Supplementary Materiel for DT-COM-10-2013-053025

Non-symmetric diphosphines based on the imidazole scaffold: Unusual group interchange involving Pd-CH₃ and (imidazole)P-Ph cleavage

Pengfei Ai,^a Andreas A. Danopoulos^{*a,b**} and Pierre Braunstein^{*a*} *

^{*a*} Laboratoire de Chimie de Coordination, Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg Cedex (France). E-mail: <u>danopoulos@unistra.fr</u>, <u>braunstein@unistra.fr</u>

^b Institute for Advanced Study, USIAS, Université de Strasbourg.

Contents

1.	Synthesis and characterisation	2	
1.1	General methods	2	
1.2	1-(di-t-butylphosphino)-2-(diphenylphosphino)-1H-imidazole (L1)	2	
1.3	1-(diphenylphosphino)-2-(di-t-butylphosphino)-1H-imidazole (L2)	2	
1.4	$[PdCl_2L1]$ (1a)	3	
1.5	[PdCl(Me)L1] (1b)	3	
1.6	$[PdCl_2L2]$ (2a)	4	
1.7	$[PdCl(Me)L2]$ (2b) and $[PdCl(Ph) Ph(Me)PNCH=CHNCP(t-Bu)_2]$ (2c)	4	
2.	X-ray crystallography	5	
Ref	References		

1. Synthesis and characterisation

1.1 General methods

All manipulations involving organometallics were performed under nitrogen or argon in a Braun glove-box or using standard Schlenk techniques. Solvents were dried using standard methods and distilled under nitrogen prior use or passed through columns of activated alumina and subsequently purged with nitrogen or argon. 1-(di-*t*-butylphosphino)imidazole was made as we previously reported.¹ The starting materials di-*t*-butyl-(imidazole-2-yl)phosphine² and [PdCl(Me)(1,5-cod)]³ were prepared according to the literature.

1.2 1-(di-t-butylphosphino)-2-(diphenylphosphino)-1H-imidazole (L1)

over 1 min. The reaction mixture was stirred for 30 min until the temperature increased to -20 °C, then the yellow solution was cooled again to -50 °C and chlorodiphenylphosphine (1.103 g, 5.00 mmol) was added dropwise over 1 min. The reaction mixture was allowed to warm to room temperature and stirred overnight. Evaporation of the volatiles under reduced pressure, extraction of the residue with pentane (3×20 ml), evaporation of the extracts to dryness under reduced pressure and washing of the remaining solid with pentane (3 ml) at -50 °C gave L1 as a colourless powder (1.754 g, 88%). X-ray quality crystals were obtained by slow cooling (-20 °C) of dilute pentane solutions for two days. Analysis: Found (Calc. for C₂₃H₃₀N₂P₂) (%): C, 69.42 (69.68), H, 7.52 (7.63), N, 6.90 (7.07). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.45 (dd, 1H, ³J_{HP} = 2.1 Hz, ³J_{HH} = 1.3 Hz, im-H5), 7.43-7.38 (4H, Ar-H), 7.32-7.29 (6H, Ar-H), 7.26 (t, 1H, ³J_{HH} = ⁴J_{HP} = 1.3 Hz, im-H4), 1.11 (d, 18H, ³J_{HP} = 12.6 Hz, C(CH₃)₃). ¹³C {¹H} NMR (125 MHz, CD₂Cl₂): δ 155.7 (d, ¹J_{CP} = 22.8 Hz, NCN), 137.0 (dd, ²J_{CP} = 8.2 Hz, ³J_{CP} = 5.3 Hz, im-C5), 134.5 (d, ¹J_{CP} = 21.0 Hz, *ipso*-C PPh₂), 132.2, 129.0, 128.5 (d, ²J_{CP} = 7.3 Hz, *o*-PPh₂), 125.4 (d, ³J_{CP} = 7.4 Hz, im-C4), 35.6 (dd, ¹J_{CP} = 28.7 Hz, ⁴J_{CP} = 2.1 Hz, C(CH₃)₃), 29.1 (d, ²J_{CP} = 16.2 Hz, C(CH₃)₃). ³¹P {¹H} NMR (161 MHz, CD₂Cl₂): δ 80.0 (d, ³J_{PP} = 115.4 Hz, P(*t*-Bu)₂), -28.2 (d, ³J_{PP} = 115.4 Hz, PPh₂).

1.3 1-(diphenylphosphino)-2-(di-t-butylphosphino)-1H-imidazole (L2)

 $\begin{array}{c|c} \begin{tabular}{c} \beg$

allowed to warm to room temperature and stirred overnight. Evaporation of the volatiles under reduced pressure, extraction of the residue into pentane (3×15 ml), evaporation of the extracts to dryness and washing of the remaining solid with pentane (5 ml) at -40 °C gave L2 as a colourless powder (0.480 g, 47%). X-ray quality crystals were obtained by slow cooling (-40 °C) of dilute pentane solutions for two days in the glovebox. This compound is very air-sensitive. Analysis: Found (Calc. for $C_{23}H_{30}N_2P_2$) (%): C, 69.47 (69.68); H, 7.74 (7.63); N, 6.89 (7.07). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.42- 7.36 (6H, Ar-*H*), 7.27-7.23 (5H, im-*H*4 and Ar-*H*), 6.74 (dd, 1H, ³*J*_{HP} = 2.9 Hz, ³*J*_{HH} = 1.2 Hz, im-*H*5), 1.19 (d, 18H, ³*J*_{HP} = 12.3 Hz, C(CH₃)₃). ¹³C {¹H} NMR (75 MHz, C₆D₆): δ 154.5 (t, ¹*J*_{CP} = ²*J*_{CP} = 18.7 Hz, NCN), 137.7 (dd, ²*J*_{CP} = 18.8 Hz, ³*J*_{CP} = 3.6 Hz, im-*C*5), 133.0 (d, ¹*J*_{CP} = 22.3 Hz, *ipso*-C PPh₂), 132.8, 130.3, 129.3 (d, ²*J*_{CP} = 6.3 Hz, *o*-PPh₂), 124.0 (d, ³*J*_{CP} = 7.0 Hz, im-*C*4), 34.5 (dd, ¹*J*_{CP} = 18.8 Hz, ⁴*J*_{CP} = 3.2 Hz, *C*(CH₃)₃), 30.9 (d, ²*J*_{CP} = 14.6 Hz, C(CH₃)₃). ³¹P {¹H} NMR (161 MHz, CD₂Cl₂): δ 36.4 (d, ³*J*_{PP} = 112 Hz, PPh₂), 4.4 (d, ³*J*_{PP} = 112 Hz, P(*t*-Bu)₂).

1.4 [PdCl₂L1] (1a)

To a suspension of [PdCl₂(cod)] (0.051 g, 0.18 mmol) in THF (8 ml) was added a solution (t-Bu)₂P₁ + PPh₂ Cl + PPh₂ Ta To a suspension of [PdCl₂(cod)] (0.051 g, 0.18 mmol) in THF (8 ml) was added a solution of L1 (0.076 g, 0.19 mmol) in THF (8 ml) at -78 °C. The reaction mixture was allowed to warm slowly to room temperature and stirred for 2 h. After evaporation of the solvent under reduced pressure, the residue was washed with Et₂O (4 ml) and dried under vacuum to give 1a as a pale yellow powder (0.090 g, 85%). Analysis: Found (Calc. for C₂₃H₃₀Cl₂N₂P₂Pd) (%): C, 47.78 (48.15); H, 5.27 (5.27); N, 4.98 (4.88). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.93-7.88 (4H, Ar-*H*), 7.71 (s, 1H, im-*H*5), 7.58-7.55 (3H, im-*H*4 and Ar-*H*), 7.48-7.43 (4H, Ar-*H*), 1.55 (d, 18H, ³J_{HP} = 16.9 Hz, C(CH₃)₃). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂): δ 152.7 (dd, ¹J_{CP} = 87.8 Hz, ²J_{CP} = 26.2 Hz, NCN), 141.5 (dd, ²J_{CP} = 9.5 Hz, ³J_{CP} = 3.2 Hz, im-C5), 134.6 (d, J_{CP} = 11.5 Hz), 132.5 (d, J_{CP} = 2.4 Hz), 128.8 (d, J_{CP} = 12.7 Hz), 127.5 (d, ¹J_{CP} = 68.1 Hz, *ipso*-C Ph₂P), 126.1 (dd, ³J_{CP} = 6.2 Hz, ³J_{CP} = 2.4 Hz, im-C4), 42.3 (d, ¹J_{CP} = 12 Hz, C(CH₃)₃), 29.5 (d, ²J_{CP} = 4.6 Hz, C(CH₃)₃). ³¹P{¹H} NMR (161 MHz, CD₂Cl₂): δ 136.5 (d, ³⁺²J_{PP} = 13.8 Hz, P(*t*-Bu)₂), 24.8 (d, ³⁺²J_{PP} = 13.8 Hz, PPh₂).

1.5 [PdCl(Me)L1] (1b)

1b

 $\begin{array}{cccc} (t-Bu)_2 P & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

S-3

under reduced pressure, the residue was washed with Et_2O (3 ml) and dried under vacuum to give 1b as a white powder (0.241 g, 87%). X-ray quality crystals were obtained by slow diffusion of ether into a dichloromethane solution of **1b**. Analysis: Found (Calc. for C₂₄H₃₃ClN₂P₂Pd) (%): C, 52.44 (52.09); H, 6.08 (6.01); N, 5.06 (5.06). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.73-7.68 (4H, Ar-*H*), 7.57 (d, 1H, ³J_{HP} = 1.2 Hz, im-*H*5), 7.53-7.49 (3H, im-*H*4) and Ar-H), 7.46-7.41 (4H, Ar-H), 1.44 (d, 18H, ${}^{3}J_{HP} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, ${}^{3}J_{HPtrans} = 7.5$ Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, ${}^{3}J_{HPtrans} = 7.5$ Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, ${}^{3}J_{HPtrans} = 7.5$ Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, ${}^{3}J_{HPtrans} = 7.5$ Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, ${}^{3}J_{HPtrans} = 7.5$ Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, ${}^{3}J_{HPtrans} = 7.5$ Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, ${}^{3}J_{HPtrans} = 7.5$ Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, ${}^{3}J_{HPtrans} = 7.5$ Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, ${}^{3}J_{HPtrans} = 7.5$ Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, {}^{3}J_{HPtrans} = 7.5 Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, {}^{3}J_{HPtrans} = 7.5 Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, {}^{3}J_{HPtrans} = 7.5 Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, {}^{3}J_{HPtrans} = 7.5 Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, {}^{3}J_{HPtrans} = 7.5 Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, {}^{3}J_{HPtrans} = 7.5 Hz, ${}^{3}J_{HPcis} = 15.1$ Hz, C(CH₃)₃), 0.84 (dd, 3H, {}^{3}J_{HPtrans} = 7.5 Hz, ${}^{3}J_{HPtrans} = 7.5$ Hz, ${}^{3}J_{HPtran$ 3.3 Hz, PdCH₃). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂): δ 155.7 (dd, ¹J_{CP} = 82.1 Hz, ²J_{CP} = 35.1 Hz, NCN), 139.3 (dd, ${}^{2}J_{CP} = 9.1$ Hz, ${}^{3+4}J_{CP} = 2$ Hz, im-C5), 134.3 (d, $J_{CP} = 12.4$ Hz), 131.8 (d, $J_{CP} = 2.2$ Hz), 129.5 (d, ${}^{1}J_{CP} = 61.7$ Hz, *ipso*-C Ph₂P), 129.0 (d, $J_{CP} = 12$ Hz), 125.6 (t, ${}^{3}J_{CP} = {}^{3}J_{CP'} = 4.8$ Hz, im-C4), 39.4 (C(CH₃)₃), 29.3 (d, ${}^{2}J_{CP} = 7.4$ Hz, C(CH₃)₃), 11.7 (d, ${}^{2}J_{CPtrans} = 97.8$ Hz, PdCH₃). ${}^{31}P{}^{1}H$ NMR (161 MHz, CD₂Cl₂): δ 114.9 (d, ${}^{2+3}J_{PP} = 37.2$ Hz, $P(t-Bu)_2$, 27.4 (d, ${}^{2+3}J_{PP} = 37.2$ Hz, PPh_2).

1.6 $[PdCl_2L2]$ (2a)

 $\begin{array}{c} Ph_2P - N \not in \\ Pd - P(t-Bu)_2 \end{array} \quad \text{of } L2 \ (0.076 \text{ g}, \ 0.19 \text{ mmol}) \text{ in THF } (8 \text{ ml}) \text{ at } -78 \text{ }^{\circ}\text{C}. \text{ The reaction mixture was allowed to} \\ \text{warm slowly to room temperature and stirred for 2 h. Evaporation of the volatiles under} \end{array}$ To a suspension of [PdCl₂(cod)] (0.051 g, 0.18 mmol) in THF (8 ml) was added a solution reduced pressure, extraction of the residue with CH₂Cl₂ (10 ml), evaporation of the

extracts to dryness and washing of the remaining solid with Et₂O (4 ml) gave 2a as a pale vellow powder (0.085 g, 80%). X-ray quality crystals were obtained by slow diffusion of ether into dichloromethane solution of 2a. Analysis: Found (Calc. for C₂₃H₃₀Cl₂N₂P₂Pd) (%): C, 47.75 (48.15); H, 5.28 (5.27); N, 4.64 (4.88). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.80-7.74 (4H, Ar-H), 7.68-7.64 (3H, im-H4 and Ar-H), 7.56-7.51 (4H, Ar-H), 7.10 (d, 1H, ³J_{HP} = 1.4 Hz, im-H5), 1.59 (d, 18H, ${}^{3}J_{HP}$ = 16.6 Hz, C(CH₃)₃). ${}^{13}C{}^{1}H$ NMR (125 MHz, CD₂Cl₂): δ 149.8 (dd, ${}^{1}J_{CP}$ = 64.3 Hz, ${}^{2}J_{CP} = 32.6$ Hz, NCN), 141.4 (dd, ${}^{2}J_{CP} = 7.3$ Hz, ${}^{3+4}J_{CP} = 5.1$ Hz, im-C5), 133.9 (d, $J_{CP} = 12.5$ Hz), 133.6 $(d, J_{CP} = 2.3 \text{ Hz}), 129.2 (d, J_{CP} = 12.6 \text{ Hz}), 128.3 (d, {}^{1}J_{CP} = 65.1 \text{ Hz}, ipso-C Ph_{2}P), 122.7 (d, {}^{3}J_{CP} = 4.3 \text{ Hz}, im-C4),$ 40.6 (d, ${}^{1}J_{CP} = 18.6$ Hz, $C(CH_3)_3$), 29.9 (d, ${}^{2}J_{CP} = 3.3$ Hz, $C(CH_3)_3$). ${}^{31}P{}^{1}H{}$ NMR (161 MHz, CD_2Cl_2): δ 76.2 (d, $^{2+3}J_{PP} = 19.4$ Hz, PPh₂), 73.4 (d, $^{2+3}J_{PP} = 19.4$ Hz, P(t-Bu)₂).

[PdCl(Me)L2] (2b) and [PdCl(Ph) Ph(Me)PNCH=CHNCP(t-Bu)₂] (2c) 1.7

To a solution of [PdCl(Me)(cod)] (0.098 g, 0.37 mmol) in THF (8 ml) was added a solution of L2 (0.150 g, 0.38 mmol) in THF (8 ml) at -78 °C. The reaction mixture was allowed to warm slowly to room temperature and was stirred for 2 h. The reaction mixture was concentrated to 2 ml under reduced pressure, and Et₂O was added (10 ml). After

supernatant was removed, the solid was dried under vacuum to give **2b** as a white powder (0.164 g, 80%). X-ray quality crystals were obtained by slow diffusion of Et₂O into THF solution of **2b** at -38 °C. Analysis: Found (Calc. for C₂₄H₃₃ClN₂P₂Pd) (%): C, 51.54 (52.09), H, 5.83 (6.01), N, 5.39 (5.06). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.62-7.57 (6H, Ar-*H*), 7.53-7.48 (5H, im-*H*4 and Ar-*H*), 7.08 (d, 1H, ³*J*_{HP} = 1.3 Hz, im-*H*5), 1.45 (d, 18H, ³*J*_{HP} = 14.8 Hz, C(CH₃)₃), 0.7 (dd, 3H, ³*J*_{HPtrans} = 7.0 Hz, ³*J*_{HPcis} = 4.6 Hz, PdCH₃). ¹³C {¹H} NMR (125 MHz, CD₂Cl₂): δ 152.2 (dd, ¹*J*_{CP} = 46.1 Hz, ²*J*_{CP} = 26.9 Hz, NCN), 139.4 (t, ²*J*_{CP} = ³⁺⁴*J*_{CP} = 5.5 Hz, im-C5), 133.5 (d, *J*_{CP} = 13.7 Hz), 132.9 (d, *J*_{CP} = 2.0 Hz), 130.3 (d, ¹*J*_{CP} = 58 Hz, *ipso*-C, PPh₂), 129.5 (d, *J*_{CP} = 11.9 Hz), 122.5 (d, *J*_{CP} = 5.1 Hz, im-C4), 37.6 (d, ¹*J*_{CP} = 9.7 Hz, C(CH₃)₃), 30.0 (d, ²*J*_{CP} = 5.8 Hz, C(CH₃)₃), 12.3 (d, ²*J*_{CPtrans} = 90.6 Hz, PdCH₃). ³¹P {¹H} NMR (161 MHz, CD₂Cl₂): δ 85.9 (d, ²⁺³*J*_{PP} = 35.4 Hz, PPh₂), 41.4 (d, ²⁺³*J*_{PP} = 35.4 Hz, P(*t*-Bu)₂).

2. X-ray crystallography

Summary of the crystal data, data collection and refinement for structures of L1, L2, 1b, 2a, 2b and 2c are given in Table S1. For L1, L2, 2a and 2b, X-ray diffraction data collection was carried out on a Bruker APEX II DUO Kappa-CCD diffractometer equipped with an Oxford Cryosystem liquid N₂ device, using Mo-K α radiation ($\lambda = 0.71073$ Å). The crystal-detector distance was 38 mm. The cell parameters were determined (APEX2 software)⁴ from reflections taken from three sets of 12 frames, each at 10s exposure. The structure was solved by Direct methods using the program SHELXS-97.⁵ The refinement and all further calculations were carried out using SHELXL-97.⁶ The H-atoms were included in calculated positions and

treated as riding atoms using SHELXL default parameters. The non-H atoms were refined anisotropically, using weighted full-matrix least-squares on F^2 . A semi-empirical absorption correction was applied using SADABS in APEX2.⁴

For **1b** and **2c**, X-ray diffraction data collection was carried out on a Nonius Kappa-CCD diffractometer equipped with an Oxford Cryosystem liquid N₂ device, using Mo-K α radiation ($\lambda = 0.71073$ Å). The crystal-detector distance was 36 mm. The cell parameters were determined (Denzo software)⁷ from reflections taken from one set of 10 frames (1.0° steps in phi angle), each at 20s exposure. The structures were solved by Direct methods using the program SHELXS-97.⁵ The refinement and all further calculations were carried out using SHELXL-97.⁶ The H-atoms were included in calculated positions and treated as riding atoms using SHELXL default parameters. The non-H atoms were refined anisotropically, using weighted full-matrix least-squares on F^2 . A semi-empirical absorption correction was applied using MULscanABS in PLATON.⁸ In **2c**, a squeeze was made. The residual electron density was assigned to half a molecule of pentane.

Table S1. Crystal data for compounds L1, L2, 1b, 2b and 2c.

	L1	L2	1b	2a	2b	2c
Chemical formula	$C_{23}H_{30}N_2P_2$	$C_{23}H_{30}N_2P_2$	$C_{24} H_{33}Cl N_2$ P ₂ Pd	$\begin{array}{c} C_{23} H_{30} Cl_2 N_2 \\ P_2 Pd \end{array}$	C ₂₄ H ₃₃ Cl N ₂ P ₂ Pd	$C_{24} H_{33}Cl N_2 P_2$ Pd
CCDC Number	968367	968368	968369	968370	968371	968372
Formula Mass	396.43	396.43	553.31	573.73	553.31	553.31
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic	Monoclinic	Trigonal
a/Å	17.4036(7)	12.1693(18)	8.0415(2)	9.7407(3)	8.7612(5)	25.9649(6)
b/Å c/Å	9.2806(3) 16.0476(6)	21.844(3) 8.3719(11)	14.3830(4) 21.4302(5)	14.4492(4) 17.6018(5)	36.145(2) 9.6899(4)	25.9649(6) 20.5993(7)
α/°	90	90	90	90	90	90
$eta/^{\circ}$	121.1790(10)	90	96.664(2)	90	123.139(4)	90
γ/°	90	90	90	90	90	120
Unit cell volume/Å ³	2217.55(14)	2225.5(5)	2461.89(11)	2477.37(12)	2569.4(2)	12027.0(6)
Temperature/K	173(2)	173(2)	173(2)	173(2)	173(2)	173(2)
Space group	Сс	P n a 21	P 21/c	P 21 21 21	P 21/c	R -3
Formula units / cell, Z	4	4	4	4	4	18
Absorption coefficient, μ/mm^{-1}	0.206	0.205	1.006	1.107	0.964	0.927
No. of reflections measured	14989	16073	15023	24097	29287	24630
No. of independent reflections	7200	4118	5627	7875	7465	6126
R _{int}	0.0213	0.0784	0.0486	0.0221	0.0697	0.0796
Final R_l values $(l > 2\sigma(l))$	0.0338	0.0444	0.0314	0.0190	0.0671	0.0477
Final $wR(F^2)$ values ($I > 2\sigma(I)$)	0.0762	0.0863	0.0783	0.0412	0.1005	0.1248
Final R_I values (all data)	0.0425	0.0747	0.0401	0.0222	0.1024	0.0872
Final $wR(F^2)$ values (all data)	0.0805	0.0953	0.0849	0.0423	0.1078	0.1401
Goodness of fit on F^2	1.058	1.017	1.086	1.053	1.185	1.053

References

- 1. P. Ai, A. Danopoulos, P. Braunstein and K. Monakhov, *Chem. Commun.*, 2013, DOI: 10.1039/C3CC47370H.
- 2. D. B. Grotjahn, Y. Gong, A. G. DiPasquale, L. N. Zakharov and A. L. Rheingold, *Organometallics*, 2006, **25**, 5693.
- 3. R. E. Rulke, J. M. Ernsting, A. L. Spek, C. J. Elsevier, P. W. N. M. van Leeuwen and K. Vrieze, *Inorg. Chem.*, 1993, **32**, 5769.
- 4. Bruker AXS Inc Madison USA, 2006.
- 5. G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 1990, A46, 467.
- 6. G. M. Sheldrick, Universität Göttingen: Göttingen Germany, 1999.
- 7. Nonius B. V., Ed. ; Delft: The Netherlands, 1997.
- 8. Spek, A.L., J. Appl. Cryst. 2003, 36, 7-13.