Organogallium- and Organozinc-rich

Palladium and Platinum Clusters

Mariusz Molon^{*a*}, Christian Gemel^{*a*} and Roland A. Fischer^{**a*}

^a Inorganic Chemistry II - Organometallics & Materials, Ruhr-Universität Bochum, D-44780

Bochum (Germany), fax (+49)234 321 4174

	1a	1b	2	3a	3b
empirical formula	$C_{36}H_{63}Ga_3P_2Pd_2\\$	$C_{36}H_{63}Ga_{3}P_{2}Pt_{2} \\$	$C_{39}H_{72}Ga_{3}P_{3}Pd_{3}\\$	$C_{28}H_{69}P_5Pd_2Zn_4\\$	$C_{28}H_{54}P_2PtZn_4\\$
molecular weight	979.76	1156.39	1162.24	1034.96	909.22
temperature (K)	105(2)	105(2)	105(2)	105(2)	105(2)
wavelength Mo-K $_{\alpha}$ (Å)	0.71073	0.71073	0.71073	0.71073	1.54184
crystal size (mm)	0.39 x 0.28 x 0.08	0.22 x 0.11 x 0.05	0.25 x 0.22 x 0.16	0.27 x 0.14 x 0.11	0.11 x 0.10 x 0.05
crystal system, space group	monoclinic,	monoclinic,	monoclinic,	tetragonal, P4(3)	Monoclinic,
	P2(1)/m	P2(1)/m	P2(1)/c		P2(1)/n
a (Å)	18.0920(5)	17.9964(6)	23.3586(3)	12.44770(10)	11.7556(4)
b (Å)	15.1214(4)	15.2155(4)	17.7180(2)	12.44770(10)	18.4752(7)
c (Å)	18.3971(4)	18.3239(4)	23.6868(3)	27.5483(6)	16.4826(6)
α (Å)	90.00	90.00	90.00	90.00	90.00
β (Å)	103.738(2)	103.664(3)	101.709(2)	90.00	91.654(3)
γ (Å)	90.00	90.00	90.00	90.00	90.00
cell volume (Å-3)	4889.0(2)	4875.5(2)	9599.2(2)	4268.48(10)	3578.3(2)
Z	4	4	8	4	4
density $\rho_{calc.}$ (mg m ⁻³)	1.331	1.575	1.608	1.611	1.688
absorption coefficient $\mu(mm^{-1})$	2.438	7.439	2.884	3.240	11.052
F (000)	1976	2229	4656	2096	1800
2θ range for data collection (°)	2.93 - 25.00	3.03 - 25.00	2.85 - 25.00	2.96 - 25.00	3.59 - 70.00
index ranges	-21<=h<=21	-21<=h<=21	-27<=h<=27	-14<=h<=14	-12<=h<=14
	-17<=k<=17	-17<=h<=18	-21<=k<=21	-14<=k<=14	-22<=k<=22
	-21<=l<=21	-21<=l<=21	-28<=l<=28	-32<=l<=32	-20<=l<=20
reflexions collected	44900	36232	135402	47546	12040
unique reflexions	8937	8910	16877	7495	12040
R _{int}	0.0532	0.0883	0.0308	0.0363	0.0204
data/restraints/parameters	8937/48/438	8910/60/433	16877/0/907	7495/1/375	1204070/336
absorption correction	empirical	empirical	empirical	empirical	empirical
	(abspack)	(abspack)	(abspack)	(abspack)	(abspack)
goodness-of-fit on F2 (GOF)	1.052	0.957	1.239	1.021	1.045
final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0466$	$R_1 = 0.0492$	$R_1 = 0.0454$	$R_1 = 0.0440$	$R_1 = 0.0502$
	$wR_2 = 0.1154$	$wR_2 = 0.0990$	$wR_2 = 0.0964$	$wR_2 = 0.1072$	$wR_2 = 0.1317$
R indices (all data) ^a	$R_1 = 0.0716$	$R_1 = 0.0862$	$R_1 = 0.0632$	$R_1 = 0.0500$	$R_1 = 0.0578$
	$wR_2 = 0.1254$	$wR_2 = 0.1114$	$wR_2 = 0.1033$	$wR_2 = 0.1109$	$wR_2 = 0.1398$
largest difference peak and	1.304 and -1.474	1.812 and -2.718	1.246 and -0.718	0.453 and -0.363	3.138 and -1.800
hole (e Å ⁻³)					
	r / / /	w1/2 ([/			

 Table S1. Important crystallographic data of compounds 1a - 3b

 $R_{1} = \sum \left\| F_{obs} \right| - \left| F_{cal} \right\| / \sum \left| F_{obs} \right|^{1/2}; wR_{2} = \left[\sum w \left(F_{obs}^{2} - F_{cal}^{2} \right) / \sum w \left(F_{obs}^{2} \right)^{2} \right]^{1/2}; GOF = \left[\sum \left[w \left(F_{obs}^{2} - F_{cal}^{2} \right)^{2} \right] / \left(N_{obs} - N_{par} \right)^{1/2} \right]^{1/2}$

¹H, ³¹P and ¹³C NMR spectra of **1a**

¹H, ³¹P and ¹³C NMR spectra of **3a**

LIFDI MS (toluene) spectra of 1a

LIFDI MS (toluene) spectra of 1b

LIFDI MS (toluene) spectra of 3b

Further Information on continuous shape measure

Continuous shape measure (CShM) is a mathematical method for the comparison of two different polyhedra. In this method, N vertices of a polyhedron are given by their position vectors Q_i (i = 1, 2, 3 ..., N), as well as N vertices of an second polyhedron with the position vectors P_i (i = 1, 2, 3 ..., N). The smallest distance $S_Q(P)$ of the position vectors between both polyhedrons is expressed with the following equation

$$S_Q(P) = \frac{1}{N} \min \sum_{i=1}^{N} \left| \overrightarrow{Q_i} - \overrightarrow{P_i} \right|^2 \cdot 100$$

The polyhedrons tested were centered in the origin and standardized $(|\vec{v}_i| = |\vec{v}_j|/|\vec{v}_j|)$ first.

Final values of $0 \le S_Q(P) \le 100$ can be obtained, which serve as a quantitative measure for the analogousness of both polyhedra. With $S_Q(P) = 0$ the polyhedron represents exact overlap of both polyhedrons, while increasing values denote increasing distortions. In our approach, we have chosen a computer-aided method for finding the minimum distance, *i.e.* for identifying the best superimposition of both polyhedra: The two polyhedra with the transition metal centre in the origin were superimposed. One of the two polyhedra is then rotated around three independent axes by 360° in steps of 360/n degrees resulting in n³ different superimpositions. For each step a "minimum distance" of the polyhedral vertices is calculated by permutation of all plausible vertex combinations. This procedure results in n³ distance values, the smallest one representing the most ideal superimposition of the two polyhedra. For this superimposition, the shape measure $S_Q(P)$ is calculated as described above. Figure S1a to S3c show the superimpositions of ideal polyhedra and the metal core structures extracted from the molecular structures of **3a** and **3b**.

Figure S1a: Superimposition of a dodecahedron (black) and the metal fragment [Pd₂Zn₄P₅] with Pd1 atom in the center extracted from the molecular structure of **3a** (coloured), concerning Zn atoms at Pd1

Figure S1b: Superimposition of a tetrahedron (black) and the metal fragment [Pd₂Zn₄P₅] with Pd1 atom in the center extracted from the molecular structure of **3a** (coloured), concerning P atoms at Pd1

Figure S1c: Superimposition of a octahedron (black) and the metal fragment $[Pd_2Zn_4P_5]$ with Pd1 atom in the center extracted from the molecular structure of **3a** (coloured), concerning Zn and P atoms at Pd1

Figure S2a: Superimposition of a dodecahedron (black) and the metal fragment $[Pd_2Zn_4P_5]$ with Pd2 atom in the center extracted from the molecular structure of **3a** (coloured), concerning Zn atoms at Pd2

Figure S2b: Superimposition of a dodecahedron (black) and the metal fragment [Pd₂Zn₄P₅] with Pd2 atom in the center extracted from the molecular structure of **3a** (coloured), concerning P atoms at Pd2

Figure S2c: Superimposition of a octahedron (black) and the metal fragment [Pd₂Zn₄P₅] with Pd2 atom in the center extracted from the molecular structure of **3a** (coloured), concerning Zn and P atoms at Pd2

Figure S3a: Superimposition of a dodecahedron (black) and the metal fragment $[PtZn_4P_2]$ extracted from the molecular structure of **3b** (coloured), concerning Zn atoms

Figure S3b: Superimposition of a tetrahedron (black) and the metal fragment $[PtZn_4P_2]$ extracted from the molecular structure of **3b** (coloured), concerning Zn atoms

Figure S3c: Superimposition of a octahedron (black) and the metal fragment [PtZn₄P₂] extracted from the molecular structure of **3b** (coloured), concerning Zn atoms