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1. Supporting Table

Table S1. Hydrogen production activity and faradaic efficiency of Ni modified FTO electrodes with a
geometric surface area of 1.6 cm” after 10 h controlled potential electrolysis in pH 7 phosphate buffered water
(0.1 M) at an applied potential of —0.9 V vs. NHE. The electrodes were modified with Ni by electrodeposition
of (n—Bu4N)[Ni(LE)(MesE’)] (ImM in acetonitrile, 0.1 M n-BuyNBF,) at —1.33 V vs. NHE for 0.5 h at room

temperature.

Molecular Ni Precursor H, / ymol Faradaic Efficiency / %
(n-BusN)[Ni(L%)(Mes®) 55 +20 71£2
(n-BugN)[Ni(L>)(Mes™)] 41+9 63 +2
(n-BusN)[Ni(L%)(Mes™)] 942 67+5
(n-BusN)[Ni(L%)(Mes®)] 22+1 64+9
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2. Supporting Figures

2.1. Characterisation of Compounds
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Figure S1. '"H NMR spectrum of (‘Lse—H’)z in CD,Cl, (‘as recorded’ before correcting chemical shift
against solvent peak).
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Figure S2. "H NMR spectrum of ‘L-H, in CDCl; (‘as recorded’ before correcting chemical shift against
solvent peak).
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Figure S3. 'H NMR spectrum of (n—Bu4N)[Ni(Lse)(Mess)] in THF-ds (‘as recorded’ before correcting
chemical shift against solvent peak).
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Figure S4. 'H NMR spectrum of (n—Bu4N)[Ni(Lse)(Messe)] in THF-ds (‘as recorded’ before correcting
chemical shift against solvent peak).
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Figure S5. 'H NMR spectrum of (n—Bu4N)[Ni(LS)(Messe)] in THF-ds (‘as recorded’ before correcting
chemical shift against solvent peak).
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Figure Se. 'H NMR spectrum of (n—Bu4N)[Ni(LS)(MesS)] in THF-ds (‘as recorded’ before correcting
chemical shift against solvent peak).
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Figure S7. 'H NMR spectrum of (PPh4)[Ni(LS)(MesSC)] in CD,Cl, (‘as recorded’ before correcting
chemical shift against solvent peak).
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Figure S8. 'H NMR spectrum of (PPh4)[Ni(LS)(MesS)] in CD,Cl, (‘as recorded’ before correcting
chemical shift against solvent peak).

S6



Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2013

Peak Number Retention Time Mass Found
5
5: (Time: 5.95) Combine (253:258-(249:251+315:317)) 1:MS ES-
96.9 3.3e+004
100+ 2
294.9_(298.9
%
186.0 ]f ! 366.8 426.9 518.8 556.7 659.6
O T T LRSS T T T T T T T T T T e m/z
200 250 300 350 400 450 500 550 600 650
. <1 Ses .
Figure S9. Mass spectrum of (‘L™’-H), in CHClIs.
ad Claire Wombwell +EI of 26210
184.0338
1.2e+07- T
1.0e+07-{ ‘
|
|
|
8.0e+06 -| |
139.9754
o
6.0e+06 187.9194
1 ‘ 297.9372
1. oeros 561281
108.0030
66.2423 T
i | J1e 00 295.9404
80.803¢ 2.061 6.0061
| 034 152.0619 2 vel
2.0e+06-|
° 2880320114 o186 171027201 189. 9194 234.0178
‘ : 01 T ABg.9is4y 2349178 |
AR l L - s I | . {“
L ——
60 80 100 120 140 160 180 200 220 240 260 280 300 m/2
. <1 Ses :
Figure S10. Mass spectrum of ‘L>”’-H, in CHCl;.
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Figure S11. Top: Mass spectra of (n—Bu4N)[Ni(LS°)(MesS)] in CH,Cl, (+ive and —ive mode; left and right,

respectively). Bottom: Predicted spectrum of the anion.
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Figure S12. Top: Mass spectrum of (n—Bu4N)[Ni(Lse)(Messe)] in CH,Cl; (+ive and —ive mode; left and
right, respectively). Bottom: Predicted spectrum of the anion.
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Figure S13. Top: Mass spectrum of (n—Bu4N)[Ni(LS)(Messe)] in CH,Cl, (+ive and —ive mode; left and
right, respectively). Bottom: Predicted spectrum of the anion.
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Figure S14. Top: Mass spectrum of (n—Bu4N)[Ni(LS)(MesS)] in CH,Cl; (+ive and —ive mode; left and
right, respectively). Bottom: Predicted spectrum of the anion.
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Figure S15. Mass spectrum of (PPh4)[Ni(LS)(MesS°)] in CH,Cl; (+ive and —ive mode; left and right,

respectively) .
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Figure S16. Mass spectrum of (PPh4)[Ni(LS)(MesS)] in CH,Cl; (+ive and —ive mode; left and right,

respectively).
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Fig S17. ATR-IR spectrum of [Ni(L*®),].
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2.2. Characterisation of Oxidation Products
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Figure S18. ATR-IR spectrum of [Ni(LS)]n isolated from the oxidation of PPh4[Ni(LS)(MesSC)].

683
—22
—215

biesce

fse=07

f-sEs07

7674 72 70 68 66 64 €2 60 S8 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 2 22 20 18 16
1 (opm

Figure S19. '"H NMR spectrum of dimesitylene diselenide isolated from the oxidation of
(PPh4)[Ni(LS)(Messe)] in CDCl; (“as recorded’ before correcting chemical shift against solvent peak).
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Figure S20. EI Mass spectrum of dimesitylene diselenide in CHCl; isolated from the oxidation of
(PPhy)[Ni(L%)(Mes™)].
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Figure S21. '"H NMR spectrum of dimesitylene disulfide isolated from the oxidation of
(PPh4)[Ni(L%)(Mes®)] in CDCl; (“as recorded’ before correcting chemical shift against solvent peak).

S12



Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2013

—+
|

—

0
?
g_
—

__JM—UI J. A :ix t=24 h i

-+

: 1 t=72 h
|V (| 5 + !

t=24h t=96h

| , I L — W\J_—Jﬂ;k

T T T T T T T
8 4 6 s 4 3 2
1 (ppm )

Figure S22. 'H NMR spectrum in CD,Cl, of (PPhy)[Ni(L%)(Mes*®)] (left column) and

(PPh,)[Ni(L%)(Mes®)] (right column) at different time intervals following exposure to atmospheric oxygen
(*starting material, "product).

S13



Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2013

2.3. Characterisation of HBF4 Reaction Products
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Figure S23. "H NMR spectrum of mesitylene selenol in CDCl; isolated from the protonation of (-
NBu4)[Ni(L®)(Mes*®)] (‘as recorded’ before correcting chemical shift against solvent peak).
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Figure S24. "H NMR spectrum of mesitylene thiol in CDCl; isolated from the protonation of
(PPhy4)[Ni(L%)(Mes®)] with HBF, (“as recorded’ before correcting chemical shift against solvent peak).
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2.4. Electrochemical and Deposition Studies
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Figure S25. Cyclic voltammograms of (n—Bu4N)[Ni(LE)(MesE’)] (1 mM) in an acetonitrile solution
containing n-BusNBF, (0.1 M) at a scan rate 100 mV s,
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Figure S26. Cyclic voltammograms of (n—Bu4N)[Ni(Lse)(MesS)] (1 mM) at 100 mV s in the presence of
n-BusNBF, (0.1 M) in acetonitrile (black), dimethyl formamide (red) and dichloromethane (blue).
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Figure S27. Cyclic voltammograms of (n-BuyN)[Ni(L>*)(Mes*®)] (top), (n-BusN)[Ni(L®)(Mes™)] (middle)
and (n-BusN)[Ni(L%)(Mes®)] (bottom) in an acetonitrile solution (1 mM) containing n-BusNBF4 (0.1 M) at
a scan rate of 100 mV s~ with 0 mM (black), 1 mM (red), 3 mM (blue), 5 mM (pink) and 10 mM (green)
Et;NHCI (second scan of consecutive scanning cycles shown in all cases).
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Figure S28. Left: Plot of first derivative of the catalytic wave of the reduction of protons in NEt;HCI (10
mM) in the presence of (n-BuyN)[Ni(L>)(Mes®)] (ImM), E1/,= Emax + 0.015 (V. Fourmond, P.-A. Jacques,
M. Fontecave and V. Artero, Inorg. Chem., 2010, 49, 10338-10347). Right: Plot of catalytic current (icar)
as a function of Et;NHCI concentration. Half wave potential was calculated at an acid concentration of 10
mM where the relationship between catalytic current and acid concentration is linear.
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Figure $29. (n-BusN)[Ni(L*)(Mes®)] (1 mM) in acetonitrile (10 mM Et;NHCI, 0.1 M n-Bu;NBF,) at a
glassy carbon disk working electrode (black trace). The glassy carbon electrode was subsequently rinsed
with acetonitrile and transferred to a fresh Ni-free acetonitrile solution (10 mM Et;NHCIL, 0.1 M n-
BusNBF,) (blue trace). A control experiment with a polished glassy carbon electrode in Ni-free acetonitrile
(10 mM Et;NHCI, 0.1 M n-BuyNBF,) is shown as the red trace.

S17



Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2013

34
24
2
; 4
é’ <
. (n-BugN)[Ni(LSe)(MesS)] 14 (n-Bu,N)INi(L%*)(Mes®*)]
0 T T T T T T 0 T T T T T T
300 400 500 600 700 800 300 400 500 600 700 800
Alnm % /nm
349
34
2 m A
- 8
8 <
< (n-Bu,N)[Ni(L%)(Mes®)]
14 (n-Bu,N)INi(L%)(Mes**)] 4
0 T T T T ; .
0 T T T T T T 300 400 500 600 700 800
300 400 500 600 700 800 .
nm

hlnm
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Figure S31. (a) SEM of FTO electrode (1.6 cm’ surface area) after electrodeposition of (n-
NBu4N)[Ni(Lse)(Mess)] (1 mM, 5 mL in acetonitrile, 0.1 M n-BusNBF,, applied potential of —1.33 V vs.

NHE for 0.5 h). (b) Full frame EDX of spectrum of (a).
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Figure S32. Electrocatalytic H, production during CPE with Ni modified FTO-electrodes (geometric
surface area of 1.6 cm?) over 10 h in pH 7 phosphate buffered water (0.1 M) at —0.9 V vs. NHE. The
electrodes were modified with Ni by electrodeposition of (n-BusN)[Ni(L")(Mes")] (1 mM in acetonitrile,
0.1 M n-BuyNBF,, 10 mM Et4NHCI) at —1.33 V vs. NHE for 0.5 h. Hydrogen production activity of a
platinum foil with the same surface area is also shown for comparison.
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3. Letter written by Dr. John Davies about refinement of X-ray crystal structures.

These four structures contain a total of seven tetra-n-butylammonium cations in their asymmetric units. In
each case the cation is poorly resolved. This is because, despite strenuous efforts (multiple datasets from
different crystals) to obtain good data, the crystal quality was poor and so the diffraction data is poor. If
anisotropic displacement parameters are assigned to the carbon atoms of these cations, no amount of
fussing with fancy SHELXL commands will produce thermal parameters, which are at all believable.
Instead, the carbon atoms of these cations were each assigned one of four common isotropic displacement
parameters for the refinement process. So, instead of the 96 (or 192) least squares variables which would
be needed for one (or two) cations if anisotropic displacement parameters were used for all atoms, this
refinement process uses only four (& note: three of the structures in this paper contain two cations in their
asymmetric unit). In addition, weak bond length constraints were applied to keep the geometry of these
chains chemically sensible (one extra least squares variable per structure).

Figure S33. Left: a cation (from ER1212) refined using 4 common isotropic displacement parameters for
the carbon atoms. Right: the same cation refined using individual anisotropic displacement parameters (96
parameters) for each carbon atom

The quality of the data did vary somewhat between the four structures. Here is a typical frame from
ER1212 ...

Figure S34. Typical frame from ER122. The highest angle diffraction spots in this frame are at ca 26(Mo)
= 20°. There was effectively no measurable data above this limit and so the resolution of the whole
experiment is poor
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The fact that, in each of the four structures, the final four refined isotropic displacement parameters
increase along each n-butyl chain, outwards from the central nitrogen atom, does make sense if one
assumes (very reasonably) that these chains are waggling about. The same effect is certainly visible if one
assigns anisotropic displacement parameters instead - but is there really any more information in these 96
numbers? Particularly if one attempts to constrain them with extra SHELXL commands no matter whether
‘soft’, ‘gentle’ or ‘hard’ (adjectives which I think are best set aside for soap commercials)? Frankly I
doubt it. The sad fact which we must all face is that our crystallographic literature is stuffed full of
anisotropic displacement parameters which mean absolutely nothing at all and which (quite rightly) receive
no attention from anybody. Rather than urge authors to fiddle around with funny anisotropic displacement
parameters in a forlorn attempt to make them look more ‘respectable’, many referees would do us all a
service if they encouraged intelligent and more frequent use of common isotropic displacement
parameters. At the same time, many authors should stop urging their X-ray technical staff to use
anisotropic displacement parameters no matter what, for fear that their papers may otherwise be rejected
by their crystallographic referees. The whole thing is a vicious spiral and someone somewhere somehow
needs to put a stop to it. I suggest we begin right here, with this paper.

Rather than focusing entirely on displacement parameters in an attempt to determine the effectiveness of
the refinement strategy adopted for these four structures, it is instructive to compare the R(merge) of each
dataset with the ‘final R1’ value. Here are the numbers (final R1 values in parentheses): 0.062(0.071);
0.058(0.076); 0.077(0.045); 0.134(0.107). Two of the R1 values are slightly higher than their R(merge)
values and two are lower. These numbers indicate that the accuracy of each final refinement model here is
very harmoniously matched to the accuracy of its diffraction data.

In the refinement of these four structures it would actually have been much easier to go with the referee’s
suggestions, assigning anisotropic displacement parameters and adding a few ‘soft’ and ‘gentle’ constraints
(whatever they may be). Instead, we have worked much harder to refine these four structures in the way
we have described, paying very careful attention to the assignment of the required ‘free-variables’ and
‘DFIX’ instructions in the SHELXL command file. The final result is that the seven tetra-n-
butylammonium cations in these four structures have been refined very satisfactorily indeed with only 16
common isotropic displacement parameters rather than the 672 parameters which would be required with
anisotropic displacement parameters. By ‘very satisfactorily’ we mean (a) that the accuracy of the final
refinement models (indicated by the final R1 values) is approximately the same as the accuracy of the
datasets (indicated by the R(merge) values) and (b) the resulting isotropic displacement parameters really
do look physically reasonable (similar in each case, indicating that all seven cations are ‘waggling’ about
in a similar fashion).

For every tetra-n-butylammonium cation in these four structures, the geometric constraints for the
refinement were the same, accomplished with one extra least squares parameter ‘d1’. All distances
between adjacent atoms were constrained to be d1(0.05)A and all distances between atoms once-removed
were constrained to be 1.633*d1A. Effectively, these two constraints together ensure that all N-C and C-
C distances in each chain will be d1(0.05)A and all angles N-C-C and C-C-C will be approximately
tetrahedral.
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