A spectroscopic study on the formation of Cm(III) acetate complexes at elevated temperatures Supporting information

Daniel R. Fröhlich^{*,†}, Andrej Skerencak-Frech[‡], Petra J. Panak^{\dagger, \ddagger}

† Ruprecht-Karls-Universität Heidelberg, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany

‡ Karlsruher Institut für Technologie, Institut für Nukleare Entsorgung, P.O. Box 3640, 76021

Karlsruhe, Germany

* E-mail: daniel.froehlich@partner.kit.edu

Calculation of the free ligand concentration

The free ligand concentration is calculated as performed in our previous studies treating the interaction of Cm(III) with propionate.^{21,22} There, we showed that the complexation of Na⁺ by propionate is negligible.^{21,22} Due to the similar chemical properties, NaAc is also assumed to be fully dissociated under the present experimental conditions. Following these approximations, the free acetate concentration in NaCl and NaClO₄ solution is calculated according to the following equation which has been deduced in a previous work:²¹

$$[Ac^{-}]_{eq}(T) = \frac{-([H^{+}]_{total} - [Ac^{-}]_{total} + K'_{HAc}(T))}{2} + \frac{\sqrt{([H^{+}]_{total} - [Ac^{-}]_{total} + K'_{HAc}(T))^{2} + 4 \cdot [Ac^{-}]_{total} \cdot K'_{HAc}(T)}}{2}$$

 $[H^+]_{total}$ and $[Ac^-]_{total}$ are the total concentrations of protons and acetate, respectively. K'_{HAc}(T) is the conditional dissociation constant of acetic acid as a function of temperature at a given ionic strength and is calculated according to the following equation:

$$K'_{HAc}(T) = K^{0}_{HAc}(T) \cdot \frac{\gamma_{HAc}(T)}{\gamma_{H^{+}}(T) \cdot \gamma_{Ac^{-}}(T)}$$

 $K^{0}_{HAc}(T)$ at a given temperature is calculated from $\log K^{0}_{HAc}(25 \text{ °C}) = -4.757$ and $\Delta_{r}H^{0}_{m} = -0.41 \text{ kJ/mol}$ (both values given in the NIST database 46.6)²⁴ using the integrated Van't Hoff equation. The activity coefficients ($\gamma(T)$) are determined according to the specific ion interaction theory which is recommended in the NEA thermodynamic database (TDB).⁷ Within the SIT-approach, ion interaction coefficients (ϵ) are introduced to describe the non-electrostatic, short-range interaction between ions of opposite charge. This procedure is valid for ionic strengths up to 4 mol/kg H₂O. Within the temperature range studied in the present work it is appropriate to use temperature-independent coefficients for 25 °C.⁷ The required ϵ -values ($\epsilon(H^{+}, CIO_{4}^{-}) = 0.14 \pm 0.02$, $\epsilon(H^{+}, CI^{-}) = 0.12 \pm 0.01$ and $\epsilon(Na^{+}, Ac^{-}) = 0.08 \pm 0.01$) are tabulated in the NEA-TDB.⁷

In the case of CaCl₂ as background electrolyte, the interaction between Ca²⁺ and Ac⁻ has to be taken into account. The required conditional stability constants $K'_{CaAc}^+(T)$ is calculated from $\log K^0_{CaAc}^+(25 \text{ °C}) = 1.18$ and $\Delta_r H^0_m = 4 \text{ kJ/mol}$ (both values given in the NIST database 46.6)²⁴. Considering CaAc⁺ formation, the free acetate concentration in solution is a function of the initial Ca²⁺ concentration and $K'_{CaAc}^+(T)$. The mathematical expression to calculate the free ligand concentration in CaCl₂ solution has already been deduced in our previous work on Cm(III)-propionate complexation.²² In the context of this work, the required ion interaction coefficients $\epsilon(Ca^{2+}, Ac^-) = 0.27 \pm 0.20$ and $\epsilon(CaAc^+, CI^-) = 0.21 \pm 0.10$ were derived.²² $\epsilon(Ca^{2+}, CI^-) = 0.14 \pm 0.01$ is tabulated in the NEA TDB.⁷

Figure S1. Emission spectra of Cm(III) in 1.0 m NaCl solution in the presence of 0.005 m acetate as a function of temperature (20-90 °C).

Figure S2. Pure component spectra of $Cm(III)_{aq}$ and $Cm(Ac)_n^{3-n}$ (n = 1-3) obtained by peak deconvolution.

Figure S3. Cm(III) speciation as a function of the initial acetate concentration and temperature (20, 50, 90 °C) in 1 m NaClO₄ and CaCl₂ solution. The error bars equal an absolute error of 5% for each species.

Figure S4. $\Delta \epsilon_n$ values (n = 1, 2) for the formation of $[Cm(Ac)_n]^{3-n}$ in NaClO₄ and CaCl₂ solution as a function of the temperature. The error bars equal the 2σ errors of the linear regressions.

Figure S5. Arrhenius plot of log K_n^0 (n = 1-3) obtained in NaClO₄ and CaCl₂ solution (values and errors given in Table 2) to determine the thermodynamic data ($\Delta_r H_m^0$ and $\Delta_r S_m^0$).

Table S1. Result of the slope analysis for the formation of $[Cm(Ac)_n]^{3-n}$ (n = 1-3) in NaClO₄, NaCl and CaCl₂ solution in the temperature range of 20-90 °C.

	Result of slope analysis for the formation of $[Cm(Ac)_n]^{3-n}$							
T / °C	NaClO ₄			NaCl			CaCl ₂	
	n = 1	n = 2	n = 3	n = 1	n = 2	n = 3	n = 1	n = 2
20	1.09 ± 0.11	-	-	0.97 ± 0.08	-	-	1.02 ± 0.10	-
30	1.11 ± 0.11	1.09 ± 0.17	-	0.98 ± 0.08	-	-	1.03 ± 0.10	-
40	1.09 ± 0.12	1.01 ± 0.13	-	0.99 ± 0.08	1.13 ± 0.44	-	1.05 ± 0.11	-
50	1.07 ± 0.12	0.84 ± 0.13	0.84 ± 0.50	1.00 ± 0.08	1.08 ± 0.15	0.88 ± 0.29	1.00 ± 0.11	1.18 ± 0.17
60	0.89 ± 0.13	0.89 ± 0.19	0.75 ± 0.26	1.00 ± 0.10	1.15 ± 0.16	0.78 ± 0.22	0.96 ± 0.11	1.13 ± 0.15
70	0.90 ± 0.14	0.76 ± 0.21	0.69 ± 0.40	0.92 ± 0.10	0.92 ± 0.15	0.88 ± 0.20	0.91 ± 0.11	1.21 ± 0.15
80	0.95 ± 0.17	1.06 ± 0.15	0.80 ± 0.38	0.87 ± 0.11	0.99 ± 0.20	0.60 ± 0.17	0.84 ± 0.11	1.04 ± 0.14
90	0.80 ± 0.19	0.90 ± 0.14	0.76 ± 0.38	0.83 ± 0.12	0.91 ± 0.08	0.65 ± 0.17	0.85 ± 0.12	0.95 ± 0.14