Supporting Information for

Slow magnetic relaxation in lanthanide ladder type coordination polymers

by

Penka I. Girginova, Laura C. J. Pereira, Joana T. Coutinho, Isabel C. Santos, and Manuel Almeida

Fig. S1 Powder X-ray diffraction patterns for compounds **1**, **2**, **3** and **4**. Comparison between simulated powder patterns from the SC-XRD structure and powder XRD data.

Fig. S2. FT-IR spectra for compounds 1, 2, 3 and 4.

Fig. S3 TGA thermogram of complexes 1, 2, 3 and 4.

Fig. S4 Temperature dependence of the out-of-phase component of the AC magnetic susceptibility, χ'' , of 1 without an applied static field, at different frequencies.

Fig. S5 Temperature dependence of the in-phase, χ' , and out-of-phase, χ'' , components of the AC magnetic susceptibility of 2 under applied static fields of 1 and 2 kG at different frequencies.

Fig. S6 Plots of the in-phase, χ' , and out-of-phase, χ'' , AC susceptibility for compound **3** as a function of temperature at fixed frequencies 333, 495, 995, 3330 and 4995 Hz (AC field with amplitude of 10 Oe and static fields H_{DC} of 0 G, 500 G and 1000 G).

Fig. S7 Cole–Cole plots of $\chi'' vs. \chi'$ of **1** (top) and **4** (bottom). The solid lines represent a least-squares fitting of the data to a distribution of single relaxation processes (Eq. 1).

	$1 (Gd^{3+})$	2 (Tb ³⁺)	3 (Dy ³⁺)	4 (Er ³⁺)
Ln1-O2	2.335(2)	2.315(1)	2.302(2)	2.289(2)
Ln1-O3	2.442(1)	2.428(1)	2.420(2)	2.398(2)
Ln1-O4	2.475(2)	2.458(2)	2.448(2)	2.421(3)
Ln1-O5	2.320(2)	2.300(1)	2.292(2)	2.260(3)
Ln1-06	2.432(2)	2.407(1)	2.396(2)	2.377(2)
Ln1-O7	2.380(2)	2.366(1)	2.359(2)	2.336(3)
Ln1-08	2.375(2)	2.357(1)	2.348(2)	2.313(2)
Ln1-N1	2.597(2)	2.583(2)	2.573(2)	2.552(2)
O1-C6	1.224(3)	1.223(2)	1.226(3)	1.218(4)
O2-C6	1.291(3)	1.290(3)	1.294(3)	1.298(4)
O3-C7	1.268(3)	1.264(2)	1.269(3)	1.270(4)
O4-C7	1.265(3)	1.267(2)	1.264(3)	1.263(4)
O5-C11	1.252(3)	1.252(2)	1.251(3)	1.254(5)
O6-C11	1.264(3)	1.266(2)	1.271(3)	1.269(4)
N1-C1	1.346(3)	1.344(3)	1.347(4)	1.346(5)
N1-C5	1.349(3)	1.346(2)	1.350(3)	1.336(4)
C1-C2	1.389(3)	1.387(3)	1.390(4)	1.387(5)
C2-C3	1.380(3)	1.379(3)	1.375(4)	1.378(5)
C3-C4	1.386(3)	1.385(3)	1.390(4)	1.397(5)
C4-C5	1.384(3)	1.380(3)	1.382(4)	1.388(5)
C5-C6	1.510(3)	1.509(3)	1.510(4)	1.515(5)
C7-C8	1.505(4)	1.503(2)	1.503(4)	1.511(5)
C8-C9	1.527(3)	1.522(3)	1.526(4)	1.529(6)
C9-C10	1.536(3)	1.535(2)	1.545(4)	1.539(5)
C10-C11	1.512(3)	1.504(3)	1.506(3)	1.503(5)

Table S1 Selected bond lengths (in Å) for compounds 1, 2, 3 and 4.

	$1 (Gd^{3+})$	2 (Tb ³⁺)	3 (Dy ³⁺)	4 (Er ³⁺)
O2-Ln1-O3	141.65(5)	142.01(5)	142.27(6)	142.85(8)
O2-Ln1-O4	119.79(6)	120.17(5)	120.00(6)	119.93(8)
O2-Ln1-O5	90.71(6)	90.21(5)	90.44(7)	90.36(9)
O2-Ln1-O6	141.64(5)	141.84(5)	141.81(6)	141.65(8)
O2-Ln1-O7	77.43(6)	77.03(5)	77.29(6)	76.79(9)
O2-Ln1-O8	72.59(6)	72.94(5)	72.92(6)	72.94(9)
O2-Ln1-N1	65.39(6)	65.77(5)	66.02(7)	66.42(8)
O3-Ln1-O4	53.05(5)	53.34(5)	53.57(6)	54.16(8)
O3-Ln1-O5	77.20(5)	77.28(5)	77.09(6)	76.94(8)
O3-Ln1-O6	75.99(5)	75.61(5)	75.43(6)	75.14(8)
O3-Ln1-O7	131.26(5)	131.09(5)	130.65(6)	130.40(8)
O3-Ln1-O8	127.18(5)	127.28(5)	127.33(6)	127.58(8)
O3-Ln1-N1	76.37(5)	76.40(5)	76.43(7)	76.67(8)
O4-Ln1-O5	128.87(6)	129.18(5)	129.17(6)	129.49(8)
O4-Ln1-O6	72.05(5)	72.19(5)	72.56(6)	73.06(8)
O4-Ln1-O7	146.77(5)	146.59(5)	146.43(6)	146.52(8)
O4-Ln1-O8	75.93(6)	75.87(5)	75.82(6)	75.71(8)
O4-Ln1-N1	80.79(6)	80.80(5)	80.42(7)	80.07(8)
O7-Ln1-O5	74.35(6)	74.37(5)	74.43(6)	74.41(9)
O7-Ln1-O6	77.66(5)	77.54(5)	77.06(6)	76.94(8)
O7-Ln1-O8	83.96(6)	83.66(5)	83.60(6)	83.29(8)
O7-Ln1-N1	131.70(6)	131.85(5)	132.40(7)	132.54(8)
O8-Ln1-O5	155.17(6)	154.93(5)	155.00(7)	154.79(9)
O8-Ln1-O6	76.18(5)	76.39(5)	76.53(6)	76.66(8)
08-Ln1-N1	111.18(6)	111.57(6)	111.58(7)	111.67(8)
N1-Ln1-O5	76.35(6)	76.25(5)	76.54(7)	76.84(8)
N1-Ln1-O6	149.31(5)	149.14(5)	149.01(7)	148.97(8)
O6-Ln1-O5	109.93(5)	109.63(5)	109.18(6)	108.77(8)
Ln1-O2-C6	127.2(1)	127.1(1)	127.2(2)	126.9(2)
Ln1-O3-C7	94.0(1)	93.91(1)	93.7(1)	93.3(2)
Ln1-O4-C7	92.6(1)	92.5(1)	92.6(1)	92.4(2)
C11-O5-Ln1	167.8(2)	168.6(1)	169.1(2)	170.0(2)
C11-O6-Ln1	116.1(1)	117.5(1)	118.3(2)	119.3(2)
Ln1-N1-C1	127.3(1)	127.7(1)	127.6(2)	127.5(2)
Ln1-N1-C5	114.8(1)	114.6(1)	114.6(2)	114.9(2)
C1-N1-C5	116.7(2)	116.7(2)	116.7(2)	116.8(3)
N1-C1-C2	123.5(2)	123.4(2)	123.1(3)	123.1(3)

Table S2Bond angles (°) for compounds 1, 2, 3 and 4.

C1-C2-C3	118.8(2)	118.7(2)	119.2(3)	119.4(3)
C2-C3-C4	119.1(2)	118.8(2)	118.6(3)	118.5(3)
C3-C4-C5	118.6(2)	118.8(2)	118.7(3)	117.9(3)
N1-C5-C4	123.5(2)	123.6(2)	123.6(2)	124.4(3)
N1-C5-C6	116.4(2)	116.4(2)	116.1(2)	116.5(3)
C4-C5-C6	120.0(2)	119.9(2)	120.3(2)	119.1(3)
O1-C6-O2	125.0(2)	124.8(2)	124.9(2)	124.9(3)
O1-C6-C5	119.5(2)	119.6(2)	119.6(2)	120.2(3)
O2-C6-C5	115.5(2)	115.5(2)	115.4(2)	114.8(3)
O3-C7-O4	120.2(2)	120.1(2)	120.0(2)	120.0(3)
O3-C7-C8	120.4(2)	120.6(2)	120.2(2)	120.2(3)
O4-C7-C8	119.4(2)	119.3(2)	119.8(2)	119.8(3)
C7-C8-C9	114.8(2)	114.8(2)	114.9(2)	115.0(3)
C8-C9-C10	112.2(2)	112.3(2)	112.3(2)	112.0(3)
C9-C10-C11	111.5(2)	111.5(2)	111.3(2)	111.9(3)
O5-C11-O6	121.8(2)	121.6(2)	121.6(2)	121.9(3)
O5-C11-C10	120.8(2)	120.7(2)	120.6(2)	120.3(3)
O6-C11-C10	117.4(2)	117.6(2)	117.7(2)	117.8(3)