Supporting Information

Three molybdophosphates based on Strandberg-type anions and Zn(II)-H₂biim/H₂O subunits: syntheses, structures and catalytic properties

Zi-Liang Li, Ying Wang, Lan-Cui Zhang*, Jian-Ping Wang, Wan-Sheng You, Zai-Ming Zhu*

Fig. S1 Comparison of UV-visible spectra for the parent {P₂Mo₅}, ZnSO₄, H₂biim and **1-3** (5×10⁻⁵ mol L⁻¹) at pH = 6-7 aqueous solutions. In the synthetic process of **1-3**, the pH controlling is very important. When the crystal products **1-3** redissolved in aqueous solution (pH = 6-7), the skeleton of {P₂Mo₅} may be transformed to that of {P₄Mo₆} according the UV spectra analysis and the literatures¹⁻³

As shown in Fig. S1, the UV spectra of the parent {P₂Mo₅}, and **1-3** in water (a-d), display the strong bands at 209, 208, 206 and 207 nm should be assigned to the characteristic band of {P₄Mo₆}, respectively.¹⁻³ While a weak shoulder band at about 234 nm (in curve a) is attributed to the characteristic of {P₂Mo₅}. For the UV spectra of **1-3** in water (b-d), compared to that of the parent {P₂Mo₅} in pH = 4 aqueous solution (Fig. 4), the characteristic band in the range of 220-250 nm disappear, which show that these compounds have been converted to {P₄Mo₆}. In addition, in the UV region, a strong band at 282 nm (a) in the range of 250-320 nm corresponds to π - π charge transfer transitions of H₂biim. The UV spectra of **1-3** reveal a broad band at 240-330 nm are 280, 274, and 278 nm, respectively, which are attributed to the absorption behaviors of H₂biim. The observed slight shift as compared to that of the parent {P₂Mo₅} may be due to the introduction of Zn(II). To sum up, the above phenomenon also indicates that {P₂Mo₅} and {P₄Mo₆} can be mutually transformed.

References:

1 J. Y. Niu, J. C. Ma, J. W. Zhao, P. T. Ma, J. P. Wang, Inorg. Chem. Commun., 2011, 14, 474-477.

2 J. P. Wang, J. W. Zhao, P. T. Ma, J. C. Ma, L. P. Yang, Y. Bai, M. X. Li and J. Y. Niu, *Chem. Commun.*, 2009, 2362-2364.

3 K. Yu, B. B. Zhou, Y. Yu, Z. H. Su, H. Y. Wang, C. M. Wang, and C. X. Wang, *Dalton Trans.*, 2012, 41, 10014-10020.

Fig. S2 ORTEP view of the asymmetric unit of the centrosymmetric polyanions **1-3** (a-c) with atom labeling (40% probability displacement ellipsoids; Hydrogen atoms and free water molecules have been omitted for clarity)

Fig. S3 Polyhedral and ball-and-stick view of the 3D supramolecular framework of 1 (The isolated H_2O molecules and hydrogen atoms have been omitted for clarity)

Fig. S4 The packing view of the infinite 3D network for 2 (The isolated H_2O molecules and hydrogen atoms have been omitted for clarity)

Fig. S5 The packing view of polyoxoanions in 3 (The green part: $Zn-\{P_2Mo_5\}$; the yellow part: $\{P_2Mo_5\}$, all the free ligands, hydrogen atoms and H_2O molecules have been omitted for clarity)

Fig. S6 The packing view of 3 (The green part: $Zn-\{P_2Mo_5\}$; the yellow part: $\{P_2Mo_5\}$, free H₂O molecules, and hydrogen atoms have been omitted for clarity)

Fig. S7 IR spectra of crystals 1-3 (a-c)

Fig. S8 The TG-DTA curves of 1-3 (a-c)

Fig. S9 Effect of reaction time on cyclohexanone ethylene ketal yield: cyclohexanone/glycol molar ratio, 1:1.4; catalyst (of Mo)/cyclohexanone molar ratio, 1:300; reaction temperature, 95-100 °C; water-carring agent, cyclohexane (10 mL)

Fig. S10 Effect of the material ratio on cyclohexanone ethylene ketal yield: catalyst (of Mo)/cyclohexanone molar ratio, 1:300; reaction temperature, 95-100 °C; reaction time, 2 h. water-carring agent, cyclohexane (10 mL)

Fig. S11 Effect of the amount of 1/2/3 on cyclohexanone ethylene ketal yield: cyclohexanone/glycol molar ratio, 1:1.4; reaction temperature, 95-100 °C; reaction time, 2 h; water-carring agent, cyclohexane (10 mL).

Fig. S12 Effect of the amount of water-carring agent on cyclohexanone ethylene ketal yield: cyclohexanone/ glycol molar ratio, 1:1.4; catalyst (compound **2**, of Mo)/cyclohexanone molar ratio, 1:300; reaction time, 2 h

Fig. S13 Comparisons of IR spectra of the parent $\{P_2Mo_5\}$, the crystal, and the fresh and the used catalysts 1/2/3 (a/b/c).

Fig. S14 The simulated (a) and experimental powder X-ray diffraction patterns for the fresh (b) and the used (c) catalyst **2**

 Table S1 Selected bond lengths and angles for compound 1

Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)
Mo1-O10	1.707(4)	Mo3-O3	1.956(4)	Zn1–O8	1.932(3)
Mo1014	1.715(4)	Mo3-O15	2.220(4)	Zn1-N5	2.029(5)
Mo1–O5	1.880(4)	Mo3-O16	2.361(4)	Zn1-N2	2.062(5)
Mo1-O3	1.924(4)	Mo4-O22	1.693(5)	Zn1–N1	2.206(5)
Mo1-O16	2.330(4)	Mo4-O20	1.708(4)	Zn1–O1W	2.251(3)
Mo1-O18	2.395(4)	Mo4–O4	1.934(4)	P1-O8	1.514(4)
Mo2-O17	1.714(4)	Mo4-O9	1.947(4)	P1-07	1.528(4)
Mo2-O12	1.722(4)	Mo4–O7	2.243(4)	P1-O18	1.553(4)
Mo2–O4	1.884(4)	Mo4-O23	2.303(4)	P1-O15	1.553(4)
Mo2–O1	1.902(4)	Mo5-O6	1.700(4)	Р2-О2	1.520(4)
Mo2-O15	2.313(4)	Mo5-O21	1.712(4)	P2016	1.544(4)
Mo2–O2	2.360(4)	Mo5-O9	1.895(4)	P2013	1.542(4)
Mo3-O11	1.698(4)	Mo5–O5	1.959(4)	P2-O23	1.546(4)
Mo3-O19	1.720(4)	Mo5-O23	2.203(4)		
Mo3–O1	1.931(4)	Mo5-O18	2.450(4)		
Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
O10-Mo1-O14	104.22(19)	O11-Mo3-O15	157.35(18)	N1–Zn1–O1W	166.07(15)
O3-Mo1-O16	73.49(15)	O22-Mo4-O4	102.6(2)	N5-Zn1-N2	117.06(19)
O16-Mo1-O18	82.80(12)	O9-Mo4-O23	70.46(15)	O8-P1-O7	111.2(2)
O12-Mo2-O4	100.06(19)	O7-Mo4-O23	83.48(13)	O8-P1-O18	107.9(2)
O1-Mo2-O15	69.93(16)	O6-Mo5-O5	96.5(2)	O8-P1-O15	111.2(2)
O15-Mo2-O2	86.86(12)	O6-Mo5-O23	99.12(19)	O2-P2-O13	111.0(2)
O19-Mo3-O1	100.02(19)	O9-Mo5-O18	88.81(15)	O13-P2-O16	108.9(2)
O19-Mo3-O3	95.98(19)	O8–Zn1–N5	121.13(17)	O16-P2-O23	109.9(2)

 Table S2 Selected bond lengths and angles for compound 2

Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)
Mo1-O11	1.699(2)	Mo3-O10	1.949(2)	Zn1–O2W	1.998(4)
Mo1-O12	1.708(2)	Mo3–O7	2.240(2)	Zn1–O1W	2.055(6)
Mo1–O4	1.901(2)	Mo3–O8	2.3944(17)	Zn1-O18	2.126(2)
Mo1-O14	1.923(2)	Mo4-O21	1.703(3)	Zn1-N15	2.221(7)
Mo1–O6	2.3319 (17)	Mo4-O22	1.722(3)	Zn1–N16A	2.008(5)
Mo1–O3	2.461(2)	Mo4-O9	1.9224(19)	P1-O13	1.516(2)
Mo2-O19	1.707(2)	Mo4–O4	1.9255(18)	P1-O7	1.5320(18)
Mo2-O20	1.712(2)	Mo4–O8	2.207(2)	P106	1.538(2)
Mo2-O10	1.873(2)	Mo4-O6	2.370(2)	P1-O1	1.551(2)
Mo2–O2	1.9482(17)	Mo5-O16	1.710(2)	P2018	1.523(3)
Mo2–O1	2.2925(19)	Mo5-O15	1.724(2)	P2-O5	1.531(2)
Mo2–O5	2.349(2)	Mo5–O2	1.8967(19)	P2-O8	1.545(2)
Mo3-O17	1.696(2)	Mo5-O14	1.919(2)	P2-O3	1.549(2)
Mo3-O23	1.707(3)	Mo5–O1	2.2039(17)		
Mo3–O9	1.910(2)	Mo5–O3	2.341(2)		
Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
O11-Mo1-O3	169.97(9)	O17-Mo3-O10	101.62(11)	O1W-Zn1-N16A	126. 4(2)
O12-Mo1-O14	100.80(10)	O21-Mo4-O22	104.08(13)	N15-Zn1-O18	161.97(16)
O4-Mo1-O6	73.20(8)	O9-Mo4-O4	152.13(10)	O13-P1-O1	109.98(13)
O19-Mo2-O20	102.84(12)	O8-Mo4-O6	72.73(8)	O7-P1-O6	109.18(12)
O2-Mo2-O1	70.52(7)	O15-Mo5-O3	165.23(9)	O7-P1-O1	106.22(11)
O10-Mo2-O5	79.47(8)	O14-Mo5-O1	81.96(7)	O8-P2-O3	110.85(12)
O23-Mo3-O7	170.31(9)	O16-Mo5-O2	98.68(10)	O5–P2–O8	106.65(11)
O9-Mo3-O8	68.75(8)	O2W-Zn1-N15	91.5(2)	O18-P2-O3	108.40(11)

Table S3 Selected bond lengths and angles for compound 3

Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)
Mo1–O7	1.696(4)	Mo5-O9	1.914(4)	Mo10-O22	1.700(4)
Mo1-O12	1.714(4)	Mo5-O31	2.202(4)	Mo10-O29	1.705(4)
Mo1–O4	1.915(4)	Mo5-O28	2.338(4)	Mo10-O8	1.897(4)
Mo1–O5	1.945(4)	Mo6-O43	1.705(4)	Mo10-O30	1.918(4)
Mo1–O6	2.216(3)	Mo6-O35	1.715(4)	Mo10-O46	2.318(4)
Mo1-O40	2.384(4)	Mo6-O5	1.878(4)	Mo10-O33	2.474(4)
Mo2–O2	1.696(4)	Mo6-O15	1.950(4)	Zn1–O1W	2.004(5)
Mo2-O23	1.709(4)	Mo6-O31	2.301(3)	Zn1–O2W	2.014(5)
Mo2-O11	1.914(4)	Mo6-O13	2.349(4)	Zn1–N2	2.063(6)
Mo2–O3	1.948(4)	Mo7-O19	1.708(4)	Zn1-O10	2.094(4)
Mo2-O36	2.275(4)	Mo7-O16	1.716(4)	Zn1–N1	2.177(6)
Mo2-O34	2.407(4)	Mo7–O4	1.925(4)	P1-O10	1.517(4)
Mo3-O41	1.704(4)	Mo7-O32	1.926(4)	P1-O13	1.533(4)
Mo3-O17	1.719(4)	Mo7-O40	2.203(4)	P1-O28	1.553(4)
Мо3-О3	1.875(4)	Mo7-O38	2.354(4)	P1-O40	1.554(4)
Mo3-O1	1.953(4)	Mo8-O24	1.690(4)	Р2-О39	1.512(4)
Mo3-O42	2.290(3)	Mo8-O20	1.701(4)	P206	1.538(4)
Mo3-O26	2.335(4)	Mo8-O32	1.906(4)	Р2-О38	1.541(4)
Mo4-O45	1.693(4)	Mo8-O9	1.920(4)	P2-O31	1.554(3)
Mo4-O37	1.723(4)	Mo8-O38	2.345(4)	Р3-О27	1.521(4)
Mo4-O11	1.920(4)	Mo8-O28	2.447(4)	Р3-О26	1.536(4)
Mo4-O8	1.937(4)	Mo9-O14	1.717(4)	P3-O34	1.545(4)
Mo4-O34	2.220(4)	Mo9-O21	1.722(4)	РЗ-ОЗЗ	1.546(4)
Mo4-O46	2.379(4)	Mo9-O1	1.898(4)	P4-O44	1.518(4)
Mo5-O18	1.719(4)	Mo9-O30	1.920 (4)	P4-O36	1.531(4)
Mo5-O25	1.724(4)	Mo9-O42	2.209(4)	P4046	1.539(4)
Mo5-O15	1.896(4)	Mo9-O33	2.335(4)	P4-O42	1.553(4)
Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
O4-Mo1-O5	145.69(16)	O43-Mo6-O5	102.45(18)	O2W-Zn1-O10	92.1(2)
O7-Mo1-O12	102.4(2)	O43-Mo6-O13	173.14(17)	N2-Zn1-N1	78.0(2)
O12-Mo1-O40	85.05(16)	O35-Mo6-O13	82.84(17)	O1W-Zn1-O2W	103.9(2)
O2-Mo2-O23	102.9(2)	O19-Mo7-O16	104.1(2)	O10-P1-O13	111.5(2)
O3-Mo2-O36	77.09(15)	O4-Mo7-O32	152.86(16)	O10-P1-O40	109.3(2)
O23-Mo2-O36	170.52(18)	O4-Mo7-O40	73.09(14)	O28-P1-O40	110.7(2)
O41-Mo3-O3	103.06(19)	O24-Mo8-O20	104.55(19)	O39–P2–O6	110.5(2)
O17-Mo3-O1	98.37(18)	O20-Mo8-O9	101.16(18)	O38-P2-O31	109.8(2)
O17-Mo3-O26	83.93(17)	O24-Mo8-O28	169.53(16)	O6-P2-O38	109.2(2)
O45-Mo4-O11	101.1(2)	O14-Mo9-O21	104.1(2)	O27–P3–O26	109.8(2)
O37-Mo4-O8	100.84(19)	O1-Mo9-O30	152.22(16)	O27-P3-O33	109.0(2)
O37-Mo4-O46	86.01(18)	O21-Mo9-O33	165.53(16)	O34–P3–O33	111.2(2)
O18-Mo5-O25	104.28(19)	O22-Mo10-O8	104.1(2)	O44-P4-O36	111.2(2)
O25-Mo5-O9	94.87(17)	O8-Mo10-O30	143.43 (16)	O44-P4-O42	109.5(2)
O15-Mo5-O31	73.51(14)	O8-Mo10-O33	80.39(15)	O36-P4-O42	106.4(2)

Table S4 Hydrogen bonds for 1					
D–H···A	d(D-H) (Å)	$d(H \cdots A)$ (Å)	$d(D \cdots A)$ (Å)	<(DHA) (°)	
N3-H3A…O2#2	0.86	2.18	2.954(6)	149.1	
N3-H3AO4#2	0.86	2.52	3.185(7)	134.4	
N4-H4AO2#2	0.86	1.99	2.792(6)	153.7	
N6-H6AO14#3	0.86	2.20	2.958(7)	146.9	
N6-H6AO16#3	0.86	2.32	2.974(6)	132.5	
N7–H7AO7	0.86	1.76	2.592(6)	163.3	
N8-H8AO13#3	0.86	2.09	2.820(7)	141.8	
N8-H8AO5#3	0.86	2.28	2.872(6)	126.3	
N9–H9AO2W	0.86	1.80	2.640(6)	165.2	
N10-H10AO18#4	0.86	1.94	2.793(6)	174.2	
N10-H10AO8#4	0.86	2.56	3.053(6)	117.2	
N11-H11AO12	0.86	1.95	2.741(6)	151.3	
N12-H12AO3#4	0.86	1.95	2.749(6)	154.8	
N12-H12AO10#4	0.86	2.64	3.276(7)	131.6	
N13-H13AO13#5	0.86	2.01	2.808(7)	154.0	
N14-H14AO13#5	0.86	1.75	2.566(7)	158.5	

e S4 Hydrogen bonds for 1

Symmetry transformations used to generate equivalent atoms: #1 -x-1,-y-1,z; #2 -x-1/2, y-1/2, z-1/2; #3 x-1/2, -y-1/2, z-1/2; #4 -x-1/2, y+1/2, z+1/2; #5 x-1/2, -y-1/2, z+1/2

Table	S5 H	ydrogen	bonds	for 2
-------	-------------	---------	-------	--------------

D-H···A	d(D-H) (Å)	d(HA) (Å)	d(DA) (Å)	<(DHA) (°)
N1-H1AO5	0.86	2.09	2.886(4)	153.7
N1-H1AO2	0.86	2.31	2.967(3)	133.2
N2-H2AO4W#1	0.86	2.32	2.972(5)	133.1
N3–H3AO5	0.86	1.93	2.756(4)	160.1
N4-H4AO20#3	0.86	1.98	2.745(4)	147.7
N5-H5AO15	0.86	1.92	2.738(3)	159.0
N6-H6AO3W#2	0.86	1.94	2.759(4)	158.2
N7–H7AO15	0.86	2.20	2.993(4)	152.6
N7–H7AO14	0.86	2.31	2.972(4)	133.5
N8-H8AO5W#2	0.86	2.16	2.849(4)	136.6
N9–H9AO5W#4	0.86	1.93	2.693(4)	147.3
N10-H10AO18	0.86	1.76	2.610(3)	168.2
N11-H11AO7#4	0.86	1.74	2.594(3)	173.2
N12-H12AO3	0.86	2.14	3.002(3)	176.5
N13-H13AO13#2	0.86	2.02	2.810(4)	151.5
N14-H14AO13	0.86	1.75	2.574(3)	160.3

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z; #2 -x, -y, -z+1; #3 -x+1, -y, -z; #4 x+1, y+1, z

D-HA	d(D–H) (Å)	d(HA) (Å)	d(DA) (Å)	<(DHA) (°)
N3-H3AO27#3	0.86	1.91	2.755(7)	167.8
N5-H5AO27	0.86	1.72	2.568(7)	168.6
N6-H6AO4W#4	0.86	1.90	2.692(8)	152.2
N7-H7AO33	0.86	2.10	2.956(6)	177.4
N8–H8AO6#4	0.86	1.73	2.588(6)	175.1
N9-H9AO17	0.86	1.95	2.745(6)	153.3
N10-H10AO26#3	0.86	1.88	2.703(6)	160.3
N12-H12AO26#3	0.86	2.05	2.850(6)	154.6
N12-H12AO1#3	0.86	2.36	3.011(6)	133.0
N14-H14AO13	0.86	2.01	2.817(6)	157.0
N15-H15AO11W#5	0.86	2.01	2.766(19)	146.5
N15-H15AO5W#5	0.86	2.48	3.096(8)	128.7
N16-H16AO13	0.86	2.15	2.938(6)	152.3
N16-H16AO15	0.86	2.28	2.940(6)	134.1
N17-H17AO36#5	0.86	1.74	2.598(6)	171.2
N18-H18AO28	0.86	2.21	3.066 (6)	175.7
N18-H18AO18	0.86	2.54	2.958(6)	110.8
N19-H19AO3W	0.86	1.96	2.697(7)	142.3
N19-H19AO36#5	0.86	2.58	3.248(7)	135.5
N20-H20AO10	0.86	1.80	2.644(7)	167.5
N21-H21AO25#6	0.86	2.22	3.012(6)	153.1
N21-H21AO9#6	0.86	2.31	2.964(6)	133.0
N23-H23AO25#6	0.86	1.92	2.738(7)	159.4
N24-H24AO7W#7	0.86	1.93	2.756(7)	159.3
N25-H25AO21	0.86	2.21	2.991(6)	151.7
N25-H25AO30	0.86	2.31	2.978(6)	134.9
N27-H27AO21	0.86	1.91	2.732(7)	159.1
N28-H28AO6W#8	0.86	1.95	2.763(7)	156.3
N29-H29AO39#8	0.86	2.00	2.786(6)	152.3
N30-H30AO39#4	0.86	1.76	2.585(6)	160.1
N31-H31AO44#2	0.86	2.06	2.839(7)	151.2
N32-H32AO44	0.86	1.73	2.560(6)	160.5

Table S6 Hydrogen bonds for 3

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+2, -z; #2 -x, -y+1, -z; #3 -x+1, -y+1, -z+1;

#4 x, y+1, z; #5 x+1, y, z; #6 -x+1, -y, -z+1; #7 x, y, z+1; #8 -x+1, -y+1, -z