(enH₂)_{4.5}[In(As^VS₄)₃][As₂^{III}(µ-S₂)S₃]Cl and (enH₂)MnAs^{III}As^VS₆: Two

thioarsenates(III, V) with mixed-valent optical properties

Ke-Zhao Du^a, Mei-Ling Feng^a, Xing-Hui Qi^{a,c}, Zu-Ju Ma^a, Long-Hua Li^a, Jian-Rong Li^a, Cheng-Feng Du^{a,b}, Guo-Dong Zou^{a,b}, Xiao-Ying Huang^{a,*}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China

^b University of the Chinese Academy of Sciences, Beijing 100049, P. R. China

^c College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002, P.R. China

Fax: +86 591 83793727; Tel: +86 591 83793727; E-mail: xyhuang@fjirsm.ac.cn

1. Synthesis

Compound **1** was obtained from a mixture of In (0.116 g, 1.01mmol), As_2S_3 (0.248 g, 1.00 mmol), S (0.099 g, 3.09 mmol), and NH₄Cl (0.080 g, 1.50 mmol), 0.2 mL ethanediamine, and 6 mL CH₃OH, which was sealed in a stainless steel reactor with a 20 mL Teflon liner and heated to 150 °C within 4h. After 6d at 150 °C, the reactor was cooled down to room temperature at the rate of 1°C/h. The product consisted of dark green crystals of **1** and a small amount of yellow powder after washed by ethanol and ether. The crystals were selected by hand (stable in the air) in 16.3% yield based on S (0.040 g). Elemental analysis, calcd. (%) of **1**: C 8.01, H 3.36, N 9.34; found: C 8.12, H 3.37, N 9.25.

Compound **2** was obtained from a mixture of $LaCl_3 \cdot 7H_2O$ (0.182 g, 0.49 mmol), As_2S_2 (0.106 g, 0.50 mmol), S (0.081 g, 2.53 mmol), Mn (0.063 g, 1.14 mmol) and NH₄Cl (0.047 g, 0.88 mmol), 0.1 mL ethanediamine, and 3 mL H₂O, which was sealed in a stainless steel reactor with a 28 mL Teflon liner and heated to 130 °C within 2h. After 3.5d at 130 °C, the reactor was cooled down to room temperature at the rate of 2°C/h. The product consisted of dark red crystals of **2** and a small amount of black powder after washed by ethanol and ether. The crystals were selected by hand (stable in the air) in 20.9% yield based on As_2S_2 (0.048 g). Elemental analysis, calcd. (%) of **2**: C 5.23, H 2.19, N 6.10; found: C 5.35, H 2.28, N 6.07. Although the LaCl₃·7H₂O hasn't entered the crystal structure, it was essential for the synthesis of compound **2**, as we could not obtain the

compound **2** in the absence of $LaCl_3 \cdot 7H_2O$. Since $LaCl_3 \cdot 7H_2O$ is a lewis acid, it may influence the pH of the reaction system which is the key to synthesizing thioarsenates.¹

2. Crystal Structure

The intensity data were collected on an Oxford Xcalibur Eos CCD diffractometer with graphite-monochromated Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å) at room temperature. The data were corrected for Lorentz and Polarization effects as well as for absorption. The structure was solved by direct methods and refined by full-matrix least-squares cycles in SHELX-97 and SHELX 2013.² The empirical formulae were confirmed by thermogravimetric analyses (TGA) and element analyses (EA) results. Selected hydrogen-bonding data of compound **1** and **2** are listed in Table S1 and Table S2, respectively.

CCDC-958717 and 958716 contain the supplementary crystallographic data of the crystals **1** and **2**, respectively. The data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK.

Table S1. Selected hydrogen bond data for compound 1.						
D−H···A	<i>d</i> (D–H)	$d(\mathbf{H}\cdots\mathbf{A})$	$d(\mathbf{D}\cdots\mathbf{A})$	<(DHA)		
N(1)-H(1C)S(11)#2	0.89	2.30	3.174(4)	165.9		
N(1)-H(1D)Cl(1)	0.89	2.27	3.151(4)	171.2		
N(1)-H(1E)S(17)#3	0.89	2.57	3.273(4)	136.2		
N(2)-H(2C)S(17)#4	0.89	2.38	3.252(4)	165.0		
N(2)-H(2D)S(8)#2	0.89	2.39	3.215(4)	154.5		
N(2)-H(2E)S(7)#5	0.89	2.49	3.347(4)	161.2		
C(1)-H(1B)S(7)#5	0.97	2.82	3.657(4)	144.8		
N(3)-H(3C)Cl(1)	0.89	2.29	3.162(4)	166.6		
N(3)-H(3D)S(4)#6	0.89	2.59	3.400(4)	152.0		
N(3)-H(3E)S(16)	0.89	2.41	3.295(4)	172.6		
N(4)-H(4C)S(3)	0.89	2.67	3.341(4)	133.2		
N(4)-H(4D)S(12)#2	0.89	2.41	3.247(4)	156.4		
N(4)-H(4E)S(16)	0.89	2.40	3.270(4)	165.3		
N(5)-H(5C)Cl(1)#2	0.89	2.23	3.115(4)	170.6		
N(5)-H(5D)S(5)	0.89	2.70	3.338(4)	129.4		
N(5)-H(5D)S(16)#2	0.89	2.75	3.389(4)	130.3		
N(5)-H(5E)S(8)	0.89	2.34	3.214(3)	168.4		
N(6)-H(6C)S(2)#7	0.89	2.55	3.252(4)	136.4		
N(6)-H(6D)S(7)#7	0.89	2.31	3.181(4)	166.2		
N(6)-H(6E)Cl(1)#8	0.89	2.23	3.113(4)	169.8		
C(5)-H(5A)S(14)#2	0.97	2.87	3.782(4)	157.4		
N(7)-H(7C)S(1)	0.89	2.71	3.519(3)	151.1		
N(7)-H(7D)S(12)	0.89	2.50	3.282(4)	146.3		
N(7)-H(7E)S(11)#9	0.89	2.43	3.324(4)	177.9		

 Table S1. Selected hydrogen bond data for compound 1.

N(8)-H(8C)S(7)#10	0.89	2.77	3.403(4)	129.3	
N(8)-H(8C)S(8)#10	0.89	2.67	3.414(4)	141.4	
N(8)-H(8D)S(4)#2	0.89	2.51	3.367(4)	162.5	
N(8)-H(8E)S(16)	0.89	2.62	3.492(4)	165.4	
N(9)-H(9C)S(2)	0.89	2.85	3.504(4)	131.4	
N(9)-H(9C)S(3)	0.89	2.60	3.392(4)	148.4	
N(9)-H(9D)S(11)#9	0.89	2.59	3.296(3)	137.2	
N(9)-H(9D)S(12)#9	0.89	2.72	3.449(4)	139.9	
N(9)-H(9E)S(17)#1	0.89	2.44	3.320(3)	170.9	

Symmetry transformations used to generate equivalent atoms: #1 -*x*,-*y*,-*z*+1; #2 -*x*+1,-*y*+1,-*z*+1; #3 x,y+1,z; #4 -*x*,-*y*+1,-*z*; #5 x,y+1,z-1; #6 -*x*,-*y*+1,-*z*+1; #7 -*x*+1,-*y*+1,-*z*+2; #8 x+1,y,z+1; #9 -*x*+1,-*y*,-*z*+1; #10 x,y,z-1.

 Table S2. Selected hydrogen bond data for compound 2.

D-HA	<i>d</i> (D–H)	<i>d</i> (HA)	<i>d</i> (DA)	<(DHA)
N(1)-H(1C)S(1)#4	0.89	2.84	3.388(7)	121.2
N(1)-H(1C)S(3)#4	0.89	2.52	3.273(7)	142.1
N(1)-H(1D)S(3)	0.89	2.46	3.330(7)	166.6
N(1)-H(1E)S(6)#1	0.89	2.64	3.471(8)	156.6
N(2)-H(2C)S(6)#5	0.89	2.81	3.489(8)	133.8
N(2)-H(2D)S(3)	0.89	2.55	3.430(7)	171.4
N(2)-H(2E)S(3)#6	0.89	2.46	3.231(7)	145.0
N(2)-H(2E)S(4)#6	0.89	2.84	3.456(7)	128.1
C(2)-H(2B)S(4)#7	0.97	2.80	3.723(9)	158.6

Symmetry transformations used to generate equivalent atoms: #1 - x, -y+2, -z; #2 - x+1, -y+1, -z; #3 - x, -y+1, -z; #4 - x+1/2, y+1/2, -z+1/2; #5 x+1, y, z; #6 - x+3/2, y+1/2, -z+1/2; #7 x, y+1, z.

Figure S1. The H-bond networks of 1 (a) and 2 (b).

3. Theoretical Calculations

The density functional calculations were performed by the CASTEP package. The generalized gradient approximation (GGA) Perdew-Burke-Ernzerhorf³ was used in calculating the total energy

and band structure. For **1**, a plane wave cut off energy of 300 eV was set. The DOS calculations were performed in a $2 \times 2 \times 1$ Monkhorst-Pack k-point grid within the Brillouin zone. The calculated band structure of **1** along high symmetry points (G(0,0,0), F(0,0.5,0), Q(0, 0.5,0), Z(0,0,0.5), is plotted in Figure S2a. For **2**, a plane wave cut off energy of 280 eV was set. And we used a $3 \times 2 \times 1$ Monkhorst-Pack k-point grid within the Brillouin zone in the DOS calculations. The calculated band structure of **2** along high symmetry points (G(0,0,0), Y(0,0.5,0), Z(0,0,0.5), B(-0.5,0,0.5), E(-0.5,0.5,0.5), C(0,0.5,0.5), A(-0.5, 0.5,0), is plotted in Figure S2b. Because of the unpaired electrons of Mn 3d in the compound **2**, the spin polarized and LDA+U method with initial spin of 5 and U = 2.5 eV were employed.

Figure S2. The band structures of 1 (a) and 2 (b). Fermi level is set at 0 eV(dot line). Black curve is spin up and red curve is spin down.

4. Physical measurements

All chemicals were used as purchased without further purification. Element analyses of C, H and N were performed on a German Elementar Vario EL III instrument. The infrared spectrum was taken on a Magna 750 FTIR spectrometer with sample as KBr pellet in the range of 4000-400 cm⁻¹. Powder X-ray diffraction (PXRD) patterns were recorded on a Miniflex II diffractometer at 30 kV and 15 mA using Cu*K* α (1.54178 Å), with a scan speed of 1°/min at room temperature. The simulated PXRD pattern from single crystal data was produced using the PowderCell program. Simultaneous thermoanalysis (TG–DSC) was carried out with a NETZSCH STA449C unit, at a heating rate of 5 °C/min under a nitrogen atmosphere.

Thermogravimetric analyses (TGA) for **1** (8.925 mg) and **2** (5.198 mg) were performed on the pure powder samples in a N₂ atmosphere. **1** had little weight loss until 145 °C, and then decomposed with a weight loss of 75.68% from 145 °C to 800 °C gradually (Figure S4a). The In_2S_3 could be identified in the X-ray powder pattern of the residue (Figure S5a). Whereas **2** was stable up to 160 °C, and then decomposed with a weight loss of 78.91% from 160 °C to 800 °C gradually (Figure S4b). The X-ray powder pattern suggested the main component of the residue is MnS (Figure S5b).

Optical diffuse reflectance spectrum was measured at room temperature with a Perkin-Elmer Lambda 900 UV/Vis spectrophotometer by using $BaSO_4$ powder as 100% reflectance and the room-temperature optical absorption spectrum of the title compound was obtained from diffuse reflectance experiment.⁴ The variable–temperature magnetic susceptibilities (2~300k) were measured with a Quantum Design PPMS 6000 magnetometer under an applied field of 1000 Oe with the crystalline powder samples kept in a capsule for weighing.

Figure S3 The PXRD patterns of 1 (a) and 2 (b) (red) is in good agreement with that simulated from the single crystal X-ray data (blue).

Figure S4 TG curves for compounds 1 (a) and 2 (b).

Figure S5 The PXRD patterns of the residues of 1 (a) and 2 (b) after 800°C.

Figure S6 IR Spectra of compounds 1 and 2.

References

- 1. (a) Du, K.-Z; Feng, M.-L.; Li, J.-R.; and Huang, X.-Y. *CrystEngComm*, **2013**, *15*, 5594-5597. (b) Du, K.-Z; Feng, M.-L.; Li, J.-R.; and Huang, X.-Y. *CrystEngComm*, **2012**, *14*, 4959-4962.
- 2. Sheldrick, G. M., SHELXS97 and SHELXL97. University of Göttingen: Germany, 1997.
- 3. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.
- 4. (a) Li, J.; Chen, Z.; Wang, X.-X.; Proserpio, D. M. J. Alloy. Compd. 1997, 262, 28-33; (b) Wendlandt,
 W. W.; Hecht, H. G., *Reflectance spectroscopy*. Interscience Publishers: New York, 1966.