Supporting Information (SI)

INDUCED CHIRALITY-AT-METAL AND DIASTEREOSELECTIVITY AT \A/\A-CONFIGURED DISTORTED SQUARE-PLANAR COPPER COMPLEXES BY ENANTIOPURE SCHIFF BASE LIGANDS: COMBINED CIRCULAR DICHROISM, DFT, AND X-RAY STRUCTURAL STUDIES

Mohammed Enamullah ^{a,*}, AKM Royhan Uddin ^a, Gennaro Pescitelli ^{b,*}, Roberto Berardozzi ^b, Gamall Makhloufi ^c, Vera Vasylyeva ^c, Anne-Christine Chamayou ^d, and Christoph Janiak ^{c,*}

^a Department of Chemistry, Jahangirnagar University, Dhaka-1342, Bangladesh, E-mail: <u>enamullah@juniv.edu</u>

^b Department of Chemistry, University of Pisa, via Risorgimento 35, 56126 Pisa Italy, E-mail: ripes@dcci.unipi.it

^c Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany, Email: <u>janiak@uni-duesseldorf.de</u>

^d Institut für Anorganische and Analytische Chemie, Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany, Email: <u>anne.chamayou@pharmazie.uni-freiburg.de</u>

Additional Emails:

royhanbau@yahoo.com

robregista@libero.it

gamall.makhloufi@uni-duesseldorf.de

vera.vasylyeva@rub.de

anne.chamayou@pharmazie.uni-freiburg.de

Contents

Table S1. Mass (EI and APCI) spectral data

Table S2. Polarimetric data

Figure S1 (with description) NMR data after treatment of the complexes with KCN

Figure S2. Additional packing diagrams

Table S3. Packing coefficients

Figure S3. Calculated CD spectra on single structures for Cu-L1.

Figure S4. Calculated CD spectrum on the X-ray structure of Λ-Cu-*R*-L1.

Table S4. Additional computational details.

Table S1 Electron impact (EI) and atmospheric pressure chemical ionization (APCI) mass spectral data.

Cu-R-L1	Cu-S-L1	Cu-R-L2	Cu-R-L3	Cu-S-L3	Cu-R-	Cu-S-
CII	CII				L 4	L 4
$C_6 \Pi_5$	$C_6\Pi_5$	m-	<i>p</i> -	<i>p</i> -	<i>p</i> -	<i>p</i> -
		C_6H_4OMe	C_6H_4OMe	C_6H_4OMe	C_6H_4Br	C_6H_4Br
611	611	671	671	671	769	769
336	336	366	366	366	416	416
275	275	305	305	305	353	353
948		1038	1038		1186	
612		672	672		770	
337						
					354	
274		304	304			
	Cu- <i>R</i> -L1 C ₆ H ₅ 611 336 275 948 612 337 274	Cu- R -L1 Cu- S -L1 C_6H_5 C_6H_5 611 611 336 336 275 275 948	Cu-R-L1 Cu-S-L1 Cu-R-L2 C_6H_5 $M^ C_6H_4OMe$ 611 611 671 336 336 366 275 275 305 948 1038 612 672 337 - 274 304	Cu-R-L1Cu-S-L1Cu-R-L2Cu-R-L3 C_6H_5 C_6H_5 m^- C_6H_4OMe p^- C_6H_4OMe 61161167167133633636636627527530530594810381038612672672337274304304	Cu-R-L1Cu-S-L1Cu-R-L2Cu-R-L3Cu-S-L3 C_6H_5 C_6H_5 m^- C_6H_4OMe p^- C_6H_4OMe p^- C_6H_4OMe 6116116716716713363363663663662752753053053059481038103810386126726721000337274304304-	Cu-R-L1Cu-S-L1Cu-R-L2Cu-R-L3Cu-S-L3Cu-R-L4 C_6H_5 C_6H_5 m^- C_6H_4OMe p^- C_6H_4OMe p^- C_6H_4OMe p^- C_6H_4OMe 611611671671671769336336366366366416275275305305305353948103810381186612672672770337304274304304

^a The isotopic distribution patterns for ^{63/65}Cu and ^{79/81}Br containing ions are visible.

Table S2 Polarimetric data in CHCl₃ at 25 ⁰C.

Entity	[c] g/100 mL	$[\alpha]_{D}$
<i>R</i> -HL1	0.40	-166.7°
S-HL1	0.39	+156.5°
Cu-R-L1	0.33	+75.6°
Cu-S-L1	0.42	-74.6°
Cu-R-L2	0.90	-78.0°

1H-NMR studies of complexes after reaction with KCN

The complexes **Cu-R-L1** to **Cu-R-L4** react with KCN in dmso-d₆ to give diamagnetic $[Cu(CN)_4]^{3-}$ and deprotonated Schiff base (L⁻) species in the reaction mixture, accompanied by a color change from brown to red-orange. Spectra (see next page, Figure S1) show the peaks for the deprotonated Schiff base including a doublet at $\delta = 1.48$ -1.50 ppm (J = 6.6 Hz), a quartet at $\delta = 3.30$ -3.35 ppm (J = 6.6 Hz) and a singlet at $\delta = 9.18$ -9.20 ppm, for CH₃, CH, and CHN, respectively. In addition, a singlet is found at $\delta = 3.75$ ppm for OCH₃ in **Cu-R-L3**. In fact, the spectral data correspond well to those found for the free Schiff bases [1] with little changes in chemical shift values.

¹ M. Enamullah, A.K.M. Royhan Uddin, G. Hogarth, C. Janiak, *Inorg. Chim. Acta*, **387**, 173 (2012).

Figure S1. H NMR (200 MHz) spectra from the reaction of Λ/Δ -*bis*[{(*R*)-*N*-(Ar)ethyl-2-oxo-1naphthaldiminato- $\kappa^2 N$,*O*}]copper(II) complexes: (a) **Cu-***R***-L1** (Ar = C₆H₅), (b) **Cu-***R***-L2** (Ar = *m*-C₆H₄OMe), and (c) **Cu-***R***-L4** (Ar = *p*-C₆H₄Br) with KCN in DMSO-d₆ at 20 °C.

Figure S2. Sections of the packing diagrams for (a) Λ -Cu-*R*-L1, (b) Δ -Cu-*S*-L1 and (c) Λ/Δ -Cu-*R*-L2.

Packing Analyses

Packing Analysis by PLATON ((a) A. Spek, *Acta Crystallographica Section D*, 2009, **65**, 148-155; (b) A. L. Spek *PLATON – A multipurpose crystallographic tool*, Utrecht University: Utrecht, The Netherlands, 2005.)

Despite the presence of ligand π -systems in the **L1** to **L4** ligands and metal complexes thereof, there are no π - π interactions ¹ and only few intermolecular C-H··· π ² evident. The supramolecular packing analyses are tabulated below.

The listed "Analysis of Short Ring-Interactions" for possible π -stacking interactions yielded rather rather long centroid-centroid distances (>4.0 Å) together with non-parallel ring planes (alpha >> 0°) and large slip angles (β , γ > 30°).

In comparison, significant π -stackings show rather short centroid-centroid contacts (<3.8 Å), near parallel ring planes (alpha < 10° to ~0° or even exactly 0° by symmetry), small slip angles (β , γ < 25°) and vertical displacements (slippage < 1.5 Å) which translate into a sizable overlap of the aryl-plane areas.^{2,3}

Significant intermolecular C-H··· π contacts start around 2.7 Å for the (C-)H···ring centroid distances with H-perp also starting at 2.6-2.7 Å and C-H··Cg > 145°.^{2,4,5}

The following Figure shows scatter plots for dependencies of of the C–H... π access angle on the CH/ π plane distance.

Figure Scatter plots showing dependence of the C–H... π access angle on the CH/ π plane distance (copied from ref. 2, copyright Royal Society of Chemistry, 2004) (d) aromatic CH, (e) aromatic CH (neutron data), (f) CCH₃.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2014

Scheme S1 Graphical presentation of the parameters used for the description of (a) π - π stacking and (b) CH- π interactions.

Packing Analysis for A-Cu-*R*-L1 (data set CuR12, 203 K) for possible π - π interactions:

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0 Deg.

- Cg(I) = Plane number I (= ring number in () above)

- Alpha = Dihedral Angle between Planes I and J (Deg)

- Beta = Angle Cg(I)-->Cg(J) or Cg(I)-->Me vector and normal to plane I (Deg)

- Gamma = Angle Cg(I)-->Cg(J) vector and normal to plane J (Deg)

- Cg-Cg = Distance between ring Centroids (Ang.)

- CgI_Perp = Perpendicular distance of Cg(I) on ring J (Ang.)

- CgJ_Perp = Perpendicular distance of Cg(J) on ring I (Ang.)

- Slippage = Distance between Cg(I) and Perpendicular Projection of Cg(J) on Ring I (Ang).

- P,Q,R,S = J-Plane Parameters for Carth. Coord. (Xo, Yo, Zo)

Cg(I) Res(I) Cg(J)	[ARU(J)]	Cg-Cg	Alpha	Beta	Gamma	CgI_Perp	CgJ_Perp	Slippage
$\begin{array}{c} Cg(3) \ [1] \rightarrow Cg(4) \\ Cg(3) \ [1] \rightarrow Cg(5) \\ Cg(3) \ [1] \rightarrow Cg(5) \\ Cg(4) \ [1] \rightarrow Cg(5) \\ Cg(5) \ [1] \rightarrow Cg(4) \\ Cg(5) \ [1] \rightarrow Cg(5) \\ Cg(5) \ [1] \rightarrow C$	[3557.01] [3456.01] [3457.01] [3557.01] [1455.01] [3456.01] [3457.01] [1555.01] [1655.01]	5.785(2) 4.649(3) 4.992(3) 5.959(2) 5.809(3) 5.770(3) 4.902(3) 5.966(3) 5.809(3)	33.39(18) 50.1(2) 50.1(2) 32 83.3(2) 52.5(2) 52.5(2) 83.3(2) 83.3(2)	48.68 19.52 22.29 51.58 49.06 42.15 18.87 10.03 49.66	81.89 64.15 66.09 82.43 49.66 65.69 70.03 81.44 49.06	0.8158(16) 2.0273(16) -2.0229(16) 0.7850(16) 3.7600(17) 2.3757(17) -1.6745(17) -0.888(2) -3.806(2)	3.8196(16) -4.382(2) 4.619(2) 3.7030(16) -3.806(2) -4.278(2) 4.638(2) -5.8750(17) 3.7599(17)	
[3557] = 1/2+X,1/2 [3456] = -1/2+X,1/ [3457] = -1/2+X,1/ [1455] = -1+X,Y,Z [1555] = X,Y,Z [1655] = 1+X,Y,Z	Min or Max 2-Y,2-Z 2-Y,1-Z 2-Y,2-Z	4.649	31.71	10.03	82.43	-3.806 -	5.875	

Packing Analysis for Λ -Cu-*R*-L1 (data set CuR12, 203 K) for possible CH- π interactions:

Analysis of X-H...Cg(Pi-Ring) Interactions (H..Cg < 3.0 Ang. - Gamma < 30.0 Deg)

XH(I) Res(I) Cg(J) [ARU(J)]	HCg	H-Perp	Gamma	C-HCg	CCg
C(13) -H(13C) [1] -> Cg(4) [3556.01]	2.99	-2.86	17.00	121	3.595(5)
C(15) -H(15A) [1] -> Cg(3) [3556.01]	2.96	-2.95	4.97	124	3.564(5)
C(19) -H(19A) [1] -> Cg(4) [3557.01]	2.93	2.92	3.62	138	3.686(5)
Min or Max	2.930	-2.946	3.62	138.00	3.564

[3556] = 1/2+X,1/2-Y,1-Z [3557] = 1/2+X,1/2-Y,2-Z

The Cg(I) refer to the Ring Centre-of-Gravity numbers given in Ring 3: C1-C2-C3-C4-C9-C10 Ring 4: C4-C5-C6-C7-C8-C9 Ring 5: C14-C15-C16-C17-C18-C19

The **CH**- π interaction C(19)-H(19A) [1] -> Cg(4) [3557.01] is illustrated: (symmetry transformation ii = 1/2+X, 1/2-Y, 2-Z)

Conclusions:

From the key values for significant π -stackings and C-H··· π contacts which are given on page S6, neither of the contacts in **A-Cu-***R***-L1** (CuR12) can be classified as such.

Packing Analysis for Λ -Cu-*R*-L1 (data set CuRL1a, 95 K) for possible π - π interactions:

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0 Deg.

- Cg(I) = Plane number I (= ring number in () above)

- Alpha = Dihedral Angle between Planes I and J (Deg)

- Beta = Angle Cg(I)-->Cg(J) or Cg(I)-->Me vector and normal to plane I (Deg)

- Gamma = Angle Cg(I)-->Cg(J) vector and normal to plane J (Deg)

- Cg-Cg = Distance between ring Centroids (Ang.)

- CgI_Perp = Perpendicular distance of Cg(I) on ring J (Ang.)

- CgJ_Perp = Perpendicular distance of Cg(J) on ring I (Ang.)

- Slippage = Distance between Cg(I) and Perpendicular Projection of Cg(J) on Ring I (Ang).

- P,Q,R,S = J-Plane Parameters for Carth. Coord. (Xo, Yo, Zo)

Cg(I) Res(I)	Cg(J) [ARU(J)]	Cg-Cg	Alpha	Beta	Gamma	CgI_Perp	CgJ_Perp Slippage
Cg(3) [1] -> Cg(3) [1] ->	Cg(4) [Cg(4) [Ca(5) [3557.01] 4557.01]	5.7743(16) 5.9881(15)	31.23(13) 27.04(13) 52.01(15)	49.86 50.69	80.98 77.68	0.9056(12) 1.2780(12)	3.7228(12) 3.7939(12)
Cg(3) [1] -> Cg(3) [1] -> Cg(4) [1] ->	Cg(5) [Cg(5) [Cg(4) [3457.01] 3557.01]	4.9334(17) 5.9646(17)	52.01(15) 52.01(15) 29	18.85 21.35 53.08	67.05 81.51	-1.9236(11) 0.8804(12)	-4.5987(13) 4.5948(13) 3.5827(12)
Cg(4) [1] -> Cg(4) [1] ->	• Cg(5) [• Cg(5) [1455.01] 3456.01]	5.7920(19) 5.7775(17)	83.14(15) 54.68(15)	50.52 42.10	48.39 66.87	3.8466(12) 2.2700(12)	-3.6830(13) -4.2867(13)
Cg(4) [1] -> Cg(5) [1] -> Cg(5) [1] ->	Cg(5) [Cg(4) [Cg(4) [3457.01] 1555.01]	4.8528(17) 5.9902(19) 5.7020(10)	54.68(15) 83.14(15)	17.88 10.05	70.77 80.58 50.52	-1.5985(12) -0.9806(13) -6.920(13)	4.6183(13) -5.8983(12) 2.8466(12)
Cg(3) [1]->	- Ug(4) [- M	in or Max	4.648	27.04	40.39	81.51	-3.683	-5.898

[3557] = 1/2+X,1/2-Y,2-Z [4557] = 1/2-X,1/2+Y,2-Z [3456] = -1/2+X,1/2-Y,1-Z [3457] = -1/2+X,1/2-Y,2-Z

[1455] = -1+X, Y, Z

[1555] = X,Y,Z[1655] = 1+X,Y,Z

Packing Analysis for Λ -Cu-*R*-L1 (data set CuRL1a, 95 K) for possible CH- π interactions:

Analysis of X-HCg(Pi-Ring) Interactions	(HCg < 3.0	Ang Gamn	na < 30.0 De	eg)	
XH(I) Res(I) Cg(J) [ARU(J)]	HCg	H-Perp	Gamma	X-HCg	XCg
C(14) -H(14) [1] -> Cg(4) [3557.01]	2.83	2.83	2.92	140	3.613(3)
C(18) -H(18) [1] -> Cg(3) [3556.01]	2.89	-2.88	5.55	125	3.526(3)
C(19) -H(19A) [1] -> Cg(4) [3556.01]	2.94	-2.84	15.36	123	3.574(4)
Min or Max	2.830	-2.881	2.92	140.00	3.526

[3556] = 1/2+X, 1/2-Y, 1-Z

The Cg(I) refer to the Ring Centre-of-Gravity numbers given in Ring 3: C1-C2-C3-C4-C9-C10 Ring 4: C4-C5-C6-C7-C8-C9 Ring 5: C13-C14-C15-C16-C17-C18

The **CH**- π interaction C(14)-H(14) [1] -> Cg(4) [3557.01] is illustrated: (symmetry transformation ii = 1/2+X, 1/2-Y, 2-Z)

Conclusions for A-Cu-*R*-L1:

From the key values for significant π -stackings and C-H··· π contacts which are given on page S6, neither of the contacts in **A-Cu-***R***-L1** (data set CuRL1a, 95 K) can be classified as such. Noteworthy, these supramolecular interactions do not change much from the 203 K to the 95 K data set.

In the absence of significant π -stackings and C-H \cdots π contacts the packing interactions may be reasoned as a van-der-Waals packing of the molecules as shown for **A-Cu-***R***-L1** (data set CuRL1a):

Such as van-der-Waals packing does not allow to understand if a diastereomeric mixture would not also be possible.

Packing Analysis for Λ/Δ -Cu-*R*-L2 (data set CuR14a, 203 K) for possible π - π interactions:

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0 Deg.

- Cg(I) = Plane number I (= ring number in () above)

- Alpha = Dihedral Angle between Planes I and J (Deg)

- Beta = Angle Cg(I)-->Cg(J) or Cg(I)-->Me vector and normal to plane I (Deg)

- Gamma = Angle Cg(I)-->Cg(J) vector and normal to plane J (Deg)

- Cg-Cg = Distance between ring Centroids (Ang.)

- CgI_Perp = Perpendicular distance of Cg(I) on ring J (Ang.)

- $CgJ_Perp = Perpendicular distance of Cg(J) on ring I (Ang.)$

- Slippage = Distance between Cg(I) and Perpendicular Projection of Cg(J) on Ring I (Ang).

- P,Q,R,S = J-Plane Parameters for Carth. Coord. (Xo, Yo, Zo)

$Cg(I) \ Res(I) Cg(J) \ [ARU(J)]$	Cg-Cg	Alpha	Beta	Gamma	CgI_Perp	CgJ_Perp	Slippage
Cg(3) [1] -> Cg(14) [1545.02]	4.768(2)	6.90(16)	41.86	48.64	3.1507(13)	-3.5509(15)	
Cg(3) [1] -> Cg(15) [1555.02]	4.986(2)	75.16(17)	17.88	80.68	0.8071(14)	4.7448(15)	
Cg(4) [1] -> $Cg(8)$ [1554.01]	5.153(2)	51.13(17)	57.89	37.04	4.1133(15)	2.7396(14)	
Cg(4) [1] -> Cg(12) [1545.02]	4.5980(18)	44.63(13)	58.89	14.27	4.4561(14)	-2.3754(11)	
Cg(4) [1] -> Cg(18) [1555.02]	5.646(2)	40.92(16)	46.54	80.29	0.9519(14)	3.8834(14)	
Cg(5) [1] -> $Cg(6)$ [1555.01]	5.765(2)	37.58(17)	52.78	54.31	3.3635(15)	3.4875(13)	
Cg(5) [1] -> Cg(15) [1655.02]	4.412(2)	5.51(18)	35.11	40.50	3.3553(16)	-3.6098(16)	
Cg(6) [1] -> $Cg(5)$ [1555.01]	5.765(2)	37.58(17)	54.31	52.78	3.4876(13)	3.3634(15)	
Cg(6) [1] -> Cg(8) [1655.01]	5.245(2)	82.85(17)	30.39	52.76	-3.1743(13)	4.5246(15)	
Cg(6) [1] -> $Cg(13)$ [1545.02]	5.669(2)	63.62(17)	21.18	84.80	0.5138(13)	-5.2860(17)	
Cg(6) [1] -> $Cg(14)$ [1545.02]	5.906(2)	62.14(16)	31.73	83.64	0.6546(13)	-5.0233(15)	
Cg(6) [1] -> Cg(17) [1646.02]	5.442(2)	21.95(16)	54.18	32.26	4.6019(13)	-3.1845(14)	
Cg(7) [1] -> $Cg(8)$ [1655.01]	4.907(2)	81.74(17)	20.89	70.17	-1.6645(14)	4.5841(15)	
Cg(7) [1] -> Cg(16) [1646.02]	4.8759(19)	21.57(15)	59.82	39.22	3.7773(14)	-2.4514(12)	
Cg(7) [1] -> $Cg(17)$ [1646.02]	4.117(2)	22.24(16)	40.36	22.50	3.8033(14)	-3.1367(14)	
Cg(8) [1] -> $Cg(4)$ [1556.01]	5.153(2)	51.13(17)	37.04	57.89	2.7395(14)	4.1133(15)	
Cg(8) [1] -> Cg(6) [1455.01]	5.245(2)	82.85(17)	52.76	30.39	4.5246(15)	-3.1743(13)	
Cg(8) [1] -> Cg(18) [1556.02]	5.715(2)	12.30(18)	50.43	61.06	-2.7657(15)	3.6405(14)	
$Cg(12) [2] \rightarrow Cg(3) [1565.01]$	4.8540(18)	4 44.74(13)	31.08	61.00	-2.3530(11)	4.1572(13)	
$Cg(12) [2] \rightarrow Cg(4) [1565.01]$	4.5980(18)	44.63(13)	14.27	58.89	-2.3754(11)	4.4561(14)	
Cg(12) [2] -> Cg(15) [1555.02]	4.0254(19)	37.74(15)	12.53	34.73	-3.3081(11)	-3.9295(15)	
Cg(13) [2] -> Cg(8) [1565.01]	5.034(2)	53.05(19)	12.17	63.68	2.2316(18)	4.9205(14)	
$Cg(14) [2] \rightarrow Cg(3) [1565.01]$	4.768(2)	6.90(16)	48.64	41.86	-3.5509(15)	3.1506(13)	
$Cg(14) [2] \rightarrow Cg(5) [1555.01]$	4.993(2)	82.88(18)	17.89	87.40	-0.2263(17)	-4.7510(15)	
Cg(14) [2] -> Cg(8) [1565.01]	5.750(2)	53.88(18)	30.82	82.69	0.7315(16)	4.9384(14)	
$Cg(15) [2] \rightarrow Cg(5) [1455.01]$	4.413(2)	5.51(18)	40.50	35.11	-3.6098(16)	3.3554(16)	
$Cg(15) [2] \rightarrow Cg(12) [1555.02]$	4.0254(19)	37.74(15)	34.73	12.53	-3.9295(15)	-3.3081(11)	
Cg(15) [2] -> Cg(16) [1555.02]	5.0833(19)	32.73(16)	52.65	39.12	-3.9440(15)	-3.0839(12)	
Cg(15) [2] -> Cg(18) [1555.02]	5.254(2)	85.47(18)	26.30	82.17	-0.7162(16)	-4.7101(14)	
Cg(16) [2] -> Cg(4) [1565.01]	5.666(2)	47.48(15)	37.24	79.16	-1.0658(12)	4.5112(14)	
Cg(16) [2] -> Cg(7) [1464.01]	4.8759(19)	21.57(15)	39.22	59.82	-2.4513(12)	3.7773(14)	

$Cg(16) [2] \rightarrow C_{2}$	g(15) [1555.02]	5.0833(19)	32.73(16)	39.12	52.65	-3.0839(12)	-3.9440(15)
Cg(17) [2] -> C	g(6) [1464.01]	5.442(2)	21.95(16)	32.26	54.18	-3.1846(14)	4.6020(13)
Cg(17) [2] -> C	g(7) [1464.01]	4.117(2)	22.24(16)	22.50	40.36	-3.1367(14)	3.8033(14)
Cg(18) [2] -> C	g(5) [1555.01]	5.983(2)	89.68(18)	39.18	74.18	-1.6314(14)	4.6384(16)
Cg(18) [2] -> C	g(12) [1555.02]	4.8034(18)	74.39(14)	59.18	70.35	-1.6156(14)	-2.4609(11)
Cg(18) [2] -> C	g(17) [1555.02]	5.942(2)	75.38(17)	15.09	80.98	-0.9315(14)	-5.7374(14)
		4.025		10.17		2.044	5 7 7 7
	Min or Max	4.025	5.51	12.17	87.40	-3.944	-5./3/
[1545] = X1+	Y.Z						
[1555] = X, Y, Z	7						
[1554] = X, Y, -	1+Z						
[1555] = X, Y, Z	7						
[1655] = 1+X, Y	ґ,Z						
[1655] = 1+X, Y	Ϋ́,Ζ						
[1646] = 1 + X,-	1+Y,1+Z						
[1556] = X, Y, 1	+Z						
[1455] = -1+X,	Y,Z						
[1556] = X, Y, 1	+Z						
[1565] = X, 1+Y	ґ,Z						
[1464] = -1+X,	1+Y,-1+Z						

Packing Analysis for Λ/Δ -Cu-*R*-L2 (data set CuR14a, 203 K) for possible CH- π interactions:

Analysis of X-HCg(Pi-Ring) Interactions	(HCg < 3.0	Ang Gamm	na < 30.0 De	eg)	
XH(I) Res(I) Cg(J) [ARU(J)]	HCg	H-Perp	Gamma	X-HCg	XCg
C(5) -H(5A) [1] -> Cg(12) [1545.02]	2.90	2.83	13.38	123	3.509(4)
C(20) -H(20A) [1] -> Cg(8) [1655.01]	2.90	-2.90	4.14	146	3.751(5)
C(33) -H(33A) [1] -> Cg(5) [1555.01]	2.86	2.58	25.42	167	3.808(4)
C(60) - H(60B) [2] -> Cg(16) [1555.02]	2.75	-2.69	12.01	164	3.691(4)
Min or Max	2.750	-2.897	4.14	167.00	3.509

[1545] = X,-1+Y,Z [1655] = 1+X,Y,Z [1555] = X,Y,Z [1555] = X,Y,Z

The Cg(I) refer to the Ring Centre-of-Gravity numbers given in Ring 5: C14-C15-C16-C17-C18-C19 Ring 15: C54-C55-C56-C57-C58-C59 Ring 16: C61-C62-C63-C68-C69-C70

Conclusions for Λ/Δ-Cu-*R*-L2:

One symmetrically unique near parallel π - π ring arrangement can be seen with an interplanar angle of 5.5° (highlighted in yellow). Yet, the centroid-centroid distance is rather long (>4.0 Å) together with large slip angles (β , γ > 30°) so that there is no effective π -overlap.

Two C-H··· π contacts (highlighted in yellow) approach the criteria for significant intermolecular C-H··· π contacts which start around 2.7 Å for the (C-)H···ring centroid distances with H-perp also starting at 2.6-2.7 Å and C-H··Cg > 145°.^{2,4,5}

Packing Analysis for Λ -Cu-*R*-L4 (data set CuRL4) for possible π - π interactions:

Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom and Beta < 60.0Deg.

⁻ Cg(I) = Plane number I (= ring number in () above)

⁻ Alpha = Dihedral Angle between Planes I and J (Deg)

⁻ Beta = Angle Cg(I)-->Cg(J) or Cg(I)-->Me vector and normal to plane I (Deg)

⁻ Gamma = Angle Cg(I)-->Cg(J) vector and normal to plane J (Deg)

⁻ Cg-Cg = Distance between ring Centroids (Ang.)

⁻ CgI_Perp = Perpendicular distance of Cg(I) on ring J (Ang.)

⁻ CgJ_Perp = Perpendicular distance of Cg(J) on ring I (Ang.)

- Slippage = Distance between Cg(I) and Perpendicular Projection of Cg(J) on Ring I (Ang).

- P,Q,R,S = J-Plane Parameters for Carth. Coord. (Xo, Yo, Zo)

Cg(I) Res(I) Cg(J) [ARU(J)]	Cg-Cg	Alpha	Beta	Gamma	CgI_Perp	CgJ_Perp	Slippage
Cg(3) [1] -> Cg(3) [1545.01]	5.603(10)	0	57.44	57.44	-3.015(6)	3.015(6)	4.722
Cg(3) [1] -> $Cg(3)$ [1565.01]	5.602(10)	0	57.44	57.44	3.015(6)	-3.015(6)	4.721
Cg(3) [1] -> $Cg(3)$ [2746.01]	4.890(9)	65	5.31	67.73	1.853(6)	4.869(6)	
Cg(3) [1] -> $Cg(8)$ [1545.01]	4.585(9)	62.4(7)	55.80	8.64	4.532(6)	-2.577(6)	
Cg(3) [1] -> $Cg(8)$ [1555.01]	5.749(10)	62.4(7)	13.44	72.03	1.774(6)	-5.592(6)	
Cg(4) [1] -> $Cg(4)$ [1545.01]	5.602(10)	0	58.11	58.11	2.960(6)	-2.959(6)	4.757
Cg(4) [1] -> $Cg(4)$ [1565.01]	5.602(10)	0	58.11	58.11	-2.959(6)	2.960(6)	4.757
Cg(4) [1] -> $Cg(4)$ [2757.01]	5.488(9)	64	22.55	67.40	2.110(6)	5.069(6)	
Cg(4) [1] -> $Cg(6)$ [1565.01]	5.656(10)	3.3(7)	57.81	60.93	-2.748(6)	3.014(6)	
Cg(4) [1] -> $Cg(6)$ [2757.01]	4.523(9)	61.7(7)	3.39	60.73	2.212(6)	4.515(6)	
Cg(4) [1] -> $Cg(7)$ [1545.01]	5.755(9)	1.5(7)	59.55	60.83	2.806(6)	-2.916(6)	
Cg(5) [1] -> $Cg(7)$ [1545.01]	5.128(9)	84.4(7)	3.60	81.43	-0.763(7)	-5.118(6)	
Cg(5) [1] -> $Cg(8)$ [2646.01]	5.934(9)	53.1(7)	53.66	74.85	-1.552(7)	-3.516(6)	
Cg(6) [1] -> $Cg(4)$ [2757.01]	5.076(9)	61.7(7)	10.45	72.15	1.555(6)	4.992(6)	
Cg(6) [1] -> Cg(6) [2757.01]	5.199(9)	59	28.88	70.06	1.773(6)	4.553(6)	
Cg(7) [1] -> $Cg(3)$ [1565.01]	5.346(9)	64.5(7)	34.56	67.88	-2.012(6)	4.403(6)	
Cg(7) [1] -> Cg(5) [1555.01]	5.703(10)	84.4(7)	49.29	62.47	-2.635(6)	-3.720(7)	
Cg(7) [1] -> $Cg(7)$ [1545.01]	5.602(10)	0	58.15	58.15	2.957(6)	-2.956(6)	4.759
Cg(7) [1] -> $Cg(7)$ [1565.01]	5.602(10)	0	58.15	58.15	-2.956(6)	2.956(6)	4.759
Cg(7) [1] -> Cg(8) [1545.01]	5.775(10)	3.8(7)	58.31	61.81	2.727(6)	-3.033(6)	
Cg(7) [1] -> $Cg(8)$ [2646.01]	4.890(9)	61.4(7)	19.58	64.54	-2.102(6)	-4.606(6)	
Cg(8) [1] -> $Cg(3)$ [1565.01]	4.584(9)	62.4(7)	8.64	55.80	-2.576(6)	4.532(6)	
Cg(8) [1] -> Cg(7) [2646.01]	5.283(9)	61.4(7)	23.05	71.79	-1.651(6)	-4.861(6)	
Cg(8) [1] -> $Cg(8)$ [2646.01]	4.618(9)	59	10.50	67.30	-1.783(6)	-4.541(6)	
Min or Max	4.523	0.00	3.39	81.43	-3.015	-5.592	

 $\begin{bmatrix} 1545 \end{bmatrix} = X,-1+Y,Z$ $\begin{bmatrix} 1565 \end{bmatrix} = X,1+Y,Z$

[2746] = 2-X, -1/2+Y, 1-Z

[1555] = X, Y, Z

 $\begin{bmatrix} 2757 \end{bmatrix} = 2 \cdot X, 1/2 + Y, 2 \cdot Z$

[2646] = 1-X, -1/2+Y, 1-Z

Packing Analysis for Λ -Cu-*R*-L4 (data set CuRL4) for possible CH- π interactions:

Analysis of X-H...Cg(Pi-Ring) Interactions (H..Cg < 3.0 Ang. - Gamma < 30.0 Deg)

- Cg(J) = Center of gravity of ring J (Plane number above)

- H-Perp = Perpendicular distance of H to ring plane J

- Gamma = Angle between Cg-H vector and ring J normal

- X-H..Cg = X-H-Cg angle (degrees)

- X..Cg = Distance of X to Cg (Angstrom)

- X-H, Pi = Angle of the X-H bond with the Pi-plane (i.e.' Perpendicular = 90 degrees, Parallel = 0 degrees)

$XH(I) Res(I) Cg(J) \ [ARU(J)]$	HCg	H-Perp	Gamma	X-HCg	XCg
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2.76 2.82 2.64	-2.62 2.55 -2.58	18.68 25.54 11.95	169 122 138	3.730(17) 3.423(16) 3.402(16)
	-				
Min or Max	2.640	-2.617	11.95	169.00	3.402

[1565] = X,1+Y,Z [2747] = 2-X,-1/2+Y,2-Z [2656] = 1-X,1/2+Y,1-Z

Conclusions for Λ-Cu-*R*-L4:

There are parallel (by symmetry) or near parallel π - π ring arrangements with an interplanar angle of 0° or <5° (highlighted in yellow). Yet, this parallel arrangement coincides with long centroid-centroid distances (>5.6 Å) together with large slip angles (β , γ > 57°) so that there is no effective

 π -overlap. For the exactly parallel aryl rings (by symmetry) this can also be seen from the slippage of 4.76 Å which corresponds to the horizontal displacement of the centroids (cf. Scheme S1). Two C-H… π contacts (highlighted in yellow) approach the criteria for significant intermolecular C-H… π contacts which start around 2.7 Å for the (C-)H…ring centroid distances with H-perp also starting at 2.6-2.7 Å and C-H…Cg > 145°.^{2,4,5}

Packing coefficient⁶ (or packing index)

The packing coefficients for the majority of crystals are between 0.65-0.77 as for the close-packing of spheres and ellipsoids.⁶

The analysis of molecular packing carried out by Kitaigorodskii and others suggested the conclusion that "the mutual arrangement of the molecules in a crystal is always such that the "projections" of one molecule fit into the "hollows" of adjacent molecules. ... The statement that the real structure is one of the most closely packed of all conceivable patterns seems realistic enough".⁶ From an analysis of possible arrays of molecules without symmetry elements, the closest packing can be achieved in the following space groups: P1, $P2_1$, $P2_1/c$, Pca, Pna, $P2_12_12_1$.⁶

Here all compounds (Λ - or Δ)-Cu-(R or S)-L_i (i = 1-4) in principle have a two-fold symmetry. Such molecules can be packed with maximum density in groups C2/c, $P2_12_12$ and Pbcn.

Compounds A-Cu-*R*-L1 and Δ -Cu-*S*-L1 crystallize in space group $P2_12_12$ (Table 5), compound Λ/Δ -Cu-*R*-L2 in *P*1 and Λ -Cu-*R*-L4 in *P*2₁ (Table 6). However, crystallographically the two-fold molecular symmetry is retained in the solid state only in Λ -Cu-*R*-L1 and Δ -Cu-*S*-L1 where the Cu atom sits on a special position with the 2_1 axis passing through the molecule. In Λ/Δ -Cu-*R*-L2 and in Λ -Cu-*R*-L4 the unsymmetric orientation of the $-C_6H_4OMe$ and $-C_6H_4Br$ groups, respectively, in the solid-state does not coincide with two-fold crystal symmetry.

The packing index can be calculated with the "calc void" command using $PLATON^7$ and is given in the following Table.

Compound	Temperature /K	Space group	Packing coefficient ^a	Total pot. solv void $/\text{\AA}^3$	Total pot. solv void /%
Λ-Cu-R-L1					
data set CuR12	203(2)	P21212	0.63	61.7	3.9
CuRL1a	95(2)	$P2_{1}2_{1}2$	0.64	32.0	2.1
∆-Cu-S-L1					
data set CuSL1-II	296(2)	P21212	0.62	90.2	5.6
CuSL1-III	296(2)	$P2_{1}2_{1}2$	0.62	87.7	5.5
Λ/Δ-Cu- <i>R</i> -L2					
data set CuR14a	203(2)	<i>P</i> 1	0.665	none	none
CuRL2-LT	100(2)	<i>P</i> 1	0.68	none	none
Λ-Cu-R-L4	150(2)	$P2_1$	0.69	none	none

Table S3 Packing coefficients.

^{*a*} Calculated as packing index with PLATON⁷ using the "calc void" command.

Noteworthy, the packing coefficient of Λ -Cu-*R*-L1 and Δ -Cu-*S*-L1 is smaller than 0.65 and there is surplus "empty space" on the order of 2.1-5.6% (depending on temperature). This can be reasoned twofold

(i) In order to achieve a closer packing, the molecule would have to give up its two-fold molecular symmetry. This is the case in the structures of Λ/Δ -Cu-*R*-L2 and in Λ -Cu-*R*-L4 where packing coefficients of 0.66-0.69 were attained.

(ii) In the data set of CuRL1a we could refine the largest residual Q1 peak to an oxygen atom (of a presumed crystal water molecule) with an occupation factor of 0.13 per formula unit. A water molecule of crystallization might have been almost fully lost upon crystal drying. The presence of absence of small amounts of crystal water can have little structural effects (see H. H. Monfared, A.-C. Chamayou, S. Khajeh and C. Janiak, *CrystEngComm*, 2010, **12**, 3526-3530.).

A hydrogen-bonded H_2O molecule requires about 40 Å³. For the data set of CuRL1a a freshly prepared crystal was used. In the CuR12 data set and in the room temperature data sets of Cu-S-L1 no significant residual electron was found in the voids.

Figure S3. UV-vis and CD component spectra calculated with M06/TZVP//B3LYP/6-31G(d) on low-energy structures of Λ -(*R*,*R*)-complex (left) and Δ -(*R*,*R*)-complex (right) **Cu-L1**.

Figure S4. CD spectrum calculated with M06/TZVP on the X-ray geometry of complex Λ -Cu-*R*-L1 after optimization of the hydrogen atoms only at B3LYP/6-31G(d) level.

Table S4. M06/TZVP calculated transition energies, oscillator strength, rotational strength and CI coefficients for the lowest energy structure of Λ -Cu-*R*-L1 complex, B3LYP/6-31G(d) geometry.

Excited State 2:	2.003-A	1.8269 eV	678.65 nm	f=0.0002	R(10**-40 cgs) = -15.5/10)
125B -> 160B	-0.22889					
127B -> 160B	0.13070					
128B -> 160B	-0.138/5					
130B -> 160B	0.10/55					
132B -> 160B	-0.19310					
135B -> 160B	0.10204					
139B -> 160B	0 15746					
142B -> 160B	0.36515					
144B -> 160B	-0.26899					
148B -> 160B	0.61868					
154B -> 160B	-0.10483					
Excited State 3:	2.003-A	1.9396 eV	639.24 nm	f=0.0041	R(10**-40 cgs)= 2.9979	
121B -> 160B	0.10430					
122B -> 160B	0.13570					
126B -> 160B	-0.10912					
129B -> 160B	-0.22250					
137B -> 160B	-0.22860					
138B -> 160B	0.24093					
141B -> 160B	0.194/1					
142B -> 160B	0.10339					
145B -> 160B	-0 18034					
147B -> 160B	0.54271					
151B -> 160B	-0.21800					
155B -> 160B	-0.18148					
156B -> 160B	-0.16016					
157B -> 160B	0.18964					
Excited State 4:	2.003-A	1.9867 eV	624.07 nm	f=0.0001	R(10**-40 cgs)= 4.1710	
132B -> 160B	0.13658					
133B -> 160B	0.26862					
142B -> 160B	0.43139					
143B -> 160B	-0 10069					
144B -> 160B	0.45747					
146B -> 160B	0.44065					
148B -> 160B	-0.13274					
149B -> 160B	0.12670					
156B -> 160B	-0.18687					
157B -> 160B	-0.16390					
Evolted State 8.	2 122-2	2 5730 eV	481 86 pm	f=0 0817	P(10**-40 cos) = 119 311	14
124B -> 160B	0 10187	2.3750 20	401.00 114	1-0.0017	R(10*** 40 Cg3)= 119.51	
126B -> 160B	0.12096					
134B -> 160B	0.13447					
137B -> 160B	0.23445					
141B -> 160B	0.32586					
143B -> 160B	0.10960					
145B -> 160B	0.13974					
147B -> 160B	0.13650					
151B -> 160B	0.40914					
155B -> 160B	0.20630					
1238 -> 100B	0.64824					
Excited State 11.	2 120-A	3 2731 eV	378 80 nm	f=0 0065	B(10**-40 cgs) = -72 515	58
159A -> 162A	-0.21764	3.2731 60	570.00 Ind	1 0.0000	10 0957 72.010	
160A -> 161A	0.28018					
139B -> 160B	0.12374					
144B -> 160B	0.13996					
156B -> 160B	0.58036					
157B -> 160B	0.50186					
158B -> 162B	-0.12046					
159B -> 161B	0.3/4/2					
Excited State 12.	2 115-4	3 2808 eV	377 91 nm	f=0 0617	R(10**-40 cos) = 129 380	14
159A -> 161A	-0 28493	5.2000 80	577.91 IIII	1-0.001/	R(10 40 Cg3) = 129.300	-
10000 > 10100	-0.10123					
16UA -> 16IA						
160A -> 161A 160A -> 162A	0.29087					
160A -> 161A 160A -> 162A 145B -> 160B	0.29087 0.17108					
160A -> 161A 160A -> 162A 145B -> 160B 147B -> 160B	0.29087 0.17108 -0.14443					
160A -> 161A 160A -> 162A 145B -> 160B 147B -> 160B 151B -> 160B	0.29087 0.17108 -0.14443 -0.13791					
160A -> 161A 160A -> 162A 145B -> 160B 147B -> 160B 151B -> 160B 156B -> 160B	0.29087 0.17108 -0.14443 -0.13791 -0.39644					
160A -> 161A 160A -> 162A 145B -> 160B 147B -> 160B 151B -> 160B 156B -> 160B 157B -> 160B	0.29087 0.17108 -0.14443 -0.13791 -0.39644 0.53587					
160A -> 161A 160A -> 162A 145B -> 160B 147B -> 160B 151B -> 160B 156B -> 160B 157B -> 160B 157B -> 160B 158B -> 161B	0.29087 0.17108 -0.14443 -0.13791 -0.39644 0.53587 -0.16883					
160A -> 161A 160A -> 162A 145B -> 160B 147B -> 160B 151B -> 160B 156B -> 160B 157B -> 160B 157B -> 160B 158B -> 161B 159B -> 162B	0.29087 0.17108 -0.14443 -0.13791 -0.39644 0.53587 -0.16883 0.42740					
160A -> 161A 160A -> 162A 145B -> 160B 147B -> 160B 151B -> 160B 156B -> 160B 157B -> 160B 157B -> 160B 158B -> 161B 159B -> 162B Excited State 13:	0.29087 0.17108 -0.14443 -0.13791 -0.39644 0.53587 -0.16883 0.42740 2.130-A	3.3272 eV	372.63 nm	f=0.0159	R(10**-40 cgs)= -226.58	383
160A -> 161A 160A -> 162A 145B -> 160B 147B -> 160B 151B -> 160B 156B -> 160B 157B -> 160B 157B -> 161B 159B -> 162B Excited State 13: 159A -> 162A	0.29087 0.17108 -0.14443 -0.13791 -0.38644 0.53587 -0.16883 0.42740 2.130-A -0.25438	3.3272 eV	372.63 nm	f=0.0159	R(10**-40 cgs)= -226.58	383
$160A \rightarrow 161A$ $160A \rightarrow 162A$ $145B \rightarrow 160B$ $147B \rightarrow 160B$ $151B \rightarrow 160B$ $156B \rightarrow 160B$ $157B \rightarrow 160B$ $157B \rightarrow 160B$ $159B \rightarrow 162B$ Excited State 13: $159A \rightarrow 162A$ $159A \rightarrow 163A$	0.29087 0.17108 -0.14443 -0.13791 -0.39644 0.53587 -0.16883 0.42740 2.130-A -0.25438 -0.10227	3.3272 eV	372.63 nm	f=0.0159	R(10**-40 cgs)= -226.58	383
160A -> 161A 160A -> 162A 145B -> 160B 147B -> 160B 151B -> 160B 156B -> 160B 157B -> 160B 158B -> 161B 159B -> 162B Excited State 13: 159A -> 162A 159A -> 163A 160A -> 161A	0.29087 0.17108 -0.14443 -0.13791 -0.39644 0.53587 -0.16883 0.42740 2.130-A -0.25438 -0.10227 0.47899	3.3272 eV	372.63 nm	f=0.0159	R(10**-40 cgs)= -226.58	383

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2014

160A -> 164A 156B -> 160B 157B -> 160B 158B -> 162B 159B -> 161B	0.11732 -0.41676 -0.27424 -0.15053 0.55504				
Excited State 14: 158A -> 161A 159A -> 161A 159A -> 164A 160A -> 162A 160A -> 163A 141B -> 160B 143B -> 160B 156B -> 160B 157B -> 160B 158B -> 161B 158B -> 164B 159B -> 162B 159B -> 163B	2.355-A -0.11081 -0.25852 -0.16655 0.34532 0.19355 0.11433 0.14418 0.35424 -0.42388 -0.12955 0.14985 0.45604 0.14044	3.3735 eV	367.52 nm	f=0.0846	R(10**-40 cgs)= 112.2994
Excited State 22: 158A -> 162A 160A -> 161A 160A -> 162A 158B -> 161B 158B -> 162B 159B -> 161B 159B -> 162B	3.066-A 0.17155 -0.16799 -0.11926 0.26081 0.78748 0.34062 0.24664	3.6731 eV	337.55 nm	f=0.0040	R(10**-40 cgs)= -17.9996
Excited State 23: 156A -> 161A 158A -> 161A 158A -> 162A 159A -> 161A 159A -> 162A 160A -> 161A 160A -> 162A 137B -> 160B 145B -> 160B 151B -> 160B 151B -> 160B 155B -> 160B 158B -> 161B 158B -> 162B	2.371-A -0.15351 0.57902 -0.19677 -0.40219 0.21824 -0.27559 0.11510 0.14651 -0.16487 -0.15572 -0.23712 -0.14724 0.13307	3.7734 eV	328.57 nm	f=0.0544	R(10**-40 cgs)= -28.4521
Excited State 24: $157A \rightarrow 162A$ $158A \rightarrow 161A$ $158A \rightarrow 162A$ $159A \rightarrow 161A$ $159A \rightarrow 162A$ $160A \rightarrow 162A$ $160A \rightarrow 162A$ $134B \rightarrow 160B$ $137B \rightarrow 160B$ $141B \rightarrow 160B$ $145B \rightarrow 160B$ $151B \rightarrow 160B$ $151B \rightarrow 160B$ $155B \rightarrow 160B$ $157B \rightarrow 162B$ $157B \rightarrow 162B$ $159B \rightarrow 161B$ $159B \rightarrow 162B$	2.153-A 0.11083 0.19204 -0.26493 -0.24553 0.17823 0.10912 0.10671 -0.11178 -0.23705 -0.16865 -0.21705 0.33003 0.25646 0.51240 0.10073 -0.18651 0.10933	3.7868 eV	327.41 nm	f=0.2632	R(10**-40 cgs)= -58.4328
Excited State 25: 150A -> 162A 156A -> 162A 158A -> 161A 158A -> 161A 159A -> 161A 159A -> 161A 160A -> 161A 160A -> 162A 160B -> 160B 158B -> 161B 158B -> 162B	2.429-A 0.10784 -0.14197 0.28998 0.57995 -0.25371 -0.46670 -0.17236 -0.20725 0.13508 -0.14792 -0.21789	3.7960 eV	326.62 nm	f=0.0351	R(10**-40 cgs)= -12.1137
Excited State 26: 156A -> 161A 159A -> 169A 159A -> 169A 150B -> 160B 151B -> 160B 154B -> 160B 155B -> 160B 158B -> 160B 158B -> 169B 158B -> 170B 159B -> 169B	2.720-A -0.12562 -0.12808 0.19631 -0.26367 -0.14155 -0.28875 0.45290 0.49567 0.13337 -0.18812 0.27172	3.8540 eV	321.70 nm	f=0.0260	R(10**-40 cgs)= -8.7583

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2014

Excited State 29: 159A -> 170A 160A -> 169A 150B -> 160B 151B -> 160B 154B -> 160B 155B -> 160B 156B -> 160B 156B -> 162B 158B -> 170B 159B -> 169B	2.362-A 0.15398 -0.17052 0.50927 0.47305 -0.48256 0.11046 0.12500 -0.16366 0.18085	3.9006 eV	317.86 nm	f=0.0633	R(10**-40	cgs)= -29.7574
Excited State 30: 156A -> 161A 156A -> 162A 157A -> 162A 157A -> 162A 157A -> 162A 159A -> 170A 160A -> 169A 150B -> 160B 151B -> 160B 156B -> 161B 156B -> 161B 157B -> 161B 157B -> 162B 157B -> 162B 158B -> 170B 159B -> 169B	2.013-A 0.43555 -0.18528 0.14858 0.37141 0.10491 0.15193 -0.17939 -0.11414 -0.20313 0.41731 -0.23862 0.21514 0.33262 0.14335 -0.17880	4.0316 eV	307.53 nm	f=0.1061	R(10**-40	cgs)= -35.2504
Excited State 31: 156A -> 161A 156A -> 162A 157A -> 161A 157A -> 162A 159A -> 169A 160A -> 170A 156B -> 161B 156B -> 161B 157B -> 161B 157B -> 162B 157B -> 162B 158B -> 169B 159B -> 170B	2.008-A -0.31202 0.26142 0.32151 0.37041 0.15779 -0.19058 -0.31224 0.28513 0.35356 0.35720 0.12417 -0.16630	4.0336 eV	307.38 nm	f=0.0055	R(10**-40	cgs)= 60.2042
Excited State 36: 159A -> 164A 160A -> 163A 150B -> 160B 158B -> 164B 159B -> 163B	2.044-A -0.39014 0.55253 0.15047 -0.30757 -0.53284	4.2394 eV	292.46 nm	f=0.1799	R(10**-40	cgs)= -66.5246
Excited State 37: 159A -> 163A 159A -> 169A 160A -> 164A 160A -> 170A 148B -> 160B 149B -> 160B 151B -> 161B 158B -> 163B 159B -> 164B	2.066-A -0.36527 0.12134 0.46322 -0.11487 0.16849 -0.12120 -0.12946 0.32885 0.55167	4.2441 eV	292.13 nm	f=0.0010	R(10**-40	cgs)= 18.8485
Excited State 38: 156A -> 163A 157A -> 164A 159A -> 163A 160A -> 164A 148B -> 160B 148B -> 160B 149B -> 160B 150B -> 161B 151B -> 161B 155B -> 161B 156B -> 163B 158B -> 163B 159B -> 164B 159B -> 170B	2.941-A -0.12358 -0.10132 -0.12707 0.20327 -0.15271 -0.15624 0.22332 0.10174 0.51546 0.47628 -0.11429 0.10061 0.11745 -0.10691	4.3661 eV	283.97 nm	f=0.0018	R(10**-40	cgs)= 17.3289

1 C. Janiak, J. Chem. Soc., Dalton Trans., 2000, 3885.

 ² M. Nishio, CrystEngComm, 2004, 6, 130; M. Nishio, M. Hirota and Y. Umezawa, The CH/π interaction (Evidence, Nature and consequences), Wiley-VCH, 1998; Y. Umezawa, S. Tsuboyama, K. Honda, J. Uzawa and M. Nishio, Bull. Chem. Soc. Jpn., 1998, 71, 1207; C.

Janiak, S. Temizdemir, S. Dechert, W. Deck, F. Girgsdies, J. Heinze, M. J. Kolm, T. G. Scharmann and O. M. Zipffel, *Eur. J. Inorg. Chem.*, 2000, 1229.

- 3 π-Interactions between pyridyl-type ligands for comparison: V. Lozan, P.-G. Lassahn, C. Zhang, B. Wu, C. Janiak, G. Rheinwald and H. Lang, Z. Naturforsch. B, 2003, 58, 1152; C. Zhang and C. Janiak, Z. Anorg. Allg. Chem., 2001, 627, 1972; C. Zhang and C. Janiak, J. Chem. Crystallogr., 2001, 31, 29; H.-P. Wu, C. Janiak, G. Rheinwald and H. Lang, J. Chem. Soc., Dalton Trans., 1999, 183; C. Janiak, L. Uehlin, H.-P. Wu, P. Klüfers, H. Piotrowski and T. G. Scharmann, J. Chem. Soc., Dalton Trans., 1999, 3121; H.-P. Wu, C. Janiak, L. Uehlin, P. Klüfers and P. Mayer, Chem. Commun., 1998, 2637.
- 4 X.-J. Yang, F. Drepper, B. Wu, W.-H. Sun, W. Haehnel and C. Janiak, *Dalton Trans.*, 2005, 256-267 and ESI therein;
- 5 N. N. L. Madhavi, A. K. Katz, H. L. Carrell, A. Nangia and G. R. Desiraju, *Chem. Commun.*, 1997, 1953; H.-C. Weiss, D. Bläser, R. Boese, B. M. Doughan and M. M. Haley, *Chem. Commun.*, 1997, 1703; T. Steiner, M. Tamm, B. Lutz and J. van der Maas, *Chem. Commun.*, 1996, 1127; P. L. Anelli, P. R. Ashton, R. Ballardini, V. Balzani, M. Delgado, M. T. Gandolfi, T. T. Goodnow, A. E. Kaifer, D. Philp, M. Pietraszkiewicz, L. Prodi, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, C. Vicent and D. J. Williams, *J. Am. Chem. Soc.*, 1992, **114**, 193.
- 6 A. I. Kitaigorodskii, Molecular Crystals and Molecules, Academic Press, New-York, 1973.
- A. L. Spek, *Acta Crystallographica Section D*, 2009, 65, 148-155. *PLATON* A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, A. L. Spek (2008); Windows implementation: L. J. Farrugia, University of Glasgow, Scotland, Version 40608 (2008).