Supporting Information for

Computational and experimental investigations of CO₂ and N₂O fixation by sterically demanding *N*-heterocyclic carbenes (NHC) and NHC/borane FLP systems

Eileen Theuergarten, Thomas Bannenberg, Marc D. Walter, Dirk Holschumacher, Matthias Freytag, Constantin G. Daniliuc, Peter G. Jones and Matthias Tamm*

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany. Fax: +49 (531) 391 5387; Tel: +49 (531) 391 5309; E-Mail: m.tamm@tu-bs.de

Contents:

- 1. X-ray structure of 6
- 2. Selected NMR spectra
- 3. Computational Details

1. X ray structure of 6

Figure S1. ORTEP diagram of **6** (ca. 10% disorder around N4 and O) with thermal displacement parameters drawn at 50% probability. Selected bond lengths (Å) and angles (°) for the main *trans*-C,O isomer: C1-N3 1.3720(13), N3-N4 1.3350(15), N4-O 1.2574(14), C1-N3-N4 109.35(9), N3-N4-O 113.24(12).

Crystal data: C₁₁H₂₀N₄O, monoclinic, space group *P*2₁/*n*, *a* = 9.2956, *b* = 11.7049(2), *c* = 11.2144(2) Å, β = 99.208(2)°, *Z* = 4, *D*_x = 1.237 Mg m⁻³, μ (Cu *K* α) = 0.66 mm⁻¹. *Data collection*: A yellow plate 0.10 × 0.05 × 0.04 mm was used to register 19755 intensities on an Oxford Diffraction Nova A diffractometer using Cu *K* α radiation (λ = 1.54184 Å). Absorption corrections were based on multi-scans. *Structure refinement*: The structure was refined anisotropically on *F*² using the program SHELXL-97 (G. M. Sheldrick, University of Göttiongen, Germany). Methyl groups were idealized and allowed to rotate but not tip; other hydrogens were included using a riding model starting from calculated positions.

Two significant residual electron density peaks (0.76, 0.67 e Å⁻³; all other peaks < 0.25 e Å⁻³) were interpreted as representing a minor disorder component of N4 and O, but it proved impossible to refine these atoms with convincing bond lengths and angles despite the use of restraints. For this reason the structure should be interpreted with caution, although we are convinced that the main component (over 90% occupied) is at least qualitatively correct.

The final *wR*2 for all reflections was 0.093, with a corresponding *R*1 of 0.036 ($I > 2\sigma(I)$); S = 1.05, max. $\Delta \rho 0.25$ e Å⁻³. Data have been deposited under CCDC-964196.

2. Selected NMR spectra

4: ¹H NMR in CD₂Cl₂

X = impurities (Imidazolium salt)

4: ¹¹B NMR in CD₂Cl₂

4: ¹³C NMR in CD₂Cl₂

4: ¹⁹F NMR in CD₂Cl₂

5a: ¹H NMR in toluene d₈

5a: ¹³C NMR in toluene d₈

6: ¹H NMR in CD₂Cl₂

6: ¹³C NMR in CD₂Cl₂

8a: ¹H NMR in CD₂Cl₂

8a: ¹¹B NMR in CD₂Cl₂

8a: ¹³C NMR in CD₂Cl₂

8b: ¹**H NMR** in CD₂Cl₂

8b: ¹¹**B NMR** in CD₂Cl₂

8b: ¹³C NMR in CD₂Cl₂

9b: ¹**H NMR** in CD₂Cl₂

9b: ¹¹**B NMR** in CD₂Cl₂

9b: ¹³C NMR in CD₂Cl₂

3. Computational Details

All computations were performed using the hybrid density functional method M05-2X as implemented in the Gaussian09 program.^[1] For all elements (C, H, N, O and F) the all-electron triple- ζ basis set (6-311G**) was used.^[2]

Compound	E(0 K) ^{<i>a</i>} /[Ha]	H(298 K) ^b /[Ha]	G(298 K) ^b /[Ha]
N ₂ O	-184.669041	-184.665113	-184.685625
CO_2	-188.601386	-188.597845	-188.622059
N_2	-109.539343	-109.536038	-109.557761
B(C ₆ F ₅) ₃	-2208.548375	-2208.519116	-2208.6088
^{<i>t</i>Bu₂} ImC: (1a)	-540.453387	-540.437896	-540.494393
$Me_2^{'Bu_2}ImC:$ (1b)	-619.028286	-619.009949	-619.071408
^{Xy2} ImC:	-845.302014	-845,281468	-845,353326
^{Xy} 2ImC-N ₂ O (TS1)	-1029.944786	-1029.921146	-1029.99858
^{Xy2} ImC-N ₂ O (TS2)	-1029.896058	-1029.872475	-1029.948979
^{Xy2} ImC-N ₂ O (<i>cis</i>)	-1029.992807	-1029.969604	-1030.045698
^{Xy2} ImC-N ₂ O (<i>trans</i>)	-1029.995462	-1029.972261	-1030.047682
^{<i>t</i>Bu₂ImC-N₂O (TS1)}	-725.089625	-725.071444	-725.134895
^{<i>t</i>Bu} 2ImC-N ₂ O (TS2)	-725.048633	-725.03037	-725.092252
^{1Bu} 2ImC-N ₂ O (<i>cis</i> -6)	-725.137226	-725.119357	-725.180433
^{tBu} 2ImC-N ₂ O (trans-6)	-725.137115	-725.119104	-725.180372
^{/Bu} 2ImC-N ₂ O (TS3)	-725.098059	-725.080495	-725.140186
^{7Bu} 2ImC=O (7)	-615.751518	-615.735306	-615.792451
^{<i>t</i>Bu₂} ImC-N ₂ O-B(C ₆ F ₅) ₃ (INT1)	-2933.696663	-2933.647321	-2933.781503
^{<i>t</i>Bu₂} ImC-N ₂ O-B(C ₆ F ₅) ₃ (INT2)	-2933.693233	-2933.643613	-2933.780472
$^{tBu_{2}}ImC-N_{2}O-B(C_{6}F_{5})_{3}$ (INT3)	-2933.693540	-2933.644048	-2933.779103
^{<i>t</i>Bu₂} ImC-N ₂ O-B(C ₆ F ₅) ₃ (TS1')	-2933.651098	-2933.60353	-2933.731987
^{<i>t</i>Bu₂ImC-N₂O-B(C₆F₅)₃ (8a)}	-2933.752336	-2933.705153	-2933.833020
$Me_2^{Hu_2}ImC-N_2O(TS1)$	-803.663461	-803.64237	-803.709643
$Me_2^{tBu_2}ImC-N_2O(TS2)$	-803.624186	-803.603126	-803.670313
Me2 ^{'Bu2} ImC-N ₂ O (<i>cis</i>)	-803.703237	-803.682311	-803.75051
Me ₂ ^{tBu2} ImC-N ₂ O (trans)	-803.704573	-803.683643	-803.75087
$Me_2^{TBu_2}ImC-N_2O(TS3)$	-803.666913	-803.646816	-803.711227
Me2 ^{'Bu2} ImC=O	-694.318521	-694.299251	-694.364477
$Me_2'^{Bu_2}ImC-N_2O-B(C_6F_5)_3$ (INT1)	-3012.272761	-3012.220955	-3012.357794
$Me_2'^{Bu_2}ImC-N_2O-B(C_6F_5)_3$ (INT2)	-3012.270271	-3012.217773	-3012.35881
$Me_2'^{Bu_2}ImC-N_2O-B(C_6F_5)_3$ (INT3)	-3012.27302	-3012.219966	-3012.360684
$Me_2^{tBu_2}ImC-N_2O-B(C_6F_5)_3$ (TS1')	-3012.228185	-3012.177324	-3012.313001
$Me_2^{'Bu_2}ImC-N_2O-B(C_6F_5)_3$ (8b)	-3012.321805	-3012.271893	-3012.403715
^{<i>t</i>Bu₂ImC-CO₂ (TS1)}	-729.054329	-729.03607	-729.09991
$^{t\mathrm{Bu}_{2}}\mathrm{ImC}\text{-}\mathrm{CO}_{2}\left(\mathbf{5a}\right)$	-729.066592	-729.048808	-729.109302
Me ₂ ^{<i>t</i>Bu₂} ImC-CO ₂ (TS1')	-807.62600	-807.605002	-807.674044
$Me_2^{TBu_2}ImC-CO_2$ (5b)	-807.632758	-807.612204	-807.678631
$^{\prime Bu_2}ImC-CO_2-B(C_6F_5)_3$ (9a)	-2937.676137	-2937.629284	-2937.754760
$Me_2^{tBu_2}ImC-CO_2-B(C_6F_5)_3$ (9b)	-3016.248040	-3016.198030	-3016.331069

Energies for all optimized structures

^a DFT energy incl. ZPE.

^b standard conditions T = 298.15 K and p = 1 atm.

- Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [2] X. Cao and M. Dolg, J. Chem. Phys., 2001, 115, 7348.