Electronic Supplementary Information

Carbene Complexes of Phosphorus(V) Fluorides substituted with Perfluoroalkyl-groups Synthesized by Oxidative Addition. Cleavage of the Complexes by HF reveals a new Synthetic Protocol for Ionic Liquids.

Tobias Böttcher,* Simon Steinhauer, Nadine Allefeld, Berthold Hoge,* Beate Neumann, Hans-Georg Stammler, Bassem S. Bassil, Martin Winter, Norbert W. Mitzel, and Gerd-Volker Röschenthaler*

Contents

1.	Experimental Section	. 2
	1	
2.	Crystallographic Section	.6
3.	References	10

1. Experimental Section

1.1. General Methods and Materials

All reactions were carried out under an atmosphere of dry nitrogen using standard Schlenk line techniques unless mentioned otherwise. Solvents were dried using a Braun MB-SPS 800 system. All other chemicals were purchased from available commercial sources and were used as received.

NMR spectroscopy

NMR spectra were recorded with a Bruker Model Avance III 300 spectrometer. Operating frequency: ³¹P 111.92 MHz, ¹⁹F 282.40 MHz, ¹³C 75.47 MHz, ¹H 300.13 MHz with positive shifts being downfield from the external standards (85% orthophosphoric acid (³¹P), CCl₃F (¹⁹F) and TMS (¹H, ¹³C)).

MS spectrometry

ESI mass spectra were recorded using an Bruker Esquire 3000 ion trap mass spectrometer equipped with a standard ESI/APCI source. Samples were introduced by direct infusion with a syringe pump. Nitrogen served both as nebulizer gas and dry gas.

IR spectrometry

IR spectra were recorded on a Bruker ALPHA FT-IR, equipped with a diamond ATR unit.

Computational Details

All electronic structure calculations were carried out using the Gaussian09 program package using the hybrid B3LYP functional in conjunction with the 6-311G(2d,p) basis set.¹ For all structures a full geometrical optimization and calculation of harmonic vibrational frequencies was performed.

Synthesis of the starting materials

Compounds **1a**, **1b**, **2a**, and the halo-perfluoroalkylphosphines were prepared according to procedures reported elsewhere.²⁻⁴

1.2. Synthesis of the carbone complexes of phosphorus(V)

Compound 5a

A solution of Br₂PCF₃ (0.56 g, 2.17 mmol) in diethyl ether (10 ml) was placed into a 25 ml Schlenk flask. At -78 °C **1a** (0.88 g, 6.47 mmol) was slowly added using a syringe. During a period of 12 h, the reaction mixture was allowed to reach room temperature. All volatile components were removed under reduced pressure. The solid residue was washed with small amounts of cold water. Drying *in vacuo* gave **5a** (0.40 g). Yield: 0.40 g (67% based on Br₂PCF₃). M_r = 274.12. Pale yellow solid. ¹H NMR (CD₃CN) δ = 3.2 (s, 6H, -CH₃), 3.8 (d, 4H, ⁴J_{PH} = 1 Hz, -CH₂-). ¹³C NMR (CD₃CN) δ = 36.0 (quint, -CH₃, ⁴J_{CF} = 4 Hz, -CH₃), 51.4 (d, -CH₂-, ³J_{CP} = 11 Hz), 173.3 (d,quint, carbene-C, ¹J_{CP} = 305 Hz, ²J_{CF} = 57 Hz). ¹³C{¹⁹F} NMR (CD₃CN) δ = 126.2 (d, -CF₃, ¹J_{CP} = 415 Hz). ¹⁹F NMR (CD₃CN) δ = -70.5 (d,quint, 3F, -CF₃, ²J_{PF} = 150 Hz, ³J_{FF} = 14 Hz), -62.5 (d,quart, 4F, P-F, ¹J_{PF} = 877 Hz, ³J_{FF} = 14 Hz). ³¹P NMR (CD₃CN) δ = -152.7 (quint,quart, ¹J_{PF} = 876 Hz, ²J_{PF} = 149 Hz). ESI MS positive range *m*/*z* (%): 570 (n.a.), 297 (100) [M+Na⁺].

Compound 5b

Compound **5b** was synthesized following the procedure for **5a**. Quantities used: Br₂PCF₃ (0.54 g, 2.10 mmol), **1b** (0.83 g, 6.00 mmol). Yield: 0.34 g (59% based on Br₂PCF₃). M_r = 276.14. Colorless solid. ¹H NMR (CD₃CN) δ = 3.2 (s, 12H, -CH₃). ¹³C{¹H} NMR (CD₃CN) δ = 44.6 (m, -CH₃). ¹³C{¹⁹F} NMR (CD₃CN) δ = 126.2 (d, ¹*J*_{CP} = 416 Hz). ¹⁹F NMR (CD₃CN) δ = -70.2 (d,quint, 3F, -CF₃, ²*J*_{FP} = 148 Hz, ³*J*_{FF} = 14 Hz), -62.1 (d,quart, 4F, P-F, ¹*J*_{PF} = 916 Hz, ³*J*_{FF} = 14 Hz). ³¹P NMR (CD₃CN) δ = -149.7 (quint,quart, ¹*J*_{PF} =916 Hz, ²*J*_{PF} = 149 Hz). ESI MS positive range *m*/*z* (%): 437.2 (n.a.), 299 (100) [M+Na]⁺, 119.0 (64) [FPCF₃]⁺.

Compound 6a

Compound **6a** was synthesized following the procedure for **5a**. Quantities used: $F_2PC_2F_5$ (0.72 g, 3.82 mmol), **1a** (0.52 g, 3.82 mmol). Yield: 1.22 g (99% based on $F_2PC_2F_5$). $M_r = 324.13$. Colorless solid. ¹H NMR (CD₃CN) $\delta = 3.2$ (m, 6H, -CH₃), 3.8 (m, 4H, -CH₂-). ¹³C{¹H} NMR (CD₃CN) $\delta = 36.0$ (m, -CH₃), 51.4 (d, -CH₂-, ³ $J_{CP} = 11$ Hz). ¹³C{¹⁹F} NMR (CD₃CN) $\delta = 120.3$ (d, -CF₃, ² $J_{CP} = 30$ Hz). ¹⁹F NMR (CD₃CN) $\delta = -120.5$ (d,quint,quart, 2F, -CF₂-, ² $J_{PF} = 104$ Hz, ³ $J_{FF} = 9$ Hz, ³ $J_{FF} = 1$ Hz), -83.6 (quint,m, 3F, -CF₃, ⁴ $J_{FF} = -104$ Hz, ³ $J_{FF} = -104$

7 Hz), -60.1 (d, pseudo-sext, 4F, P-F, ${}^{1}J_{PF} = 886$ Hz, ${}^{3,4}J_{FF} = 8$ Hz). 31 P NMR (CD₃CN) $\delta = -151.3$ (quint,t,m, ${}^{1}J_{PF} = 886$ Hz, ${}^{2}J_{PF} = 102$ Hz).

Compound 6b

Compound **6b** was synthesized following the procedure for **5a**. Quantities used: $F_2PC_2F_5$ (0.15 g, 0.78 mmol), **1b** (0.11 g, 0.78 mmol). Yield: 0.18 g (71% based on $F_2PC_2F_5$). $M_r = 326.14$. Colorless solid. ¹H NMR (CD₃CN) $\delta = 3.2$ (m, 12H, -CH₃). ¹³C{¹H} NMR (CD₃CN) $\delta = 44.6$ (pseudo-sext, -CH₃, ${}^{4}J_{CF}, {}^{3}J_{CP} = 4$ Hz), 182.1 (d,quint, carbene-C, ${}^{1}J_{CP} = 321$ Hz, ${}^{2}J_{CF} = 56$ Hz). ¹³C{¹⁹F} NMR (CD₃CN) $\delta = 116.4$ (d, -CF₂-, ${}^{1}J_{CP} = 321$ Hz), 120.3 (d, -CF₃, ${}^{2}J_{CP} = 30$ Hz). ¹⁹F NMR (CD₃CN) $\delta = -120.2$ (d,quint, 2F, -CF₂-, ${}^{2}J_{PF} = 101$ Hz, ${}^{3}J_{FF} = 9$ Hz), -83.5 (quint,m, 3F, -CF₃, ${}^{4}J_{FF} = 7$ Hz), -59.7 (d,t,quart, 4F, P-F, ${}^{1}J_{FP} = 925$ Hz, ${}^{3}J_{FF} = 9$ Hz, ${}^{4}J_{FF} = 7$ Hz). ³¹P NMR (CD₃CN) $\delta = -148.1$ (quint,t,m, ${}^{1}J_{PF} = 926$ Hz, ${}^{2}J_{PF} = 102$ Hz).

Compound 7a

Compound **7a** was synthesized following the procedure for **5a**. Quantities used: $ClP(C_2F_5)_2$ (0.57 g, 1.88 mmol), **1a** (0.51 g, 3.75 mmol). Yield: 0.76 g (95% based on $ClP(C_2F_5)_2$). $M_r = 424.14$. Pale yellow solid. ¹H NMR (CD₃CN) $\delta = 3.3$ (t, 6H, ⁵ $J_{HF} = 3$ Hz), 3.8 (s, 4H, -CH₂-). ¹³C{¹H} NMR (CD₃CN) $\delta = 37.3$ (t, -CH₃, ⁴ $J_{CH} = 11$ Hz), 52.5 (d, ³ $J_{CP} = 9$ Hz). ¹³C{¹⁹F} NMR (CD₃CN) $\delta = 120.0$ (d, -CF₃, ² $J_{CP} = 25$ Hz), 120.2 (d, -CF₃, ² $J_{CP} = 25$ Hz). ¹⁹F NMR (CD₃CN) $\delta = -118.2$ (d,m, 2F, -CF₂-, ² $J_{PF} = 99$ Hz), -117.5 (d,m, 2F, -CF₂-, ² $J_{PF} = 92$ Hz), -83.1 (pseudo-d, 3F, -CF₃, J = 17 Hz), -81.6 (pseudo-quint, 3F, -CF₃, J = 10 Hz), -72.2 (d,d,m, 2F, P-F^a, ¹ $J_{FP} = 903$ Hz, ² $J_{FF} = 35$ Hz), -33.1 (d,m, 1F, P-F^b, ¹ $J_{PF} = 852$ Hz). ³¹P NMR (CD₃CN) $\delta = -151.3$ (t,d,t,t, ¹ $J_{PF}^{b} = 903$ Hz, ¹ $J_{PF}^{a} = 853$ Hz, ² $J_{PF} = 99$ Hz, ² $J_{PF} = 92$ Hz).

Compound 7b

Compound **7b** was synthesized following the procedure for **5a**. Quantities used: BrP(C₂F₅)₂ (0.33 g, 0.96 mmol), **1b** (0.27 g, 1.69 mmol). Yield: 0.40 g (98% based on BrP(C₂F₅)₂). M_r = 426.16. Pale yellow solid. ¹H NMR (CD₃CN) $\delta = 3.2$ (t, 12H, -CH₃, ⁵*J*_{FH} = 3 Hz). ¹³C{¹H} NMR (CD₃CN) $\delta = 45.0$ (t, -CH₃, ⁴*J*_{CF} = 5 Hz), 185.3 (d,m, carbene-C, ¹*J*_{CP} =255 Hz). ¹³C{¹⁹F} NMR (CD₃CN) $\delta = 120.0$ (d, -CF₃, ²*J*_{CP} = 15 Hz), 120.3 (d, -CF₃, ²*J*_{CP} = 18 Hz). ¹⁹F NMR (CD₃CN) $\delta = -117.9$ (d,m, 2F, -CF₂-, ²*J*_{PF} = 99 Hz), -115.8 (d,m, 2F, -CF₂-, ²*J*_{PF} = 90 Hz), -82.8 Hz (pseudo-d, 3F, -CF₃, *J* = 17 Hz), -81.4 (pseudo-quint, 3F, -CF₃, *J* =

11 Hz), -72.9 (d,d,m, 2F, P-F^a, ${}^{1}J_{PF} = 934$ Hz, ${}^{2}J_{FF} = 40$ Hz), -34.4 (d,m, 1F, P-F^b, ${}^{1}J_{PF} = 890$ Hz). 31 P NMR (CD₃CN) $\delta = -146.8$ (t,d,t,t, ${}^{1}J_{PF}{}^{b} = 934$ Hz, ${}^{1}J_{PF}{}^{a} = 890$ Hz, ${}^{2}J_{PF} = 99$ Hz, ${}^{2}J_{PF} = 90$ Hz).

1.3. Cleavage of the carbene-phosphorus(V) adducts with aHF

Synthesis of compound 8a

To a solution of **3a** (0.30 g, 1.34 mmol) in dichloromethane (4 ml) an excess of aHF (0.2 g, 10.00 mmol) was condensed at -196 °C. After stirring for 12 h all volatile components were removed under reduced pressure. 1,3-dimethylimidazolinium hexafluorophosphate (0.32 g) was obtained as an analytically pure colorless solid. Yield: 0.32 g (98% based on **3a**). $M_r = 244.12$. ¹H NMR (CD₃CN) $\delta = 7.3$ (s, 1H, CH), 3.9 (d, 4H, -CH₂-, ²*J*_{HH} = 0.7 Hz), 3.1 (s, 6H, -CH₃, ¹*J*_{CH} = 141 Hz). ¹³C{¹H} NMR (CD₃CN) $\delta = 157.9$ (s, CH), 50.5 (s, -CH₂-), 34.0 (s, -CH₃). ¹⁹F NMR (CDCl₃) $\delta = -72.9$ (d, ¹*J*_{PF} = 707 Hz). ³¹P NMR (CD₃CN) $\delta = -144.6$ (sept, ¹*J*_{PF} = 707 Hz). ESI MS negative range *m*/*z* (%): 144.6 (100) [PF₆]⁻; positive range *m*/*z* (%): 343.1 (100) [(C₅H₁₁N₂)₂PF₆]⁺, 99.1 [C₅H₁₁N₂]⁺. IR (ATR) [cm⁻¹]: 2958 w, 1567 m, 1456 w, 1409 w, 1292 m, 1216 w, 1019 w, 944 m, 672 m, 645 w, 549 s, 527 w. Elemental analysis (%) calcd for [C₅H₁₁N₂][PF₆] (244.12): C 24.60 H 4.54 N 11.48. Found: C 24.62 H 4.72 N 11.08.

Synthesis of compound 8b

Compound **8b** was synthesized following the procedure for **8a**. Quantities used: **3b** (0.41 g, 1.81 mmol), aHF (0.2 g, 10.00 mmol). Yield: 0.41 g (92% based on **3b**). $M_r = 246.13$. ¹H NMR (CD₃CN) $\delta = 7.4$ (s, 1H, CH), 3.3 (s, 6H, -CH₃), 3.2 (s, 6H, -CH₃). ¹³C{¹H} NMR (CD₃CN) $\delta = 156.3$ (s, CH), 45.4 (s, -CH₃), 38.4 (s, -CH₃). ¹⁹F NMR (CD₃CN) $\delta = -72.9$ (d, ¹*J*_{PF} = 707 Hz). ³¹P NMR (CD₃CN) $\delta = -144.6$ (sept, ¹*J*_{PF} = 707 Hz). ESI MS negative range m/z (%): 390.8 (2) [C₅H₁₃N₂(PF₆)₂]⁻, 144.6 (100) [PF₆]⁻; positive range m/z (%): 347.1 (100) [(C₅H₁₃N₂)₂PF₆]⁺, 101.1 [C₅H₁₃N₂]⁺. IR (ATR) [cm⁻¹]: 2958 w, 1703 m, 1567 m, 1497 w, 1423 w, 1404 m, 1289 w, 1171 w, 1063 w, 979 w, 917 w, 875 w, 819 vs, 774 s, 666 w, 555 s, 525 m, 428 m. Elemental analysis (%) calcd for [C₅H₁₃N₂][PF₆] (246.13): C 24.40 H 5.32 N 11.38. Found: C 24.48 H 5.46 N 11.02.

2. Crystallographic Section

X-ray measurements

Data collection for X-ray structure determination of **1a**, **1b**, **5a**, and **6b** were performed on a Bruker Nonius KappaCCD diffractometer, **6b** on an Agilent Supernova, **2a** on a Siemens P4 diffractometer using $Mo_{K\alpha}$ radiation ($\lambda = 71.073$ pm). For structure solution and refinement, SHELX-97 was used.⁵ Crystal and refinement details, as well as CCDC numbers are provided in Table S1.

Table S1

Parameter	1a	1b
empirical formula	$C_5H_{10}N_2F_2$	$C_5H_{12}N_2F_2$
formula weight	136.15	138.17
crystal system	monoclinic	orthorhombic
space group	C2/c	Fdd2
a (Å)	10.2799(8)	15.251(4)
b (Å)	6.1220(5)	15.894(4)
c (Å)	10.4446(5)	5.825(2)
α (°)	90.00	90.00
β (°)	96.922(5)	90.00
γ (°)	90.00	90.00
volume (Å ³)	652.52(8)	1411.9(7)
Z	4	8
$D_{\text{calcd}} (\text{g/cm}^3)$	1.386	1.300
Abs coeff (mm ⁻¹)	0.126	0.117
F(000)	288	592
crystal size (mm ³)	0.25 x 0.24 x 0.24	0.35 x 0.20 x 0.20
θ range for data coll. (°)	4.0 - 30.0	3.7 - 25.0
reflections collected	3850	3718
Independent reflections	946	541
R(int)	0.029	0.0458
observed (I > $2\sigma(I)$)	828	473
Goodness-of-fit on F ²	1.072	1.165
$R_1[I > 2 \sigma(I)]^a$	0.0336	0.0289
R _w (all data) ^b	0.0943	0.0572
CCDC	967585	967586

 ${}^{a}R_{I} = \Sigma ||F_{o}| - |F_{c}|| \Sigma |F_{o}|. {}^{b}R_{w} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] \Sigma [w(F_{o}^{2})^{2}]\}^{1/2}.$

Table S2

Parameter	2a	5a	6a	6b
empirical formula	$C_5H_{10}N_2Cl_2$	$C_6H_{10}F_7N_2P$	$C_7 H_{10} F_9 N_2 P$	$C_7H_{12}F_9N_2P$
formula weight	169.05	274.13	324.14	326.16
temp (K)	173(2)	240(2)	100(2)	100(2)
crystal system	orthorhombic	orthorhombic	triclinic	monoclinic
space group	Pnma	Pnma	$P \bar{\iota}$	$P2_{l}/n$
a (Å)	12.203(3)	8.5939(6)	8.6479(2)	9.3594(2)
b (Å)	8.517(2)	12.2830(8)	10.9687(2)	21.9735(5)
<i>c</i> (Å)	7.388(3)	9.7430(5)	12.7240(3)	12.1644(3)
α (°)	90.00	90.00	87.6528(16)	90.00
β (°)	90.00	90.00	70.535(2)	99.7832(13)
γ (°)	90.00	90.00	87.9102(17)	90.00
volume (Å ³)	767.8(4)	1028.46(11)	1136.68(4)	2465.33(10)
Z	4	4	4	8
$D_{\text{calcd}} (\text{g/cm}^3)$	1.462	1.770	1.894	1.757
Abs coeff (mm ⁻¹)	0.760	0.344	0.352	0.325
F(000)	352	552	648.0	1312
crystal size (mm ³)	0.70 x 0.50 x 0.10	0.30 x 0.10 x 0.06	0.40 imes 0.13 imes 0.11	0.30 x 0.30 x 0.20
θ range for data coll. (°)	3.2 - 27.5	3.6 - 27.5	3 - 30.0	3.0 - 27.5
reflections collected	4033	9353	53254	39261
Independent reflections	942	1210	6614	5610
R(int)	0.0956	0.045	0.030	0.055
observed (I > $2\sigma(I)$)	772	918	6011	4044
Goodness-of-fit on F ²	1.006	1.059	1.065	1.039
$R_1[I > 2 \sigma(I)]^a$	0.0760	0.0476	0.0276	0.0419
R_w (all data) ^b	0.2072	0.1414	0.0773	0.1150
CCDC	967587	967588	967589	967590

 $\frac{1}{a}R_{I} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|. \ ^{b}R_{w} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]\}^{1/2}$

Figure S1. Atom labeling for the crystal structure of 1a.

Figure S2. Atom labeling for the crystal structure of 1b.

Figure S3. Atom labeling for the crystal structure of 2a.

Figure S4. Atom labeling for the crystal structure of 5a.

Figure S5. Atom labeling for the crystal structure of 6a.

Figure S6. Atom labeling for the crystal structure of 6b.

3. References

- Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [2] a) H. Hayashi, H. Sonoda, K. Fukumura and T. Nagata, *Chem. Commun.*, 2002, 1618-1619. b) A. A. Kolomeitsev, G. Bissky, P. Kirsch and G.-V. Röschenthaler, *J. Fluorine Chem.*, 2000, 103, 159-161.
- [3] T. Isobe and T. Iskikawa, J. Org. Chem., 1999, 64, 6984-6988.
- [4] a) A. V. Zakharov, Y. V. Vishnevskiy, N. Allefeld, J. Bader, B. Kurscheid, S. Steinhauer, B. Hoge, B. Neumann, H.-G. Stammler, R. J. F. Berger and N. W. Mitzel, *J. Eur. Inorg. Chem.*, 2013, 3392-3404. b) N. Allefeld, B. Neumann, H.-G. Stammler, N. Ignat'ev and B. Hoge, mauscript in preparation.
- [5] Sheldrick, G. M., Acta Crystallogr. Sect. A, 2008, A64, 112-122