7 mixture of 2M aqueous Na,CO, and PhMe (12 and 26 mL, respectively).
After further degassing the mixture was warmed up to 80 °C and refluxed for 18 hours under
vigorous stirring. Then it was cooled down to RT and extracted with CH,Cl, and water. The
organic layer was decanted, dried over MgSO,, filtered and evaporated to dryness. Purification
by chromatography, (1) silica prepared in CH,Cl, / Et,O 85:15, gradient elution from CH,Cl, /
Et,0O 85:15 to 70:30, (2) silica prepared in hexane / Et,O 60:40, elution with hexane / Et,O 60:40,
afforded L7 as a colorless oil (635 mg, 53%). '"H NMR (CDCl,, 400 MHz): & 8.66 (dd, 1H,J =
49,19 Hz); 7.71 (ddd, 1H,J =7.8,7.6,1.9 Hz); 7.65 (d, 1H,J =83 Hz); 737 (d, 1H,J = 7.8,
1.0 Hz); 7.21 (ddd, 1H,J =7.6,4.9,1.0 Hz); 6.64 (d, 1H, J = 8.3 Hz); 3.95 (s, 3H); 2.51 (s, 3H).
“C NMR (CDCl,, 100 MHz): d 163.32, 158.50, 154.10, 149.68, 140.53, 136.42, 128.87, 124.33,
121.81, 107.84, 53.68, 23.35. ESI-TOF HRMS: MH"* m/z: calc. 201.10128 found 201.1031.

Anal. caled. for C,H,,N,0: C, 71.98; H, 6.04; N, 13.99. Found C, 71.96; H, 6.10; N, 14.11.

General method for the synthesis of phenylpyridine chloro-bridged dimer complexes.
IrCl; xH,O (500 mg, 1.42 mmol) was suspended in 10 mL of 2-ethoxyethanol and 4 mL of

water. The suspension was filled with nitrogen by 3 cycles vacuum/nitrogen. The ligand L (3.12
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mmol, 2.2 equiv) was added, and 2 mL of 2-ethoxyethanol was used for rinsing. The mixture
was filled again with nitrogen by 3 cycles vacuum/nitrogen. The flask was sealed and heated at
130 °C overnight. Then it was cooled down to room temperature, and water was added to further
precipitation. The solid was filtered, washed with water, then with methanol, and dried to afford
the chloro-bridged iridium dimer [Ir(L),(u—Cl)],.

[Ir(L3),(u—CD],. L was 2-(24-dimethoxyphenyl)-pyridine (L3). The chloro-bridged iridium
dimer [Ir(L3),(u-Cl)], was obtained as an yellow solid (808 mg, 87%). '"H NMR (CDCl,, 400
MHz): 6 9.18 (d,4H,J = 5.1 Hz); 8.54 (d,4H,J = 8.3 Hz); 7.59 (ddd, 4H,J = 7.3, 1.5 Hz); 6.58
(ddd,4H,J =5.7,1.3 Hz); 5.89 (d,4H,J = 1.9 Hz); 5.05 (d, 4H,J = 2.2 Hz); 3.81 (s, 12H); 3.30
(s, 12H).

[Ir(L4),(u—CD],. L was 2-(4-methoxy-2-methylphenyl)-pyridine (L4). The chloro-bridged
iridium dimer [Ir(L4),(u—Cl)], was obtained as an orange solid (735 mg, 83%). 'H NMR (CDCl,,
400 MHz): 6 9.29 (d,4H,J = 5.8 Hz); 7.96 (d, 4H, J = 8.2 Hz); 7.65 (ddd, 4H, J = 7.6 Hz); 6.65
(ddd,4H,J =6.6 Hz); 6.11 (s,4H); 5.21 (d,4H,J = 1.2 Hz); 3.32 (s, 12H); 3.30 (s, 12H).

General method for the synthesis of acetylacetonate complexes. Sodium acetylacetonate
(98%, 4.0 equiv.) was dissolved in CH,Cl,/ MeOH (30 and 10 mL, respectively), and this
solution was added to a suspension of the corresponding dimer in CH,Cl, (10 mL). The solution
was gently refluxed at 40 °C under nitrogen overnight. After cooling down to room temperature,
the solution was evaporated to dryness. The crude material was dissolved in pure CH,Cl, and
filtered over a pad of neutral silica. The volume of the solution was reduced under vacuum and
the main fraction was slowly precipitated with hexane. The suspension was filtered off, washed
with hexane, and dried under vacuum to afford [Ir(L),(acac)] complexes as solids.

[Ir(L3),(acac)] (3). Using [Ir(L3),(u—CD)], (250 mg, 1.91 x 10™* mol), complex 3 was obtained
as a yellow solid (154 mg, 56%). '"H NMR (CDCl,, 400 MHz): 6 8.51 (broad d, 2H, J = 8.3 Hz);

8.44 (broad dd, 2H,J =5.7, 1.6 Hz); 7.60 (ddd, 2H,J = 7.5, 1.8 Hz); 6.95 (ddd, 2H,J =5.7, 1.5

S15



Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2014

Hz); 595 (d, 2H,J = 2.2 Hz); 5.38 (d, 2H, J = 2.2 Hz); 5.16 (s, 1H); 3.85 (s, 6H); 3.45 (s, 6H);
1.75 (s, 6H). ESI-TOF HRMS: MH" m/z: calc. 721.1891 found 721.1907. Anal. calcd. for
C;H;,IrN,O¢: C,51.73; H,4.34; N, 3.89. Found C, 51.45; H, 4.38; N, 3.95.

[Ir(LL4),(acac)] (4). Using [Ir(L4),(u—CD], (250 mg, 2.00 x 10~ mol), complex 4 was obtained
as an orange solid (123 mg, yield 45%). '"H NMR (CDCl,, 400 MHz): & 9.22 (dd, 2H,J = 5.7,
1.5 Hz); 7.96 (d,2H,J = 8.5 Hz); 7.64 (ddd, 2H,J = 8.5, 1.8 Hz); 7.00 (ddd, 2H,J = 5.7, 1.0 Hz);
6.16 (d, 2H,J = 2.6 Hz); 5.58 (d, 2H, J = 2.6 Hz); 5.61 (s, 1H); 3.47 (s, 6H); 2.64 (s, 6H); 1.74
(s, 6H). ESI-TOF HRMS: MH" m/z: calc. 688.1915 found 688.1914. Anal. calcd. for
C,,H;,IrN,O,: C, 54.13; H, 4.54; N,4.07. Found C, 54.14; H,4.43; N, 4.02.

[Ir(L5),(acac)] (5). Using [Ir(L5),(u—CD], (250 mg, 2.05 x 10™* mol), complex 5 was
obtained as a pale yellow solid (188 mg, 68%). 'H NMR (CDCl,, 400 MHz): 6 8.43 (ddd, 2H,J
=5.8,1.5,0.6 Hz); 8.27 (ddd, 2H, J = 8.3,1.3, 0.6 Hz); 7.90 (ddd, 2H, J = 8.3, 1.5 Hz); 7.30
(ddd, 2H,J = 5.8, 1.3 Hz); 5.62 (t, 2H, J = 1.8 Hz); 5.28 (s, 1H); 1.82 (s, 6H). '’F NMR (CDCl,,
400 MHz): 8 -69.76 (d, J = 9.8 Hz); —=71.53 (dd, J = 9.8, 1.8 Hz). ESI-TOF HRMS: MH" m/z:
calc. 675.0996 found 675.1006. Anal. calcd. for C,;H,F,IrN,O,: C, 44.57; H, 2.54; N, 8.32.
Found C,4447;H,247;N, 8.17.

[Ir(L6),(acac)] (6). Using [Ir(L6),(u—CD], (250 mg, 1.90 x 10™* mol), complex 6 was
obtained as a yellow solid (207 mg, 76%). 'H NMR (CDCl,, 400 MHz): & 8.43 (broad ddd, 2H,J
=8.3 Hz); 8.36 (ddd,2H,J =5.7,1.6,0.6 Hz); 7.66 (ddd, 2H,J = 8.3, 1.6 Hz); 6.99 (ddd, 2H,J =
5.8,0.9 Hz); 5.24 (s, 2H); 5.19 (s, 1H); 3.98 (s, 6H); 3.69 (s, 6H); 1.76 (s, 6H). ESI-TOF HRMS:
MH* m/z: calc. 723.1796 found 723.1792. Anal. calcd. for C,,H,IrN,O,: C, 48.26; H, 4.05; N,
7.76. Found C, 47.88; H,4.03; N, 7.55.

[Ir(LL7),(acac)] (7). Using [Ir(L7),(u—Cl)], (250 mg, 2.00 x 10 mol), complex 7 was
obtained as a yellow solid (180 mg, 65%). 'H NMR (CDCl,, 400 MHz): 6 8.48 (ddd,2H,J =57,

1.6 Hz); 7.98 (broad ddd, 2H, J = 8.5 Hz); 7.74 (ddd, 2H,J = 8.5, 1.8 Hz); 7.08 (ddd, 2H,J =5.7,
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1.2 Hz); 543 (s, 2H); 5.20 (s, 1H); 3.71 (s, 6H); 2.74 (s, 6H); 1.76 (s, 6H). ESI-TOF HRMS:
MH" m/z: calc. 691.1898 found 691.1876. Anal. calcd. for C,,H,,IrN,O,: C, 50.50; H, 4.24; N,

8.12. Found C, 50.45; H, 4.30; N, 8.07.
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Figure S14. '"H NMR of 1 in CDCl, (400 MHz, 25°C).
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Figure S18. 'H NMR of 2 in CDCl, (400 MHz, 25°C).
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Figure $19. ”F NMR of 2 in CDCl; (200 MHz, 25°C).
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Figure S20. HR ES-MS of 2.
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Figure S26. '"H NMR of [Ir(L4),(u—CD], in CDCI, (400 MHz, 25°C).
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Figure S27. "H NMR of 4 in CDCl, (400 MHz, 25°C).
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Figure S33. HR ES-MS of 5.
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Figure S34. 'H NMR of L6 in CDCl, (400 MHz, 25°C).
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Figure S36. '"H NMR of 6 in CDCl, (400 MHz, 25°C).
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Figure S37. HR ES-MS of 6.
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Figure S$38. 'H NMR of L7 in CDCl, (400 MHz, 25°C).
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Figure S39. 3C NMR of L7 in CDCl, (100 MHz, 25°C).

Figure S40. 'H NMR of [Ir(L7),(u~CD)], in CDCI, (400 MHz, 25°C).
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Figure S41. 'H NMR of 7 in CDCl, (400 MHz, 25°C).
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Figure S42. HR ES-MS of 7.
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Figure S43. "H NMR of EB343 in CDCl, (400 MHz, 25°C).
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Figure S44. HR ES-MS of EB343.
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