Supporting Information for DT-ART-10-2013-052773.R1

Synthesis and characterization of oxygenfunctionalised-NHC silver(I) complexes and NHC transmetallation to nickel(II)

Sophie Hameury,^a Pierre de Frémont,^a Pierre-Alain Breuil,^b Hélène Olivier-Bourbigou,^b and

Pierre Braunstein^{a*}

^a Laboratoire de Chimie de Coordination, Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France.

^b IFP Energies Nouvelles, Rond Point de l'Echangeur de Solaize, 69360 Solaize, France.

Contents:

1)	Experimental details	2
2)	¹ H and ¹³ C NMR spectra for 1 , 2 , 4 , 5 , 6 , 9 , 10 , 12 , 13 and 15	10
3)	Mass analysis of 1, 2, 4, 5, 6, 9, 10, 12, 13 and 15	20
4)	Crystallographic data for the compounds 4•CH ₂ Cl ₂ , 5, 6, 8, 9•Et ₂ O, 13•H ₂ O, 14	
and	15	30
5)	Notable features in the crystal packing for 9 and 13	38
6)	ORTEP of the molecular structure of 4•CH ₂ Cl ₂ , 5, 6, 8, 9•Et ₂ O, 13•H ₂ O, 14 and 15.	39

1) Experimental details

All reactions were carried out under inert atmosphere using standard Schlenk techniques unless stated otherwise. The compounds 1-(2,6-diisopropylphenyl)-1H-imidazol, 1-mesityl-1H-imidazole, 1-mesityl-1H-imidazole and 3-(2-hydroxyethyl)-1-methyl-1H-imidazol-3-ium chloride ([ImMe(C₂OH)]Cl, 3) and [NiCl₂(dme)] were synthesized according to published procedures.¹ All reagents were used as received from commercial suppliers. TMSCl was distilled over Na prior to use. Solvents were purified and dried under argon by conventional methods. ¹H NMR and ¹³C{¹H} NMR spectra were recorded on the following instruments: Bruker AVANCE I – 300 MHz spectrometer, Bruker AVANCE III – 400 MHz spectrometer, Bruker AVANCE I - 500 MHz spectrometer and Bruker AVANCE III - 600 MHz spectrometer. The chemical shifts are given in parts per million (ppm). Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad), coupling constants (J/Hz) and integration. Assignments were determined either on the basis of unambiguous chemical shifts, coupling patterns or 2D correlations. The residual solvent proton (¹H) or carbon (¹³C) resonances were used as references. For ¹H NMR: CDCl₃ = 7.26 ppm, CHDCl₂ = 5.32 ppm, C_6D_6 = 7.16 ppm. For $^{13}C{^{1}H}$ NMR: CDCl₃ = 77.1 ppm, CD₂Cl₂ = 53.8 ppm, C₆D₆ = 128.06 ppm. IR spectra were recorded in the region 4000-200 cm⁻¹ on a Nicolet 6700 FT-IR spectrometer (ATR mode, diamond crystal). Elemental analyses were performed by the "Service de Microanalyses", Université de Strasbourg. Mass spectrometry analyses were performed by the "Service de spectrométrie de masse", Université de Strasbourg. For the X-ray diffraction studies, the intensity data were collected at 173(2) or 293(2) K on a Kappa CCD diffractometer 88 (graphite-monochromated Mo-K_a radiation, $\lambda = 0.71073$ Å). Crystallographic and experimental details for all the structures are summarized below (page S30). The structures were solved by direct methods (SHELXS-97) and refined by full-matrix least-squares procedures (based on F^2 , SHELXL-97) with anisotropic thermal parameters for all the nonhydrogen atoms.² The hydrogen atoms were introduced into the geometrically calculated positions (SHELXL-97 procedures) and refined riding on the corresponding parent atoms, exception made for the hydroxyl-groups.

Synthesis of [ImDiPP(C₂OH)]Cl (1). A mixture of 1-(2,6-diisopropylphenyl)-1H-imidazole (5.567 g, 24.81 mmol) and 1-chloroethanol (20.0 mL, 256 mmol) was refluxed for 1.5 days.

The unreacted 1-chloroethanol was removed under reduced pressure. The resulting sticky solid was dissolved in the minimum amount of CH₂Cl₂ and precipitated with Et₂O. The beige solid was then stirred in Et₂O for 2 h and then collected by filtration to give **1**. The same procedure was used with THF to afford **1** as a white solid that was dried using a toluene Dean-Stark when needed (5.926 g, 19.19 mmol). Yield: 77%. ¹H NMR (CD₂Cl₂, 500 MHz): 9.97 (t, J = 1.4 Hz, 1H, CH^{imidazole}), 8.10 (t, J = 1.7 Hz, 1H, CH^{imidazole}), 7.55 (t, J = 7.8 Hz, 1H, CH^{p-Ar}), 7.33 (d, J = 7.9 Hz, 2H, CH^{m-Ar}), 7.23 (t, J = 1.8 Hz, 1H, CH^{imidazole}), 5.73 (t, J = 5.5 Hz, 1H, OH), 4.78 (t, J = 5.2 Hz, 2H, CH₂), 3.92 (td, J = 5.2 Hz, J = 5.5 Hz, 2H, CH₂OH), 2.32 (septet, J = 6.8 Hz, 2H, CH^{iPr}), 1.17 (d, J = 6.8 Hz, 6H, CH₃^{iPr}), 1.15 (d, J = 6.8 Hz, 6H, CH₃^{iPr}), 1³C{¹H} NMR (CD₂Cl₂, 126 MHz): 145.9 (C^{Ar}), 139.0 (CH^{imidazole}), 132.0 (CH^{Ar}), 130.6 (C^{Ar}), 124.9 (CH^{Ar}), 124.1 (CH^{imidazole}), 60.4 (CH₂OH), 52.5 (CH₂), 28.9 (CH^{iPr}), 24.5 (CH₃^{iPr}), 24.1 (CH₃^{iPr}). MS (ESI): *m*/z 273.18 [*M*-Cl]⁺. FTIR: v_{max}(solid)/cm⁻¹: 3202m br, 3036m, 2963s, 2868m, 1561w, 1543m, 1462m, 1443m, 1387w, 1365m, 1313w, 1278vw, 1258w, 1190s, 1112w, 1078s, 1061s, 939w, 877m, 816s, 781m, 766s, 718w, 673s.

Synthesis of [ImMes(C₂OH)]Cl (2). A mixture of 1-mesityl-1*H*-imidazole (4.000 g, 21.48 mmol) and 1-chloroethanol (17.0 mL, 205 mmol) was refluxed for 20 h. The unreacted 1-chloroethanol was removed under reduced pressure. The resulting sticky solid was triturated with Et₂O (3 times). The beige solid was then stirred in THF for 16 h and then collected by filtration to afford **2** as a white solid. The resulting powder was dried if needed using a toluene Dean-Stark (5.315 g, 19.92 mmol). Yield: 93%. ¹H NMR (CD₂Cl₂, 500 MHz): 9.75 (bt, J = 1.5 Hz, 1H, CH^{imidazole}), 7.90 (bt, J = 1.5 Hz, 1H, CH^{imidazole}), 7.23 (bt, J = 1.5 Hz, 1H), 7.03 (s, 2H, CH^{*m*-Ar}), 5.68 (s br, 1H, OH), 4.68 (t, J = 5.0 Hz, 2H, CH₂), 3.95 (t, J = 5.0 Hz, 2H, CH₂OH), 2.34 (s, 3H, *p*-CH₃), 2.07 (s, 6H, *o*-CH₃). ¹³C{¹H} NMR (CD₂Cl₂, 126 MHz): 141.5 (C^{Ar}), 138.5 (CH^{imidazole}), 134.9 (C^{Ar}), 131.2 (C^{Ar}), 130.0 (CH^{Ar}), 123.9 (CH^{imidazole}), 60.2 (CH₂OH), 52.7 (CH₂), 21.2 (*p*-CH₃), 17.7 (*o*-CH₃). MS (ESI): *m*/z 231.15 [*M*-Cl]⁺. FTIR: v_{max}(solid)/cm⁻¹: 3259w br, 3111vw, 3042w, 2911vw, 1564m, 1546m, 1468m, 1465m, 1446m, 1382w, 1370w, 1315w, 1271w, 1258vw, 1235w, 1201s, 1158m, 1101vw, 1080s, 1065s, 1043m, 968vw, 934vw, 867s, 759s, 730w, 678m.

Synthesis of $[Ag{ImDiPP(C_2OH)}_2]Cl$ (4). A mixture of the imidazolium salt $[ImDiPP(C_2OH)]Cl$ (0.487 g, 1.58 mmol), Ag₂O (0.201 g, 0.867 mmol) and molecular sieves in MeOH (25 mL) was stirred in the absence of light for 16 h. It was then filtered through Celite and the filtrate was evaporated under reduced pressure. The resulting solid was

dissolved in the minimum amount of CH₂Cl₂ and precipitated by addition of pentane. The white precipitate was filtered, washed with pentane (3x10 mL) and dried under vacuum to afford **4** as a white powder (0.515 g, 0.748 mmol). Yield: 95%. ¹H NMR (CD₂Cl₂, 300 MHz): 7.36 (t, J = 7.5 Hz, 1H, CH^{p-Ar}), 7.27 (t, ${}^{3}J$ (H-H) = 1.5 Hz, ${}^{4}J$ (H-Ag) = 1.5 Hz, 1H, CH^{imidazole}), 7.12 (d, J = 7.5 Hz, 2H, CH^{m-Ar}), 6.92 (t, ${}^{3}J$ (H-H) = 1.5 Hz, ${}^{4}J$ (H-Ag) = 1.5 Hz, 1H, CH^{imidazole}), 4.28 (t, J = 5.8 Hz, 2H, CH₂), 3.92 (t, J = 5.8 Hz, 2H, CH₂OH), 2.27 (septet, J = 6.5 Hz, 2H, CH^{*i*Pr}), 1.04 (d, J = 6.5 Hz, 6H, CH₃^{*i*Pr}), 0.84 (d, J = 6.5 Hz, 6H, CH₃^{*i*Pr}). ¹³C{¹H} NMR (CD₂Cl₂, 150.9 MHz): 182.6 (d, ${}^{1}J({}^{13}C-{}^{107}Ag) = 184 \text{ Hz}, {}^{1}J({}^{13}C-{}^{109}Ag) = 212$ Hz, C^{carbene}), 146.4 (C^{Ar}), 135.4 (C^{Ar}), 130.6 (CH^{Ar}), 124.3 (CH^{Ar}), 123.7 (d, ${}^{3}J$ (C-Ag) = 5.5 Hz, CH^{imidazole}), 122.7 (d, ${}^{3}J(C-Ag) = 5.5$ Hz, CH^{imidazole}), 61.9 (CH₂OH), 54.7 (CH₂), 28.5 (CH^{iPr}), 24.8 (CH₃^{iPr}), 24.2 (CH₃^{iPr}). MS (ESI): *m*/z 651.29 [*M*-Cl]⁺. FTIR: v_{max}(solid)/cm⁻¹: 3162m, 3131m, 2961m, 2869m, 1619vw, 1594vw, 1553w, 1470m, 1459m, 1443m, 1415m, 1387w, 1360m, 1313w, 1277vw, 1256m, 1218w, 1199w, 1182w, 1123w, 1091s, 1077s, 1057m, 1024w, 967, w, 939w, 885m, 810m, 757s, 729s, 693m, 678m, 638m, 570w, 505w, 468w, 419w, 397w, 375w, 351w, 335vw, 328w, 303w, 289w, 280w, 266vw, 254w, 247w, 227w, 208w, 202w, 195w, 188vw, 171w, 151w, 140w, 133w, 127vw, 121w, 106vw. Anal. calcd for C₃₄H₄₈AgClN₄O₂ (%): C 59.17, H 7.30, N 8.20; found: C 58.08, H 6.98, N 7.92. Despite several attempts, better results could not be obtained.

Synthesis of [Ag{ImMes(C₂OH)]₂**]Cl** (5). A mixture of the imidazolium salt [ImMes(C₂OH)]Cl (1.939 g, 7.268 mmol), Ag₂O (0.926 g, 4.00 mmol) and molecular sieves in MeOH (40 mL) was stirred under exclusion of light for 16 h. The reaction mixture was then filtered through Celite and the filtrate was evaporated under reduced pressure. The resulting solid was dissolved in the minimum amount of CH₂Cl₂ and precipitated by addition of pentane. The white precipitate was filtered, washed with pentane (3x10 mL) and dried under reduced pressure to afford **5** as a white powder (2.048 g, 3.391 mmol). Yield: 92%. ¹H NMR (CD₂Cl₂, 300 MHz): 7.24 (bs, 1H, CH^{imidazole}), 6.88 (bs, 3H, CH^{m-Ar} and CH^{imidazole}), 4.31 (t, J = 5.5 Hz, 2H, CH₂), 3.91 (t, J = 5.5 Hz, 2H, CH₂OH), 2.39 (s, 3H, *p*-CH₃), 1.75 (s, 6H, *o*-CH₃). ¹³Cl¹H} NMR (CD₂Cl₂, 125.7 MHz): 182.6 (d, ¹J(¹³C-¹⁰⁷Ag) = 182 Hz, ¹J(¹³C-¹⁰⁹Ag) = 210 Hz, C^{carbene}) 139.1 (C^{Ar}), 136.1 (C^{Ar}), 135.3 (C^{Ar}), 129.2 (CH^{Ar}), 122.4 (d, ³J(C-Ag) = 5.0 Hz, CH^{imidazole}), 122.3 (d, ³J(C-Ag) = 5.0 Hz, CH^{imidazole}), 61.8 (CH₂OH), 54.6 (CH₂), 21.2 (*p*-CH₃), 17.6 (*o*-CH₃). MS (ESI): *m*/z 567.20 [*M*-Cl]⁺. FTIR: v_{max}(solid)/cm⁻¹: 3152vw, 3079vw, 2913vw, 1488m, 1449m, 1410m, 1378m, 1351m, 1310w, 1283w, 1262w, 1232m, 1186m, 1163m, 1114w, 1071s, 1014m, 970m, 936m, 857s, 754s, 738m, 688m, 642m,

584m, 507m, 463m, 397vw, 357m, 341m, 280m, 246w. Anal. calcd for $C_{28}H_{36}AgClN_4O_2$ (%): C 55.68, H 6.01,N 9.28; found: C 54.59, H 6.50, N 9.03. Despite several attempts, better results could not be obtained.

Synthesis of [**Ag{ImMe**(**C**₂**OH**)**}**₂]**Cl** (**6**). A mixture of the imidazolium salt [ImMe(C₂OH)]Cl (0.600 g, 3.69 mmol), Ag₂O (0.470 g, 2.03 mmol) and molecular sieves in MeOH (25 mL) was stirred under exclusion of light for 16 h. The reaction mixture was then filtered through Celite and the filtrate was evaporated under reduced pressure. The resulting solid was dissolved in the minimum amount of MeOH and precipitated by addition of Et₂O. The white precipitate was filtered, washed with Et₂O (3x10 mL) and dried under reduced pressure to afford **6** as a white powder (0.622 g, 1.57 mmol). Yield: 85%. ¹H NMR (CDCl₃, 300 MHz): 7.14 (d, *J* = 1.8 Hz, 1H, CH^{imidazole}), 6.98 (d, *J* = 1.8 Hz, 1H, CH^{imidazole}), 4.27 (t, *J* = 5.2 Hz, 2H, CH₂), 3.91 (t, *J* = 5.2 Hz, 2H, CH₂OH), 3.84 (s, 3H, CH₃). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz): 181.2 (C^{carbene}), 122.2 (CH^{imidazole}), 122.1 (CH^{imidazole}), 62.0 (CH₂OH), 54.3 (CH₂), 38.9 (CH₃). MS (ESI): *m*/z 359.06 [*M*-Cl]⁺. FTIR: v_{max}(solid)/cm⁻¹: 3259w, 2941vw, 2853w, 1456m, 1429w, 1403m, 1341w, 1278w, 1223m, 1165m, 115vw, 1058s, 870w, 753s, 623s, 454m, 383w, 314s, 247s, 198w, 178vw, 150w, 119s. Anal. calcd for C₁₂H₂₀AgClN₄O₂ (%): C 36.43, H 5.10, N 14.16; found: C 34.84, H 5.36, N 14.20. Despite several attempts, better results could not be obtained.

Synthesis of [ImHDiPP(C₂OH)]₃Cl[NiCl₄] (8). A mixture of the silver complex 4 (0.213 g, 0.310 mmol) and [NiCl₂(dme)] (0.136 g, 0.619 mmol) in CH₂Cl₂ was stirred overnight. A green solution and a white suspension were obtained. The solution was filtered through Celite and the filtrate was dried under reduced pressure. The resulting green solid was precipitated from CH₂Cl₂ and Et₂O and blue crystals are obtained by vapour diffusion of pentane into a CH₂Cl₂ solution of the product.

Synthesis of $[Ag\{ImDiPP(C_2OH)\}_2]BF_4$ (9). A mixture of the silver complex 4 (0.354 g, 0.514 mmol) and NaBF₄ (0.132 g, 1.20 mmol) in acetone (20 mL) was stirred for 12 h. The solution was filtered through Celite and the filtrate was dried under reduced pressure. The resulting powder was precipitated from CH₂Cl₂ and pentane to afford 9 as a white solid (0.217 g, 0.293 mmol). Yield: 57%. ¹H NMR (CD₂Cl₂, 500 MHz): 7.43 (t, *J* = 7.8, 1H, CH^{*p*-Ar}),7.34 (t, ³*J*(H-H) = 1.7 Hz, ⁴*J*(H-Ag) = 1.7 Hz 1H, CH^{imidazole}), 7.20 (d, *J* = 7.8, 2H, CH^{*m*-Ar}), 6.98 (t, ³*J*(H-H) = 1.7 Hz, ⁴*J*(H-Ag) = 1.7 Hz 1H, CH^{imidazole}), 4.10 (t, *J* = 5.2, 2H, CH₂), 3.82 (t, *J* =

5.2, 2H, CH₂OH), 2.95 (s br, 1H, OH), 2.25 (septet, J = 6.9, 2H, CH^{iPr}), 1.08 (d, J = 6.9, 6H, CH₃^{iPr}), 0.92 (d, J = 6.9, 6H, CH₃^{iPr}). ¹³C{¹H} NMR (CD₂Cl₂, 126 MHz) 182.6 (d, ¹*J*(¹³C-¹⁰⁷Ag) = 184 Hz, ¹*J*(¹³C-¹⁰⁹Ag) = 213 Hz, C^{carbene}), 146.5 (C^{Ar}), 135.3 (C^{Ar}), 130.7 (CH^{Ar}), 124.4 (CH^{Ar}), 124.2 (d, ³*J*(C-Ag) = 5.9 Hz, CH^{imidazole}), 122.5 (d, ³*J*(C-Ag) = 5.7 Hz), 62.5 (CH₂OH), 54.2 (d, ³*J*(C-Ag) = 2.2 Hz, CH₂), 28.5 (CH^{iPr}), 24.8 (CH₃^{iPr}), 24.2 (CH₃^{iPr}). MS (ESI): *m*/z 651.28 [*M*-BF₄]⁺. FTIR: v_{max}(solid)/cm⁻¹: 3455w, 3164vw, 2965m, 2870w, 1470m, 1419w, 1384w, 1363m, 1307vw, 1248vw, 1224vw, 1183w, 1066vs, 938m, 869m, 846vw, 811m, 768m, 741m, 689w, 674vw, 647vw, 567m, 540m, 513s, 467s, 408w, 352w, 372vw, 303w, 279m, 254vw, 247vw, 227m, 203m, 171m, 150m, 140m, 133vw, 121w. Anal. calcd for C₃₄H₄₈AgBF₄N₄O₂ (%): C 55.23, H 6.53, N 7.58; found: C 55.25, H 6.81, N 6.95. Despite several attempts, better results could not be obtained.

Synthesis of [ImDiPP(C₂OTMS)]Cl (10). A mixture of the imidazolium salt **1** (0.221 g, 0.716 mmol), HMDS (0.15 mL, 0.72 mmol) and TMSCl (0.20 mL, 1.6 mmol) in dioxane (10 mL) was refluxed for 16 h. The solvent was removed under reduced pressure. The white solid was dissolved in CH₂Cl₂ and the ammonium salts were removed by filtration. The filtrate was evaporated under reduced pressure and the powder was washed with pentane to afford **10** as a white powder (0.223 g, 0.585 mmol). Yield: 81%. ¹H NMR (CD₂Cl₂, 500 MHz): 10.56 (t, J = 1.6 Hz, 1H, CH^{imidazole}), 8.08 (t, J = 1.6 Hz, 1H, CH^{imidazole}), 7.56 (t, J = 7.8 Hz, 1H, CH^{*p*-Ar}), 7.34 (d, J = 7.9 Hz, 2H, CH^{*m*-Ar}), 7.17 (t t, J = 1.7 Hz, 1H, CH^{imidazole}), 4.92 (t, J = 4.7 Hz, 2H, CH₂), 4.05 (t, J = 4.7 Hz, 2H, CH₂OSiMe₃), 2.30 (sept., J = 6.8 Hz, 2H, CH^{*i*Pr}), 1.21 (d, J = 6.8 Hz, 6H, CH₃^{*i*Pr}), 1.15 (d, J = 6.8 Hz, 6H, CH₃^{*i*Pr}), 0.11 (s, 9H, CH₃^{TMS}). ¹³C{¹H} NMR (CDCl₃, 126 MHz): 145.8 (C^{Ar}), 139.2 (CH^{imidazole}), 132.1 (CH^{Ar}), 130.7 (C^{Ar}), 125.0 (CH^{Ar}), 124.5 (CH^{imidazole}), 123.7 (CH^{imidazole}), 61.9 (CH₂OTMS), 52.7 (CH₂), 29.0 (CH^{*i*Pr}), 24.4 (CH₃^{*i*Pr}), 24.3 (CH₃^{*i*Pr}), -0.7 (CH₃^{TMS}). MS (ESI): *m*/z 345.23 [*M*-Cl]⁺. FTIR: v_{max}(solid)/cm⁻¹: 2960m, 2870w, 1565w, 1543m, 1461m, 1442m, 1411vw, 1384w, 1367m, 1313vw, 1248m, 1193m, 1104m, 1081m, 940m, 839s, 816s, 767m, 757m, 672m, 645w.

Synthesis of [ImDiPP(C₂OMe)]Cl (12). A mixture of 1-(2,6-diisopropylphenyl)-1*H*imidazole (2.066 g, 9.209 mmol) and 2-chloroethyl methyl ether (8.4 mL, 92 mmol) was refluxed for 1.5 days. The unreacted 2-chloroethyl methyl ether was removed under reduced pressure. The resulting sticky solid was dissolved and precipitated from CH_2Cl_2 and Et_2O . The beige solid was then stirred in Et_2O for 2 h and collected by filtration. The same procedure was used with THF to afford 12 as a white solid. If needed, the resulting white powder was dried using a toluene Dean-Stark (2.415 g, 7.480 mmol). Yield: 81%. ¹H NMR (CD₂Cl₂, 500 MHz): 10.45 (t, J = 1.7 Hz, 1H, CH^{imidazole}), 8.32 (t, J = 1.7 Hz, 1H, CH^{imidazole}), 7.54 (t, J = 7.8 Hz, 1H, CH^{p-Ar}), 7.31 (d, J = 7.9 Hz, 2H, CH^{m-Ar}), 7.22 (t, J = 1.7 Hz, 1H, CH^{imidazole}), 4.91 (t, J = 4.9 Hz, 2H, CH₂), 3.82 (t, J = 4.9 Hz, 2H, CH₂^{OMe}), 3.36 (s, 3H, CH₃^{OMe}), 2.28 (septet, J = 6.8 Hz, 2H, CH^{iPr}), 1.16 (d, J = 6.8 Hz, 6H, CH₃^{iPr}), 1.14 (d, J = 6.8 Hz, 6H, CH₃^{iPr}), 1.3C{¹H} NMR (CD₂Cl₂, 126 MHz): 145.72 (C^{Ar}), 139.29 (CH^{imidazole}), 131.91 (CH^{Ar}), 130.67 (C^{Ar}), 124.81 (CH^{Ar}), 124.45 (CH^{imidazole}), 123.84 (CH^{imidazole}), 70.78 (CH₂^{OMe}), 59.02 (CH₃^{OMe}), 50.01 (CH₂), 28.89 (CH^{iPr}), 24.42 (CH₃^{iPr}), 23.97 (CH₃^{iPr}). MS (ESI): m/z 287.20 [M-Cl]⁺. FTIR: v_{max} (solid)/cm⁻¹: 3357w, 3062m, 3013vw, 2962m, 2921m, 2873m, 2820w, 1565m, 1541m, 1459m, 1411vw, 1388w, 1363m, 1341m, 1316vw, 1294vw, 1272vw, 1247vw, 1224vw, 1191s, 1107s, 1089vw, 1076m, 1061vw, 1027vw, 1015m, 974vw, 957vw, 912w, 832m, 810s, 788m, 766s, 739vw, 673m, 651m, 637w, 613vw.

Synthesis of [Ag{ImDiPP(C₂OMe)}₂]Cl (13). A mixture of the imidazolium salt 12 (0.404 g, 1.25 mmol), Ag₂O (0.159 g, 0.686 mmol) and molecular sieves in MeOH (25 mL) was stirred overnight under exclusion of light for 12 h. The solution was filtered through Celite and the solvent was evaporated under reduced pressure. The resulting power was redissolved in CH_2Cl_2 and precipitated from pentane to afford 13 as a white solid (0.329 g, 0.459 mmol). Yield: 74%. ¹H NMR (CD₂Cl₂, 500 MHz): δ 7.52 (t, ³J(H-H) = 1.5 Hz, ⁴J(H-Ag) = 1.5 Hz, 1H, CH^{imidazole}), 7.46 (t, J = 7.8 Hz, 1H, CH^{*p*-Ar}), 7.22 (d, J = 7.8 Hz, 2H, CH^{*m*-Ar}), 7.00 (t, ${}^{3}J(\text{H-H}) = 1.5 \text{ Hz}, {}^{4}J(\text{H-Ag}) = 1.5 \text{ Hz}, 1\text{H}, \text{CH}^{\text{imidazole}}), 4.07 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{H}, \text{CH}_{2}), 3.50 \text{ (t, } J = 4.9 \text{ Hz}, 2\text{Hz}, 2\text{Hz}$ = 4.9 Hz, 2H, CH_2^{OMe}), 3.26 (s, 3H, CH_3^{OMe}), 2.26 (septet, J = 6.9 Hz, 2H, CH^{iPr}), 1.08 (d, J =6.9 Hz, 6H, CH_3^{iPr}), 0.98 (d, J = 6.9 Hz, 6H, CH_3^{iPr}). ¹³C{¹H} NMR (CD₂Cl₂, 126 MHz): 182.4 (d, ${}^{1}J({}^{13}C-{}^{107}Ag) = 183$ Hz, ${}^{1}J({}^{13}C-{}^{109}Ag) = 212$ Hz, C^{carbene}), 146.4 (C^{Ar}), 135.3 (C^{Ar}), 130.8 (CH^{Ar}), 124.4 (CH^{Ar}), 124.1 (d, ${}^{3}J(C-Ag) = 5.8$ Hz, CH^{imidazole}), 122.9 (d, ${}^{3}J(C-Ag) =$ 5.7 Hz, CH^{imidazole}), 72.2 (CH₂^{OMe}), 59.3 (CH₃^{OMe}), 52.0 (d, ${}^{3}J$ (C-Ag) = 2.2 Hz, CH₂), 28.6 (CH^{iPr}), 24.7 (CH₃^{iPr}), 24.2 (CH₃^{iPr}). MS (ESI): *m*/z 681.31 [*M*-Cl]⁺. FTIR: v_{max}(solid)/cm⁻¹: 2959w, 1471m, 1460m, 1413m, 1381m, 1360m, 1302w, 1251w, 1231vw, 1205w, 1178w, 1095s, 1075m, 1058m, 1037w, 1007m, 966vw, 937w, 895vw, 838m, 805m, 763s, 742s, 690m, 676m, 646w567m, 529w, 466m, 417w, 368vw, 278w, 247vw, 151vw. Anal. calcd for C₃₆H₅₂AgClN₄O₂ (%): C 60.38, H 7.32, N 8.82; found: C 59.46, H 7.52, N 7.61. Despite several attempts, better results could not be obtained.

Synthesis of [NiCl₂{ImDiPP(C₂OMe)}₂] (15). A mixture of the silver complex 13 (0.197 g, 0.275 mmol) in THF and [NiCl₂(dme)] (0.061 g, 0.28 mmol) was stirred overnight at room temperature to afford an orange solution and a white precipitate. The precipitate was removed by filtration through Celite and the solvent was evaporated under reduced pressure. The resulting orange solid was washed with H₂O, dissolved in THF and the solution was dried with Na₂SO₄. The solvent was removed under reduced pressure to afford 15 as an orange solid (0.100 g, 0.142 mmol). Yield: 50%. *Major product*: ¹H NMR (C₆D₆, 500 MHz): 7.39-7.31 (m, 3H, CH^{Ar}), 6.66 (d, J = 1.7 Hz, 1H, CH^{imidazole}), 6.33 (d, J = 1.7 Hz, 1H, CH^{imidazole}), 4.96 (t, J = 4.7 Hz, 2H, CH₂), 3.85 (t, J = 4.7 Hz, 2H, CH₂OMe), 3.13 (septet, J = 6.9 Hz, 2H, CH^{*i*Pr}), 3.01 (s, 3H, CH₃^{OMe}), 1.53 (d, J = 6.6 Hz, 6H, CH₃^{*i*Pr}), 0.92 (d, J = 6.9 Hz, 6H, CH₃^{*i*Pr}). ¹³C{¹H} NMR (C₆D₆, 126 MHz): 171.5 (C^{carbene}), 148.4 (C^{Ar}), 136.7 (C^{Ar}), 129.9 (CH^{Ar}), 123.9 (CH^{Ar}), 123.6 (CH^{imidazole}), 121.7 (CH^{imidazole}), 72.3 (CH₂OMe), 58.7 (CH₃^{OMe}), 51.5 (CH₂), 28.7 (CH^{iPr}), 26.8 (CH₃^{iPr}), 23.0 (CH₃^{iPr}). *Minor product*: ¹H NMR (500 MHz, C₆D₆): δ 7.39-7.31 (m, 1H, CH^{p-Ar}), 7.19 (d, J = 7.8 Hz, 2H, CH^{m-Ar}), 6.68-6.66 (m sh, 1H, CH^{imidazole}), 6.25 (d, J = 1.6 Hz, 1H, CH^{imidazole}), 5.65 (t, J = 5.3 Hz, 2H, CH₂), 4.18 (t, J = 5.4 Hz, 2H, CH₂OMe), 3.08 (s, 3H, CH₃^{OMe}), 2.91 (septet, J = 6.7 Hz, 2H, CH^{*i*Pr}), 1.21 (d, J = 6.7Hz, 6H, CH3^{*i*Pr}), 0.91-0.88 (m sh, 6H, CH3^{*i*Pr}). ¹³C{¹H} NMR (C₆D₆, 126 MHz): 170.2 (C^{carbene}), 147.3 (C^{Ar}), 136.3 (C^{Ar}), 129.7(CH^{Ar}), 124.1 (CH^{Ar}), 124.0 (CH^{imidazole}), 121.4 (CH^{imidazole}), 72.8 (CH₂OMe), 58.8 (CH₃^{OMe}), 51.4 (CH₂), 28.4 (CH^{iPr}), 26.5 (CH₃^{iPr}), 23.3 (CH3^{iPr}). MS (ESI): *m*/z 665.31 [*M*-Cl]⁺. FTIR: v_{max}(solid)/cm⁻¹: 3133vw, 2964m, 2865m, 1466m, 1446m, 1413m, 1380m, 1356m, 1321w, 1292m, 1269m, 1181m, 1162vw, 1120s, 1089vw, 1059w, 1040w, 1011m, 957m, 933w, 897vw, 843w, 822w, 803m, 762s, 735m, 706s, 641w, 614w, 567m, 536s, 474m, 427m, 392vs, 350m, 316w, 275w, 225m, 128vs. Anal. calcd for C₃₆H₅₂Cl₂N₄NiO₂ (%): C 61.56, H 7.64, N 7.98; found: C 61.57, H 7.46, N 7.94.

Catalytic oligomerization of ethylene

The catalytic reactions were performed in a magnetically stirred (1200 rpm) 145 mL stainless steel autoclave. A 125 mL glass container was used to avoid corrosion of the autoclave walls. The precatalyst solution was prepared by dissolving 28.1 mg (4 x 10^{-5} mol) of a powder of **15** in toluene (10 mL). AlEtCl₂ was used as cocatalyst (8 x 10^{-5} mol in toluene). The precatalyst solution was injected into the reactor under an ethylene flux, followed by 5 mL of the cocatalyst solution (10 equiv.) (total volume of the solution: 15 mL). The catalytic reaction was started at 20 °C. No cooling of the reactor was done during the reaction. After injection of the catalyst and cocatalyst solutions under a constant low flow of ethylene, which is

considered as the t_0 time, the reactor was immediately pressurized to 10 bar of ethylene. The temperature increased to 32 °C, owing solely to the exothermicity of the reaction. The 10 bar working pressure was maintained through a continuous feed of ethylene from a bottle placed on a balance to allow continuous monitoring of the ethylene uptake. At the end of each test (35 min), a dry ice bath was used to rapidly cool the reactor. When the inner temperature reached 0 °C, the ice bath was removed, allowing the temperature to slowly rise to 18 °C. The gaseous phase was then transferred into a 10 L polyethylene tank filled with water. An aliquot of this gaseous phase was transferred into a Schlenk flask, previously evacuated, for GC analysis. The amount of ethylene consumed was thus determined by differential weighting of the bottle (accuracy of the scale: 0.1 g). To this amount of ethylene, the remaining ethylene (calculated using the GC analysis) in the gaseous phase was subtracted. Although this method is of limited accuracy, it was used throughout and gave satisfactory reproducibility. The reaction mixture in the reactor was quenched in situ by the addition of ethanol (1 mL), transferred into a Schlenk flask, and separated from the metal complexes by trap- to-trap evaporation (20 °C, 0.8 mbar) into a second Schlenk flask previously immersed in liquid nitrogen in order to avoid loss of product.

2) ¹H and ¹³C NMR spectra for 1, 2, 4, 5, 6, 9, 10, 12, 13 and 15

¹H NMR (CD₂Cl₂, 500 MHz) of [ImDiPP(C₂OH)]Cl (1).

¹H NMR (CD₂Cl₂, 500 MHz) of [ImMes(C₂OH)]Cl (2)

¹H NMR (CD₂Cl₂, 300 MHz) of [Ag{ImDiPP(C₂OH)}₂]Cl (4)

¹H NMR (CD₂Cl₂, 500 MHz) of [Ag{ImDiPP(C₂OH)}₂]BF₄ (9)

¹H NMR (CD₂Cl₂, 500 MHz) of [ImDiPP(C₂OTMS)]Cl (10)

¹H NMR (CD₂Cl₂, 500 MHz) of [ImDiPP(C₂OMe)]Cl (**12**)

-1000

¹H NMR (CD₂Cl₂, 500 MHz) of [Ag{ImDiPP(C₂OMe)}₂]Cl (**13**)

¹H NMR (C_6D_6 , 500 MHz) of [NiCl₂{ImDiPP(C_2OMe)}₂] (**15**)

¹³C NMR (C₆D₆, 500 MHz) of [NiCl₂{ImDiPP(C₂OMe)}₂] (**15**)

3) Mass spectrometry analyses of 1, 2, 4, 5, 6, 9, 10, 12, 13 and 15

MS (ESI) of [ImDiPP(C₂OH)]Cl (1)

Analysis Info Analysis Name Method Sample Name Comment	023897ML.d esi low pos.m (EtOH DiPPIm)CP					Acquisition Date Operator Instrument	23/09/2013 10:3 Administrator micrOTOF	33:29
Acquisition Param Source Type Ion Polarity n/a	eter ESI Positive n/a	Capillary Set Capillary Exit Set Skimmer 1	4500 V 50.0 V 50.0 V		Nebulizer Dry Gas Dry Heater	0.4 Bar 4.0 Vmin 180 °C	Corona Set Hexapole RF APCI Heater	219 nA 60.0 V 514 °C
Intens. x10 ⁶				273.18				+MS, 0.0-0.2min #(2-1
0.8-								
0.6-								
0.4-								
0.2-					274.19			
0.0				<u></u>	2/5.19			C17H25N2O, M. 273.
2000				2/3.20				
1500								
1000								
500					274.20			
					275.20		· · ·	

MS (ESI) of [ImMes(C₂OH)]Cl (2)

Ser	vice de spectro	metrie de ma	sse - Inst	itut de C	himie - S	trasbourg - UN	IR 7177 CNRS	S/ULP
Analysis Info Analysis Name Method Sample Name Comment	023900ML.d esi low pos.m (EtOH)MesIm)Cl					Acquisition Date Operator Instrument	23/09/2013 12:0 Administrator micrOTOF	00:58
Acquisition Paran Source Type on Polarity 1/a	neter ESI Positive n/a	Capillary Set Capillary Exit Set Skimmer 1	4500 V 50.0 V 50.0 V		Nebulizer Dry Gas Dry Heater	0.4 Bar 4.0 l/min 180 °C	Corona Set Hexapole RF APCI Heater	219 nA 60.0 V 514 °C
105 x105 3- 2-			231.15	232 15				+₩S, 0.0-0.1min #(2-4
2000 1500 500 0 2226	228	230	231.15	232.15	233,16	234	236	C14H19N2O, M , 231.1
Bruker Daltonic	s DataAnalysis 3.1			printed:	25/09/2013	12:55:15		Page 1 of 1

MS (ESI) of $[Ag{ImDiPP(C_2OH)}_2]Cl$ (4)

....

Analysis Info Analysis Name Method Sample Name Comment	O23121ML.d 2013_05_esiv (EtOHDiPPIm	widepos.m 1)2 AgCl			Acquisition Date Operator Instrument	29/07/2013 16: Administrator micrOTOF	19:26
Acquisition Param Source Type on Polarity I/a	eter ESI Positive n/a	Capiliary Set Capiliary Ext Set Skimmer 1	4500 V 50.0 V 50.0 V	Nebulizer Dry Gas Dry Heater	0.4 Bar 4.0 Vmin 180 °C	Corona Set Hexapole RF APCI Heater	195 nA 210.0 V 514 "C
Intens. x10 ⁴ 2.5 2.0 1.5 1.0 0.5			651.28	654.29 655.29			+MS, 0.0-0.1min #(2-4) 663.29
0.0-2000- 1500- 1000- 500-	646 648	650	651,28 652,29 652	654.29 654.29 6554.29 655.29 6554 66	658	660	C34H48AgN402, ,651.28 662 mt

MS (ESI) of $[Ag{ImMes(C_2OH)}_2]Cl$ (5)

Analysis Info							
Analysis Name Method Sample Name Comment	023922ML.d esi low pos.m (EtOH MeSPPIm)2 AgCl			Acquisition Date Operator Instrument	23/09/2013 14: Administrator micrOTOF	22:27
Acquisition Paran cource Type on Polarity /a	neter ESI Positive n/a	Capillary Set Capillary Exit Set Skimmer 1	4500 V 50.0 V 50.0 V	Nebulizer Dry Gas Dry Heater	0.4 Bar 4.0 Umin 180 °C	Corona Set Hexapole RF APCI Heater	219 nA 60.0 V 514 °C
Intens. x10 ⁴ 1.5 1.0 0.5		567.	568.19	569.19	^		+MS, 12-1.4min #(80-97
2000-	584	586	568.19	570.19	571.19 572	574	576 m/

MS (ESI) of $[Ag{ImMe(C_2OH)}_2]Cl$ (6)

Analysis Info							
Analysis Name Method Sample Name Comment	O23113ML 2013_05_es (EtOH Melm	t ilowpos.m)2 AgCl			Acquisit Operato Instrum	ion Date 29/07/2013 15: r Administrator ent micrOTOF	:53:01
Acquisition Para	neter						
Source Type on Polarity 1/a	ESI Positive n/a	Capillary Set Capillary Ext Set Skimmer 1	4500 V 50.0 V 50.0 V	Nebu Dry G Dry H	lzer 0.4 Bar as 4.0 l/mln eater 180 °C	Corona Set Hexapole RF APCI Heater	195 nA 90.0 V 514 °C
Intens.			359.06				+MS, 0.0-0.4min #(2-28
1500				361.06			
1000							
500-		357 17	360.06	362.06			371.06
0		Å				· · · · · · · · · · · ·	C128204aN402 359.0
2000			359.06	361.06			6 12 Hzungh402, ,305.0
1500							
1000							
500			360.07	362.07	363.07		
0-	354	356 358	360	362	364	366 368	370 m/

MS (ESI) of $[Ag{ImDiPP(C_2OH)}_2]BF_4$ (9)

Sonvico do coortromotrio do macco - inclitut do Chi	$m_{i0} \leq trachourd = H_{i0} D / 1 / 1 / 1 N D \leq 1 H D$

Analysis Info Analysis Name Method Sample Name Comment	O16533ML.d esi low pos.m (ETOH DiPPIm)2	AgBF4				i	Acquisition Date Operator Instrument	3/1/2012 5:24: Administrator micrOTOF	08 PM	
Acquisition Paran Source Type on Polarity Scan Range	eter ESI Positive n/a	Capiliary Set Capillary Exit Set Skimmer 1	4500 V 50.0 V 50.0 V	1	Nebulizer Dry Gas Dry Heater	0.4 4.0 180	Bar Vmin I °C	Corona Set Hexapole RF APCI Heater	195 nA 100.0 V 517 °C	
Intens, x10 ⁶ 1.5 1.7			591,23 	(5)2-3% 1) 11 11	655 26 1 	654.28 1 ¹ 1	655 26		+MS, 0.2 & 1n	n A(2 6)
2000			_: 、	/ X			A		C34 148AgN4C2	,851.20
1500 1000 500	. ·	sto	(81,22) 	632-29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		854,23 1 1 1	156-79		ete	
Bruker Daltonic	s DataAnalysis 3.1			printed:	3/1/201	2	5:51:50 PM		Page 1 of 1	1.2

MS (ESI) of [ImDiPP(C₂OTMS)]Cl (10)

MS (ESI) of [ImDiPP(C₂OMe)]Cl (12)

Analysis Info Analysis Name Method Sample Name Comment	023898ML.d esi low pos.m (EtOMe DiPPIm)CP					Acquisition Date Operator Instrument	23/09/2013 10:3 Administrator micrOTOF	5:09
Acquisition Paran Source Type Ion Polarity n/a	eter ESI Positive n/a	Capiliary Set Capiliary Exit Set Skimmer 1	4500 V 50.0 V 50.0 V		Nebulizer Dry Gas Dry Heater	0.4 Bar 4.0 Vmin 180 °C	Corona Set Hexapole RF APCI Heater	219 nA 60.0 V 514 °C
Intens. 1.0- 0.8- 0.6- 0.4- 0.2-			267,20	268.20				+MS, 0.0-0.2min #(2-12)
0.0 2000 1500 500 282	284	20	287.21	286.22	209,22	290 29	2 2	C18H27N2O1, M ,287.21

MS (ESI) of [Ag{ImDiPP(C₂OMe)}₂]Cl (13)

Ser	vice de spectro	ometrie de m	asse - Ins	stitut de C	himie - S	trasbourg - UN	IR /1// CNRS	
Analysis Info Analysis Name Method Sample Name Comment	023809ML.d esi high pos.m (EtOMe DiPPIm)	12AgCl				Acquisition Date Operator Instrument	17/09/2013 15:4 Administrator micrOTOF	19:12
Acquisition Paran Source Type Ion Polarity n/a	neter ESI Positive n/a	Capillary Set Capillary Exit Set Skimmer 1	4000 V 50.0 V 50.0 V		Nebulizer Dry Gas Dry Heater	0.4 Bar 4.0 Vmln 180 °C	Corona Set Hexapole RF APCI Heater	219 nA 240.0 V 514 "C
Intens x105 			679.31	681.31	683,32			+MS, 0.0-0.1min#(2-6
2000			679.31	681.31				C36H52AgN4O2, ,679.31
1500			680.32	682.3	2			
500					683.32 A 68	1.32		
Bruker Daltonic	674 676 s DataAnalysis 3.1	678	680	682 printed:	684	686 16:04:25	688 69	90 692 m/2 Page1of1

MS (ESI) of $[NiCl_2{ImDiPP(C_2OMe)}_2]$ (15)

4) Crystallographic data for the compounds 4•CH₂Cl₂, 5, 6, 8, 9•Et₂O, 13•H₂O, 14 and 15

Identification code	$[Ag{ImDiPP(C_2OH)}_2]Cl (4) \bullet CH_2Cl_2$				
Empirical formula	$C_{34}H_{48}AgClN_4O_2 \bullet CH_2Cl_2$				
Formula weight	773.01 g·mol ⁻¹				
Temperature	173(2) K				
Wavelength	0.71069 Å				
Crystal system	Monoclinic				
Space group	<i>C</i> 2/c				
Unit cell dimensions	$a = 19.5798(5) \text{ Å} \qquad \alpha = 90^{\circ}$				
	$b = 19.7314(9) \text{ Å}$ $\beta = 126.049(2)^{\circ}$				
	$c = 12.2390(5) \text{ Å} \qquad \gamma = 90^{\circ}$				
Volume	3823.0(3) Å ³				
Ζ	4				
Density (calculated)	1.343 Mg/m ³				
Absorption coefficient	0.771 mm ⁻¹				
<i>F</i> (000)	1608.0				
Theta range for data collection	1.65 to 25.99°				
Index ranges	-24<=h<=24, -24<=k<=22, -15<=l<=15				
Reflections collected	6562				
Independent reflections	3734 [R(int) = 0.0251]				
Completeness to theta = 26.00°	99.3%				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	3734 / 0 / 214				
Goodness-of-fit on F ²	1.092				
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0416, $wR2 = 0.1213$				
R indices (all data)	R1 = 0.0634, wR2 = 0.1465				
Largest diff. peak and hole	-0.723 and 0.900 e·Å ⁻³				

Identification code	$[Ag{ImMes(C_2OH)}_2]Cl (5)$			
Empirical formula	$C_{28}H_{36}AgClN_4O_2$			
Formula weight	603.93 g·mol ⁻¹			
Temperature	173(2) K			
Wavelength	0.71069 Å			
Crystal system	Triclinic			
Space group	<i>P</i> -1			
Unit cell dimensions	a = 10.7920(2) Å	$\alpha = 71.2680(10)^{\circ}$		
	b = 11.4820(2) Å	$\beta = 70.5740(10)^{\circ}$		
	c = 13.1690(3) Å	$\gamma = 84.4080(10)^{\circ}$		
Volume	1457.33(5) Å ³			
Ζ	2			
Density (calculated)	1.376 Mg/m ³			
Absorption coefficient	0.813 mm ⁻¹			
<i>F</i> (000)	624.0			
Theta range for data collection	$1.72 \text{ to } 26.00^{\circ}$			
Index ranges	-13<=h<=13, -14<=k<	<=14, -16<=l<=16		
Reflections collected	30258			
Independent reflections	5728 [R(int) = 0.0719]]		
Completeness to theta = 26.00°	100%			
Refinement method	Full-matrix least-squa	res on F ²		
Data / restraints / parameters	5728 / 503 / 399			
Goodness-of-fit on F ²	1.077			
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0476, wR2 = 0	.1382		
R indices (all data)	indices (all data) $R1 = 0.0657, wR2 = 0.1621$			
Largest diff. peak and hole	-1.029 and 1.912 e•Å⁻	3		

Identification code	$[Ag{ImMe(C_2OH)}_2]Cl (6)$	
Empirical formula	$C_{12}H_{20}AgClN_4O_2$	
Formula weight	395.64 g·mol⁻¹	
Temperature	173(2) K	
Wavelength	0.71069 Å	
Crystal system	Monoclinic	
Space group	<i>C</i> 2/c	
Unit cell dimensions	a = 17.7643(9) Å	$\alpha = 90^{\circ}$
	b = 8.9962(7) Å	$\beta = 130.261(3)^{\circ}$
	c = 13.1655(7)Å	$\gamma = 90^{\circ}$
Volume	1605.57(17) Å ³	
Ζ	4	
Density (calculated)	1.637 Mg/m ³	
Absorption coefficient	1.428 mm ⁻¹	
F(000)	800.0	
Theta range for data collection	2.72 to 27.45°	
Index ranges	-22<=h<=17, -10<=k<=11, -14<=l<=17	
Reflections collected	5165	
Independent reflections	1829 [R(int) = 0.0489]	
Completeness to theta = 26.00°	99.9%	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	1829 / 0 / 97	
Goodness-of-fit on F ²	1.062	
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0361, wR2 = 0.0766	
R indices (all data)	R1 = 0.0520, wR2 = 0.0845	
Largest diff. peak and hole	-1.087 and 0.588 e·Å ⁻³	

Identification code	[ImHDiPP(C ₂ OH)] ₃ Cl[NiCl ₄] (8)	
Empirical formula	$C_{68}H_{100}Cl_6N_8NiO_4$	
Formula weight	1364.95 g·mol ⁻¹	
Temperature	173(2) K	
Wavelength	0.71069 Å	
Crystal system	Orthorhombic	
Space group	$P2_{1}22_{1}$	
Unit cell dimensions	a = 14.9628(4) Å	$\alpha = 90^{\circ}$
	b = 15.0822(3) Å	$\beta = 90^{\circ}$
	c = 16.1788(5) Å	$\gamma=90^\circ$
Volume	3651.10(17) Å ³	
Ζ	2	
Density (calculated)	1.242 Mg/m ³	
Absorption coefficient	0.535 mm ⁻¹	
<i>F</i> (000)	1452.0	
Theta range for data collection	2.72 to 26.00°	
Index ranges	-18<=h<=18, -18<=k<=13, -19<=l<=17	
Reflections collected	29561	
Independent reflections	7164 [R(int) = 0.0748]	
Completeness to theta = 26.00°	179.0%	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	7164 / 0 / 410	
Goodness-of-fit on F ²	1.142	
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0637, wR2 = 0.0986	
R indices (all data)	R1 = 0.0840, wR2 = 0.1029	
Largest diff. peak and hole	-0.309 and 0.608 e·Å ⁻³	

$[Ag{ImDiPP(C_2OH)}_2]BF_4 (9) \bullet Et_2O$	
$C_{34}H_{48}AgN_4O_2BF_4\bullet C_4H_{10}O$	
813.56 g·mol ⁻¹	
173(2) K	
0.71069 Å	
Triclinic	
<i>P</i> -1	
a = 12.1561(5) Å	$\alpha=84.300(2)^\circ$
b = 13.6336(6) Å	$\beta=66.395(2)^\circ$
c = 14.9663(6) Å	$\gamma = 66.881(2)^{\circ}$
2085.38(15) Å ³	
2	
1.296 Mg/m ³	
0.539 mm ⁻¹	
852.0	
2.85 to 26.00°	
-14<=h<=14, -13<=k<=16, -18<=l<=18	
18804	
8182 [R(int) = 0.0640]	
99.8%	
Full-matrix least-squares on F ²	
8182 / 13 / 480	
1.026	
R1 = 0.0678, wR2 = 0.1553	
R1 = 0.1064, wR2 = 0.1706	
-1.639 and 1.573 e·Å ⁻³	
	[Ag{ImDiPP(C ₂ OH)} ₂]Bl C ₃₄ H ₄₈ AgN ₄ O ₂ BF ₄ •C ₄ H ₁₀ 813.56 g·mol ⁻¹ 173(2) K 0.71069 Å Triclinic <i>P</i> -1 a = 12.1561(5) Å b = 13.6336(6) Å c = 14.9663(6) Å 2085.38(15) Å ³ 2 1.296 Mg/m ³ 0.539 mm ⁻¹ 852.0 2.85 to 26.00° -14<=h<=14, -13<=k<=16 18804 8182 [R(int) = 0.0640] 99.8% Full-matrix least-squares of 8182 / 13 / 480 1.026 R1 = 0.0678, wR2 = 0.155 R1 = 0.1064, wR2 = 0.176 -1.639 and 1.573 e·Å ⁻³

Identification code	[Ag{ImDiPP(EtOMe)}	$[Ag{ImDiPP(EtOMe)}_2]Cl \cdot H_2O (13 \cdot H_2O)$	
Empirical formula	$C_{36}H_{52}AgN_4O_2Cl\bullet H_2O$	$C_{36}H_{52}AgN_4O_2Cl\bullet H_2O$	
Formula weight	734.15 g⋅mol ⁻¹	734.15 g·mol ⁻¹	
Temperature	173(2) K		
Wavelength	0.71069 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 8.8012(3) Å	$\alpha = 97.641(2)^{\circ}$	
	b = 11.5154(5) Å	$\beta = 102.770(3)^{\circ}$	
	c = 19.3453(12) Å	$\gamma = 92.692(3)^{\circ}$	
Volume	1889.24(16) Å ³		
Ζ	2		
Density (calculated)	1.291 Mg/m ³		
Absorption coefficient	0.642 mm ⁻¹		
F(000)	772.0		
Theta range for data collection	2.61 to 26.00°		
Index ranges	-10<=h<=10, -14<=k<=13, -23<=l<=23		
Reflections collected	17158	17158	
Independent reflections	7271 [R(int) = 0.0403]	7271 [R(int) = 0.0403]	
Completeness to theta = 26.00°	97.9%	97.9%	
Refinement method	Full-matrix least-squar	Full-matrix least-squares on F ²	
Data / restraints / parameters	7271 / 14 / 422	7271 / 14 / 422	
Goodness-of-fit on F ²	1.079		
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0487, wR2 = 0.1059		
R indices (all data)	R1 = 0.0788, wR2 = 0.	R1 = 0.0788, $wR2 = 0.1159$	
Largest diff. peak and hole	-0.680 and 0.694 e•Å ⁻³	-0.680 and 0.694 e·Å ⁻³	

Identification code	$[AgCl{ImDiPP(C_2OMe)}] (14)$		
Empirical formula	C ₁₈ H ₂₆ AgClN ₂ O	C ₁₈ H ₂₆ AgClN ₂ O	
Formula weight	429.73 g·mol⁻1		
Temperature	173(2) K		
Wavelength	0.71069 Å		
Crystal system	Monoclinic		
Space group	$P2_{1}/c$		
Unit cell dimensions	a = 8.8411(3) Å	$\alpha = 90^{\circ}$	
	b = 19.1464(10) Å	$\beta = 125.638(3)^{\circ}$	
	c = 14.1647(6) Å	$\gamma=90^{\circ}$	
Volume	1948.67(15) Å ³		
Ζ	4		
Density (calculated)	1.465 Mg/m ³		
Absorption coefficient	1.177 mm ⁻¹	1.177 mm ⁻¹	
<i>F</i> (000)	880.0		
Theta range for data collection	2.77 to 26.00°	2.77 to 26.00°	
Index ranges	-10<=h<=10, -23<=k<=23, -15<=l<=17		
Reflections collected	18032		
Independent reflections	3823 [R(int) = 0.0887]	3823 [R(int) = 0.0887]	
Completeness to theta = 26.00°	99.7%		
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²	
Data / restraints / parameters	3823 / 0 / 213		
Goodness-of-fit on F ²	1.001		
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0460, wR2 = 0.0942		
R indices (all data)	R1 = 0.1057, wR2 = 0.1106		
Largest diff. peak and hole	-1.025 and 0.860 e·Å ⁻³		

Identification code	$[NiCl_2{ImDiPP(C_2OMe)}_2] (15)$		
Empirical formula	$C_{36}H_{52}Cl_2N_4NiO_2$	$C_{36}H_{52}Cl_2N_4NiO_2$	
Formula weight	702.41 g·mol ^{−1}		
Temperature	173(2) K		
Wavelength	0.71069 Å		
Crystal system	Orthorhombic		
Space group	$Pca2_1$		
Unit cell dimensions	a = 28.655(3) Å	$\alpha = 90^{\circ}$	
	b = 8.0546(8) Å	$\beta = 90^{\circ}$	
	c = 16.2099(17) Å	$\gamma=90^\circ$	
Volume	3741.3(7) Å ³		
Ζ	4		
Density (calculated)	1.247 Mg/m ³		
Absorption coefficient	0.697 mm ⁻¹		
<i>F</i> (000)	1496.0		
Theta range for data collection	2.51 to 25.18°		
Index ranges	-34<=h<=34, -9<=k<=9, -19<=l<=19		
Reflections collected	45690		
Independent reflections	6715 [R(int) = 0.0277]		
Completeness to theta = 26.00°	192.0%		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6715 / 1 / 417		
Goodness-of-fit on F ²	1.073		
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0331, wR2 = 0.0833		
R indices (all data)	R1 = 0.0401, wR2 = 0.0863		
Largest diff. peak and hole	-0.161 and 0.572 e·Å ⁻³	-0.161 and 0.572 e·Å ⁻³	

5) Notable features in the crystal packing for 9 and 13

Figure S1. Ball and stick representation of the polymeric network of H-bonds in the packing of $[Ag{ImDiPP(C_2OH)}_2]BF_4$ (9). The DiPP groups and the hydrogen atoms have been omitted for clarity, except the OH protons.

Figure S2. Ball and stick representation of $[Ag{ImDiPP(C_2OMe)}_2]Cl$ in **13**·H₂O: view of the cell. Hydrogen atoms have been omitted for clarity, except the OH protons.

6) ORTEP views of the molecular structures of 4•CH₂Cl₂, 5, 6, 8, 9•Et₂O, 13•H₂O, 14 and 15

Figure S3. ORTEP of the molecular structure of **4**. Ellipsoids at 30% probability level. Hydrogen atoms have been omitted for clarity, except the OH protons.

Figure S4. ORTEP of the molecular structure of **5**. Ellipsoids at 30% probability level. Hydrogen atoms have been omitted for clarity, except the OH protons.

Figure S5. ORTEP of the molecular structure of **6**. Ellipsoids at 30% probability level. Hydrogen atoms have been omitted for clarity, except the OH protons.

Figure S6. ORTEP of the molecular structure of **8**. Ellipsoids at 30% probability level. Hydrogen atoms have been omitted for clarity, except the NCHN and the OH protons.

Figure S7. ORTEP of the molecular structure of **9**. Ellipsoids at 30% probability level. Hydrogen atoms have been omitted for clarity, except the OH protons.

Figure S8. ORTEP of the molecular structure of **13**. Ellipsoids at 30% probability level. Hydrogen atoms have been omitted for clarity.

Figure S9. ORTEP of the molecular structure of **14**. Ellipsoids at 30% probability level. Hydrogen atoms have been omitted for clarity.

Figure S10. ORTEP of the molecular structure of **15**. Ellipsoids at 30% probability level. Hydrogen atoms have been omitted for clarity.

References

1 (a) A. L. Johnson, 1972, US3637731A; (b) J. Liu, J. Chen, J. Zhao, Y. Zhao, L. Li and H. Zhang, *Synthesis*, 2003, 2661-2666; (c) S. Zhang, X. Qi, X. Ma, L. Lu and Y. Deng, *J. Phys. Chem. B*, 2010, **114**, 3912-3920; (d) R. J. Errington *Advanced Practical Inorganic and Metalorganic Chemistry*; CRC Press, Boca Raton, FL, 1997.

2 G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112-122.