Supporting information for

One-step synthesis of a highly homogeneous SBA-NHC hybrid material: en route to single-site NHC-metal heterogeneous catalysts with high loadings

Mansuy Rocquin,^a Mickaël Henrion,^a Marc-Georg Willinger,^b Philippe Bertani,^c

Michael J. Chetcuti,^a Benoît Louis^{*d} and Vincent Ritleng^{*a,e}

e-mail: <u>blouis@unistra.fr</u>, <u>vritleng@unistra.fr</u>

^{*a*} Laboratoire de Chimie Organométallique Appliquée, UMR CNRS 7509, Ecole européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.

^{*b*} Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany.

^c Laboratoire de RMN et Biophysique des Membranes, Institut de Chimie, UMR CNRS7177, Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France.

^{*d*} Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR CNRS 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.

^{*e*} Institut d'Etudes Avancées de l'Université de Strasbourg (USIAS), 5 allée du Général Rouvillois, 67083 Strasbourg, France.

Characterization of 1-(2,6-Diisopropylphenyl)-3-[3-(triethoxysilyl)propyl]imidazolium Iodide (1)

Figure S1a. ¹H NMR spectrum of 1 in CDCl₃.

Figure S1b. ¹³C {¹H} NMR spectrum of 1 in CDCl₃.

Characterization of the Hybrid SBA-NHC (2)

Figure S2a. Small-Angle Powder XRD Pattern of 2.

Figure S2b. ¹³C CP-MAS NMR spectrum of 2.^{a,b}

⁽a) 102400 scans were accumulated with a recycle delay of 3 s.

⁽b) Peaks at 70, 59, 58 and 16 ppm correspond to residual template agent present in micropores and to Si-OEt signals that arise from surfactant removal by extraction with EtOH (see Fig. S3a).

Figure S2c. ²⁹Si CP-MAS NMR spectrum of 2.^a

Figure S2d. ²⁹Si MAS NMR spectrum of 2.^b

⁽a) 32768 scans were accumulated with a recycle delay of 5 s.

⁽b) 14000 scans were accumulated with a recycle delay of 30 s.

CP-MAS NMR Characterization of the Pristine SBA-15 (3)

Figure S3b. ²⁹Si CP-MAS NMR spectrum of 3.^b

⁽a) 32100 scans were accumulated with a recycle delay of 3 s.

⁽b) 32768 scans were accumulated with a recycle delay of 5 s.

CP-MAS NMR Characterization of the Grafted SBA-NHC (4)

Figure S4a. ¹³C CP-MAS NMR spectrum of 4.^{a,b}

Figure S4b.²⁹Si CP-MAS NMR spectrum of 4.°

⁽a) 28675 scans were accumulated with a recycle delay of 3 s.

⁽b) Peaks at 70, 59 and 17 ppm correspond to residual template agent present in micropores and to Si-OEt signals that arise from surfactant removal by extraction with EtOH (see Fig. S3a).

⁽c) 32768 scans were accumulated with a recycle delay of 5 s.

Figure S4c. ²⁹Si MAS NMR spectrum of 4.^a

⁽a) 5000 scans were accumulated with a recycle delay of 30 s.