Supporting Information for:

New cobalt, iron and chromium catalysts based on easy-to-handle \mathbf{N}_{4}-chelating ligands for the coupling reaction of epoxides with CO_{2}

M. Adolph, T. A. Zevaco ${ }^{\text {a* }}$, C. Altesleben, O. Walter, E. Dinjus

${ }^{\text {a }}$ Institut für Katalyseforschung und -Technologie (IKFT), Karlsruher Institut für Technologie (KIT),
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Fax: +49 721 608-22244; Tel: +49 721 608-24385;
E-mail: thomas.zevaco@kit.edu, eckhard.dinjus@kit.edu

Contents:

Page 2-26: \quad Experimental data for 1-23.
Page 27-29:
Page 30 evaluation of the operating conditions for screening tests (with catalyst 10)
Page 31-32: PCHC characterization.
Page 33: PC characterization.
Page $34-36: \quad$ Characterization of products displayed in table 7
Page 37: \quad Recycle experiment with 23 (${ }^{1} \mathrm{H}$ NMR)

Experimental data for $\mathbf{1}$:

The bpb-ligand was prepared according to the procedure described by Vagg et al. [1]. 0.12 mol picolinic acid in 48 ml abs. pyridine was mixed with 0.06 mol o-phenylenediamine in 12 ml abs. pyridine. After adding $31.5 \mathrm{ml}(0.12 \mathrm{~mol})$ triphenylphosphite the reaction solution was heated for 4 h at $120^{\circ} \mathrm{C}$ and subsequently stirred at room temperature overnight. The solvent was removed under vacuum and the raw product was obtained as a brown solid. Through washing with 50 ml of ethanol and following drying under vacuum the pure product was obtained as a white powder. Yield: 9.39 g (50 \%).

IR (cm^{-1}): 3061 (m), 1942 (w), 1673 (s$), 1592$ (s$), 1521$ (s$), 1451$ (s$), 1430(\mathrm{~s}), 1300(\mathrm{~m}), 1238(\mathrm{~m})$, $1127(\mathrm{~m}), 1100(\mathrm{~m}), 996(\mathrm{~m}), 748(\mathrm{~m}), 687(\mathrm{~m}) .{ }^{1} \mathrm{H}$-NMR: $\delta(\mathrm{ppm}$, DMSO-d6) $=7.30(\mathrm{dd}, J=5.9 \mathrm{~Hz}$, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7,60-7.70(\mathrm{~m}, 2 \mathrm{H}), 7,73-7.82(\mathrm{~m}, 2 \mathrm{H}), 8.10(\mathrm{dt}, J=7.8 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.14$ $-8.22(\mathrm{~m}, 2 \mathrm{H}) 8.64(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 10.72(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR} / \mathrm{DEPT} 135$ (prim. = primary carbon ; sec. $=$ secondary carbon ; tert. $=$ tertiary carbon ; quat. $=$ quaternary carbon $): \delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right)=$ 123.2 (tert., 2 C), 126.6 (tert., 2 C), 127.0 (tert., 2 C), 127.9 (tert, 2 C), 132.4 (quat., 2 C), 139.2 (tert., 2 C), 149.9 (tert., 2 C), 150.3 (quat., 2 C), 163.4 (quat., 2 C).MS: (EI$\left.)^{+}\right) \mathrm{m} / \mathrm{z}=319[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 67.91; H, 4.43; N, 17.60 Found: C, $67.75 ; \mathrm{H}, 4.36 ; \mathrm{N}, 17.82$.
${ }^{1} \mathrm{H}$-spectrum in DMSO-d6 of 1:

[1] R.S. Vagg, D.J. Barnes, R.L. Chapman, E.C. Watton, J. Chem. Eng. Data, 1978, 23, 349.

Experimental data for 2:

The bpbCl_{2}-ligand was prepared according to the procedure described by Vagg et al. [1]. 0.06 mol picolinic acid in 24 ml abs. pyridine was mixed with $0.03 \mathrm{~mol} 4,5$-dichloro-o-phenylenediamine in 6 ml abs. pyridine. After adding $15.72 \mathrm{ml}(0.06 \mathrm{~mol})$ triphenylphosphite the reaction solution was heated for 4 h at $120^{\circ} \mathrm{C}$ and subsequently stirred at room temperature overnight. The solvent was removed under vacuum and the raw product was obtained as a brown solid. Through washing with 50 ml of ethanol and following drying under vacuum the pure product was obtained as a white powder. Yield: $7.18 \mathrm{~g}(62 \%)$.

IR (cm^{-1}): $3290(\mathrm{~m}), 3053(\mathrm{w}), 1700(\mathrm{~s}), 1582(\mathrm{~m}), 1497(\mathrm{vs}), 1462(\mathrm{~m}), 1429(\mathrm{~m}), 1384(\mathrm{~m}), 1278$ (m), 1227 (m), 1127 (w), 1040 (w), 998 (m), 879 (w), 815 (m), 743 (s), 691 (s), 569 (m). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta$ $\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right)=7.50(\mathrm{dd}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{dt}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 2$ H), 8,31 (d, J = 7.9 Hz, 2 H$), 8,56(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 10.24(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR / DEPT135: δ (ppm, CDCl_{3}) $=122.9$ (tert., 2 C), 125.8 (tert., 2 C ; quat., 2 C), 127.07 (tert., 2 C), 129.6 (quat., 2 C), 137.9 (tert., 2 C), 148.5 (tert., 2 C), 149.3 (quat, 2 C), 163.1 (quat., 2 C). $\mathrm{MS}:\left(E I^{+}\right) \mathrm{m} / \mathrm{z}=387[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{Cl}_{2} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$: C 55.83; H 3.12; N 14.47 Found: C 54.91; H 3.08; N 14.32.

${ }^{1} \mathrm{H}$-spectrum in CDCl_{3} of $\mathbf{2}$:

[1] R.S. Vagg, D.J. Barnes, R.L. Chapman, E.C. Watton, J. Chem. Eng. Data, 1978, 23, 349.

Experimental data for 3:

The bpbNO_{2}-ligand was prepared according to the procedure described by Vagg et al. [1]. 0.06 mol picolinic acid in 24 ml abs. pyridine was mixed with 0.03 mol 4 -nitro-o-phenylenediamine in 6 ml abs. pyridine. After adding $15.72 \mathrm{ml}(0.06 \mathrm{~mol})$ triphenylphosphite the reaction solution was heated for 4 h at $120{ }^{\circ} \mathrm{C}$ and subsequently stirred at room temperature overnight. The solvent was removed under vacuum and the raw product was obtained as a brown solid. Through washing with 50 ml of ethanol and following drying under vacuum the pure product was obtained as a light yellow powder. Yield: $3.90 \mathrm{~g}(36 \%)$.

IR (cm^{-1}): 3336 (m), 3269 (m), 3126 (w), 3052(m), 3005 (w), 2925 (m), 1701 (s), 1667 (vs), 1611 (m), 1592 (s), 1536 (s), 1503 (vs), 1475 (s), 1432 (m), 1344 (s), 1284 (s), 1235 (m), 1136 (w), 1109 (m), 1042 (w), 998 (m), 883 (m), 828 (w), $750(\mathrm{~m}), 694(\mathrm{~m}), 621(\mathrm{~m}) .{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right)=$ $7.50(\mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-8.00(\mathrm{~m}, 2 \mathrm{H}), 8.21$ $(\mathrm{dd}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dd}, \mathrm{J}=15.2 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.40(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.53(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 10.68(\mathrm{~s}, 1$ $\mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR / DEPT135: $\delta(\mathrm{ppm}$, DMSO-d6) $=121.0$ (tert., 1 C), 121.2 (tert., 1 C), 122.7 (tert., 1 C), 124.4 (tert., 1 C), 127.5 (tert., 1 C), 127.6 (tert., 1 C), 130.5 (tert., 1 C), 137.5 (quat., 1 C), 138.3 (tert., 1 C), 138.5 (tert., 1 C), 143.7 (quat., 1 C), 148.7 (tert., 1 C), 148.7 (tert., 1 C), 148.9 (quat., 1 C), 149.6 (quat., 1 C), 150.3 (quat., 1 C), 162.8 (quat., 1 C), 163.5 (quat., 1 C). $\mathrm{MS}:\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}=364$ $[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{4}$: C 59.50; H 3.61; N 19.28 Found: C 59.46; H 3.72; N 19.63.

${ }^{1} \mathrm{H}$-spectrum in CDCl_{3} of $\mathbf{3}$:

[1] R.S. Vagg, D.J. Barnes, R.L. Chapman, E.C. Watton, J. Chem. Eng. Data, 1978, 23, 349.

Experimental data for 4 :

The $\mathrm{bpbMe} \mathrm{e}_{2}$-ligand was prepared according to the procedure described by Vagg et al. [1]. 0.06 mol picolinic acid in 24 ml abs. pyridine was mixed with $0.03 \mathrm{~mol} 4,5$-dimethyl-o-phenylenediamine in 6 ml abs. pyridine. After adding $15.72 \mathrm{ml}(0.06 \mathrm{~mol})$ triphenylphosphite the reaction solution was heated for 4 h at $120{ }^{\circ} \mathrm{C}$ and subsequently stirred at room temperature overnight. The solvent was removed under vacuum and the raw product was obtained as a brown solid. Through washing with 50 ml of ethanol and following drying under vacuum the pure product was obtained as a white powder. Yield: $8.09 \mathrm{~g}(78 \%)$.

IR (cm^{-1}): 3055 (w), 2923 (m), 2856 (w), 1669 (vs), $1592(\mathrm{~m}), 1512(\mathrm{~s}), 1457(\mathrm{~m}), 1433(\mathrm{~m}), 1316$ (m), 1282 (w), 1238 (m), 1126(m), 1041 (w), 997 (m), 875 (w), 820 (m), 748 (s), 690 (s), 553 (m). ${ }^{1} \mathrm{H}-$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right)=2.30(\mathrm{~s}, 6 \mathrm{H}), 7.44(\mathrm{ddd}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{~J}=4.8 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 2$ H), 7.89 (dt, J = 7.7 Hz, J = $1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $8.29-8.32(\mathrm{~m}, 2 \mathrm{H}), 8.54-8.57(\mathrm{~m}, 2 \mathrm{H}), 10.15(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR} / \mathrm{DEPT} 135: \delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right)=19.5$ (prim., 2 C), 122.5 (tert., 2 C), 125.6 (tert., 2 C), 126.3 (tert., 2 C), 127.7 (quat., 2 C), 134.8 (quat., 2 C), 137.4 (tert., 2 C), 148.1 (tert., 2 C), 149.8 (quat., 2 C), 162.8 (quat., 2 C). $\mathrm{MS}:\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}=347[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$: C 69.35; H 5.24; N 16.17 Found: C 69.69; H 5.41; N 16.42.
${ }^{1} \underline{H}$-spectrum in CDCl_{3} of 4:

[1] R.S. Vagg, D.J. Barnes, R.L. Chapman, E.C. Watton, J. Chem. Eng. Data, 1978, 23, 349.

Experimental data for 5:

According to literature procedure [2] 2.0 mmol of $\mathrm{Co}(\mathrm{OAc})_{2} \times 4 \mathrm{H}_{2} \mathrm{O}$ and 2.0 mmol of ligand 1 were dissolved in 20 ml of DMF and stirred at RT under normal atmosphere for 20 min . Then 2.88 mmol of $\mathrm{NEt}_{4} \mathrm{Cl} \mathrm{H}_{2} \mathrm{O}$ was added and the solution was stirred at RT for additional 12 hours. DMF was removed in vacuo and the residue was dissolved in 20 ml of acetonitrile and filtered. Through adding 20 ml of diethyl ether to the solution and cooling down to $2{ }^{\circ} \mathrm{C}$ a green precipitate was formed. After filtering, washing with 20 ml of 1:1 acetonitrile/diethyl ether mixture and drying under vacuo the product was isolated as green crystals. Yield $885 \mathrm{mg}(71 \%)$.

IR (cm^{-1}): 3058 (w), 2978 (m), 2940 (m), 2655 (w), 1621 (s), 1595 (s), 1567 (s$), 1478$ (s$), 1399$ (s), 1371 (m), 1173 (w), 1096 (w), 1032 (w), 961 (w), 784 (m), 681 (m). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm}$, dmso-d6) $=$ $0.98(\mathrm{~s}, 6 \mathrm{H}), 1.09(\mathrm{tr}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H}), 3.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 6.87(\mathrm{dd}, J=5.9 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7,61(\mathrm{tr}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7,81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\operatorname{tr}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.77(\mathrm{dd}, J=6.0$ $\mathrm{Hz}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 10.13(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR} /$ DEPT135: $\delta(\mathrm{ppm}$, dmso-d6) $=7.7$ (prim., 4 C), 24,7 (prim., 2 C), 52.0 (sec., 4 C), 122.0 (tert., 2 C), 122.7 (tert., 2 C), 122.9 (tert., 2 C), 124.2 (tert., 2 C), 139.7 (tert., 2 C), 144.5 (quat., 2 C), 157.5 (tert., 2 C), 160.5 (quat., 2 C), 166.5 (quat., 2 C), 176.4 (quat., 2 C). MS: (ESI-) $\mathrm{m} / \mathrm{z}=375\left[\mathrm{M}-2 *(\mathrm{OAc})-\mathrm{NEt}_{4}\right]^{+}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{CoN}_{5} \mathrm{O}_{6}$: C, $57.78 ; \mathrm{H}, 6.14 ; \mathrm{N}, 11.23$. Found: C, $57.26 ; \mathrm{H}, 6.35 ; \mathrm{N}, 10.82$.
${ }^{1} \underline{ }$-spectrum in DMSO-d6 of 5 :
(
[2] R.N. Mukherjee, M. Ray, Polyhedron, 1992, 11, 2929. Experimental data for 6 :

2.0 mmol of $\mathrm{CoOAc}_{2} 4 \mathrm{H}_{2} \mathrm{O}, 2.0 \mathrm{mmol}$ of ligand 2 were dissolved in 15 ml of DMF and stirred at RT under air for 10 min . Then 2.88 mmol of $\mathrm{NEt}_{4} \mathrm{OAc} 4 \mathrm{H}_{2} \mathrm{O}$ were added and the solution stirred at $70{ }^{\circ} \mathrm{C}$ for 12 h . After cooling, the solution was stirred for additional 6 hours. DMF was removed in vacuo and the residue was dissolved in 20 ml of acetonitrile. A precipitate was formed on adding 20 ml of diethyl ether to the solution and cooling down to $2^{\circ} \mathrm{C}$. The product was isolated after filtering, washing two times with 20 ml of a 1:1 acetonitrile/diethyl ether mixture and drying under vacuo the product was isolated as green powder/crystals. For complex 6 green crystals were obtained by slowly adding a small excess of diethyl ether into an acetonitrile solution of 6 and subsequently cooling down to $2{ }^{\circ} \mathrm{C}$. After 2 days small green crystals were formed Yield $885 \mathrm{mg}(71 \%)$.

IR (cm^{-1}): 2985 (w), 2924 (w), 2853 (w), 1625 (s), 1598 (s), 1557 (m), 1470 (s), 1400 (m), 1314 (m), 1229 (w), 1102 (w), 1002 (w), 977 (w), 926 (w), 764 (w), 683 (m), 670 (m), 548 (w). ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta$ $(\mathrm{ppm}$, dmso-d6) $=1.01(\mathrm{~s}, 6 \mathrm{H}), 1.10(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 12 \mathrm{H}), 3.15(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 8 \mathrm{H}), 7.65-7.69(\mathrm{~m}$, $2 \mathrm{H}), 7.84(\mathrm{dd}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8,07(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 8,88(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 2 \mathrm{H}), 10.09$ $(\mathrm{d}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR} / \mathrm{DEPT} 135: \delta(\mathrm{ppm}, \mathrm{dmso}-\mathrm{d} 6)=7.1$ (prim., 4 C), 24,1 (prim, 2 C), 51.4 (sec., 4 C), 121.0 (tert., 2 C), 122.5 (tert., 2 C ; quat., 2 C), 124.3 (tert., 2 C), 139.5 (tert., 2 C), 143.7 (quat., 2 C), 156.8 (tert., 2 C), 158.8 (quat., 2 C), 166.5 (quat., 2 C), 175.9 (quat., 2 C). MS: (ESI-) m/z $=561\left[\mathrm{M}_{\mathrm{NEt}}^{4}\right]^{-}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{CoN}_{5} \mathrm{O}_{6}: \mathrm{C}, 52.03 ; \mathrm{H}, 5.24 ; \mathrm{N}, 10.11$. Found: C, 51.27; H, 5.49; N, 10.05.

${ }^{1} \underline{H-s p e c t r u m ~ i n ~ D M S O-d 6 ~ o f ~ 6: ~}$

Experimental data for 7:

A
2.0 mmol of $\mathrm{CoOAc}_{2} 4 \mathrm{H}_{2} \mathrm{O}, 2.0 \mathrm{mmol}$ of ligand $\mathbf{3}$ were dissolved in 15 ml of DMF and stirred at RT under air for 10 min . Then 2.88 mmol of $\mathrm{NEt}_{4} \mathrm{OAc} 4 \mathrm{H}_{2} \mathrm{O}$ were added and the solution stirred at $70^{\circ} \mathrm{C}$ for 12 h . After cooling, the solution was stirred for additional 6 hours. DMF was removed in vacuo and the residue was dissolved in 20 ml of acetonitrile. A precipitate was formed on adding 20 ml of diethyl ether to the solution and cooling down to $2{ }^{\circ} \mathrm{C}$. The product was isolated after filtering, washing two times with 20 ml of a 1:1 acetonitrile/diethyl ether mixture and drying under vacuo the product was isolated as brown powder. Yield 839 mg (63%).

IR (cm^{-1}): 3081 (w), 2985 (w), 2926 (w), 1629 (vs), 1601 (s), 1557 (m), 1482 (s), 1427 (m), 1386 (s), 1315 (vs), 1297 (s), 1146 (m), 1062 (w), 1002 (w), 957 (w), 898 (w), 756 (w), 683 (m), 616 (m), $505(\mathrm{w}), 464(\mathrm{w}) .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}\right)=1.01(\mathrm{~s}, 6 \mathrm{H}), 1.09(\mathrm{tt}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{~J}=1.7 \mathrm{~Hz}, 12 \mathrm{H})$, $3.13(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 7.65-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{dt}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{~J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 8.06-8.12(\mathrm{~m}, 2$ $\mathrm{H}), 8,82(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.54(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 10.10(\mathrm{dd}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR} / \mathrm{DEPT} 135: \delta\left(\mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}\right)=7.5$ (prim., 4 C), 24,5 (prim., 2 C), 51.8 (sec., 4 C), 116.0 (tert., 1 C), 119.5 (tert., 1 C), 120.1 (tert., 1 C), 123.0 (tert., 1 C), 123.3 (tert., 1 C), 124.8 (tert., 1 C), 125.1 (tert., 1 C), 140.0 (tert., 2 C), 141.8 (quat., 1 C), 144.2 (quat., 1 C), 151.3 (quat., 1 C), 157.1 (tert., 1 C), 157.2 (tert., 1 C), 158.7 (quat., 1 C), 159.2 (quat., 1 C), 167.2 (quat., 1 C), 167.7 (quat., 1 C), 176.4 (quat., 2 C). MS: (ESI-) $\mathrm{m} / \mathrm{z}=538\left[\mathrm{M}_{\mathrm{NEt}}^{4}\right.$]. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{CoN}_{6} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 53.89 ; H, 5.73 ; N, 12.24. Found: C, 52.48; H, 5.72; N, 12.49.
${ }^{1} \mathrm{H}$-spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ of 7:

Experimental data for $\mathbf{8}$:

2.0 mmol of $\mathrm{CoOAc}_{2} 4 \mathrm{H}_{2} \mathrm{O}, 2.0 \mathrm{mmol}$ of ligand $\mathbf{4}$ were dissolved in 15 ml of DMF and stirred at RT under air for 10 min . Then 2.88 mmol of $\mathrm{NEt}_{4} \mathrm{OAc} 4 \mathrm{H}_{2} \mathrm{O}$ were added and the solution stirred at $70^{\circ} \mathrm{C}$ for 12 h . After cooling, the solution was stirred for additional 6 hours. DMF was removed in vacuo and the residue was dissolved in 20 ml of acetonitrile. A precipitate was formed on adding 20 ml of diethyl ether to the solution and cooling down to $2{ }^{\circ} \mathrm{C}$. The product was isolated after filtering, washing two times with 20 ml of a 1:1 acetonitrile/diethyl ether mixture and drying under vacuo the product was isolated as green powder. Yield 660 mg (51%).

IR (cm^{-1}): 3087 (w), 2978 (w), 2921 (w), 2857 (w), 1621 (s), 1596 (vs), 1485 (s), 1456 (m), 1405 (s), 1371 (s), 1316 (m), 1172 (w), 1095 (w), 1001 (m), 886 (w), 759 (m), $681(\mathrm{~m}), 619(\mathrm{w}), 509(\mathrm{w})$. ${ }^{\mathrm{I}} \mathrm{H}$-NMR $\delta(\mathrm{ppm}, \mathrm{dmso}-\mathrm{d} 6)=1.02(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 12 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 3.20(\mathrm{q}, \mathrm{J}=7.2$ $\mathrm{Hz}, 8 \mathrm{H}$), 7.64 (ddd, J = $7.4 \mathrm{~Hz}, \mathrm{~J}=5.6 \mathrm{~Hz}$, J = $1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.83 (dd, J = $7.7 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 8.07 (dt, J = $7.6 \mathrm{~Hz}, \mathrm{~J}=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 8,62(\mathrm{~s}, 2 \mathrm{H}), 10.16(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR} /$ DEPT135: δ (ppm, dmso-d6) $=7.1$ (prim., 4 C), 19,8 (prim., 2 C), 24,2 (prim., 2 C), 51.4 (sec., 4 C), 122.1 (tert., 2 C), 122.4 (tert., 2 C), 123.5 (tert., 2 C), 129.5 (quat., 2 C), 139.1 (quat., 2 C), 141.7 (tert., 2 C), 156.8 (quat., 2 C), 160.2 (tert., 2 C), 165.3 (quat., 2 C), 175.8 (quat., 2 C). MS: (ESI-) m/z $=521\left[\mathrm{M}_{-} \mathrm{NEt}_{4}\right]^{-}$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{CoN}_{5} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.39 ; \mathrm{H}, 6.62$; N, 10.46. Found: C, 56.22; H, 6.89; N, 10.34 .
${ }^{1} \mathrm{H}$-spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ of 8 :

Experimental data for 9 :

According to literature procedure [2] 2.0 mmol of $\mathrm{CoCl}_{2}, 2.0 \mathrm{mmol}$ of ligand $\mathbf{1}$ and 4.0 mmol triethylamine were dissolved in 20 ml of DMF and stirred at RT under normal atmosphere for 20 min . Then 4.42 mmol of $\mathrm{NEt}_{4} \mathrm{Cl} \mathrm{H}_{2} \mathrm{O}$ was added and the solution was stirred at RT an additional 12 hours. DMF was removed in vacuo and the residue was dissolved in 30 ml of acetonitrile and filtered. Through adding 30 ml of diethyl ether to the solution and cooling down to $2{ }^{\circ} \mathrm{C}$ a brown precipitate was formed. After filtering, washing with 20 ml of $1: 1$ acetonitrile/diethyl ether mixture and drying under vacuo the product was isolated as an orange-brown powder. Yield $991 \mathrm{mg}(86 \%)$.

IR (cm^{-1}): 3058 (w), 2979 (m), 2940 (m), 2677 (m), 2494 (w), 1621 (s), 1595 (s), 1563 (s), 1474 (s), 1393 (s), 1291 (m), 1183 (w), 1091 (w), 1032 (m), 949 (w), 762 (m), 680 (m). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta$ (ppm, $\left.\mathrm{CD}_{3} \mathrm{CN}\right)=1.19(\operatorname{tr}, J=7.5 \mathrm{~Hz}, 12 \mathrm{H}), 3.15(\mathrm{q}, J=7.3 \mathrm{~Hz}, 8 \mathrm{H}), 6.94-7.04(\mathrm{~m}, 2 \mathrm{H}), 7,76-7.86(\mathrm{~m}, 2$ H), 8.06-8.20 (m, 4 H$), 8.89(\mathrm{dd}, J=5.9 \mathrm{~Hz} J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 9.65(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-$ NMR / DEPT135: $\delta(\mathrm{ppm}, \mathrm{dmso}-\mathrm{d} 6)=7.8$ (prim., 4 C), 52.0 (sec., 4 C), 122.5 (tert., 2 C), 123.2 (tert., 2 C), 124.0 (tert., 2 C), 127.7 (tert., 2 C), 139.8 (tert., 2 C), 143.8 (quat., 2 C), 152.0 (tert., 2 C), 152.4 (quat., 2 C), 161.3 (quat., 2 C).

${ }^{1} \underline{H}$-spectrum in $\mathrm{CD}_{3} \underline{\mathrm{CN} \text { of } \mathbf{9}:}$

[2] R.N. Mukherjee, M. Ray, Polyhedron, 1992, 11, 2929.
Experimental data for $\mathbf{1 0}$:

2

TEA, $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl} \mathrm{H}_{2} \mathrm{O}$,

$10 \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{Cl}_{4} \mathrm{CoN}_{5} \mathrm{O}_{2}$
$645.29 \mathrm{~g} / \mathrm{mol}$

According to literature procedure [2] 2.0 mmol of $\mathrm{CoCl}_{2}, 2.0 \mathrm{mmol}$ of ligand 2 and 4.0 mmol triethylamine were dissolved in 20 ml of DMF and stirred at RT under normal atmosphere for 20 min . Then 4.42 mmol of $\mathrm{NEt}_{4} \mathrm{Cl} \mathrm{H}_{2} \mathrm{O}$ was added and the solution was stirred at RT an additional 12 hours. DMF was removed in vacuo and the residue was dissolved in 20 ml of acetonitrile and filtered. Through adding 20 ml of diethyl ether to the solution and cooling down to $2{ }^{\circ} \mathrm{C}$ a brown precipitate was formed. After filtering, washing with 40 ml of 1:1 acetonitrile/diethyl ether mixture and drying under vacuo the product was isolated as a red-brown powder. Yield $857 \mathrm{mg}(66 \%)$.

IR (cm^{-1}): 3070 (w), 2980 (w), 2948 (w), 1631 (s), 1598 (s), 1553 (m), 1471 (vs), 1388 (vs), 1286 (m), 1174 (w), 1095 (m), 997 (w), 976 (w), 880 (w), $760(\mathrm{~m}), 683$ (m), 544 (w), 479 (w). ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta$ $\left(\mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}\right)=1.17(\mathrm{tr}, \mathrm{J}=7.1 \mathrm{~Hz}, 12 \mathrm{H}), 3.12(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 7.81(\mathrm{tr}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.05-$ $8.20(\mathrm{~m}, 4 \mathrm{H}), 8.96(\mathrm{~s}, 2 \mathrm{H}), 9.61(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR} / \operatorname{DEPT} 135: \delta(\mathrm{ppm}$, dmso-d6$)=$ 7.6 (prim., 4 C), 53.0 (sec., 4 C), 122.9 (tert., 2 C), 124.9 (tert., 2 C; quat., 2 C), 128.2 (tert., 2 C), 140.4 (tert., 2 C), 144.1 (quat., 2 C), 152.0 (tert., 2 C), 161.0 (quat., 2 C), 167.6 (quat., 2C).

${ }^{1} H$-spectrum in $\mathrm{CD}_{2} \underline{\mathrm{CN}}$ of $\mathbf{1 0}:$

[2] R.N. Mukherjee, M. Ray, Polyhedron, 1992, 11, 2929.
Experimental data for 11:

3

$11 \mathrm{C}_{26} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{CoN}_{6} \mathrm{O}_{4}$ $621.40 \mathrm{~g} / \mathrm{mol}$
2.0 mmol of $\mathrm{CoCl}_{2}, 2.0 \mathrm{mmol}$ of ligand $\mathbf{3}, 4.0 \mathrm{mmol}$ triethylamine and 4.42 mmol of $\mathrm{NEt}_{4} \mathrm{Cl} \mathrm{H}_{2} \mathrm{O}$ were dissolved in 15 ml of DMF and stirred at RT under normal atmosphere for 12 hours. DMF was removed in vacuo and 50 ml of acetonitrile was added to the residue. A precipitate was formed, which was filtered and washed with 20 ml of a 1:1 acetonitrile/diethyl ether mixture. After drying under vacuo the product was isolated as a red-brown powder. Yield 1134 mg (91%).

IR (cm^{-1}): 3070 (w), 2986 (w), 2949 (w), 1632 (vs), 1600 (s), 1558 (s), 1481 (vs), 1426 (m), 1390 (s), 1319 (vs), 1296 (s), $1142(\mathrm{~m}), 1062(\mathrm{~m}), 999(\mathrm{w}), 958(\mathrm{w}), 895(\mathrm{w}), 758(\mathrm{~m}), 684(\mathrm{~m}), 615(\mathrm{w})$, 508 (w), 465 (w), $352(\mathrm{w}) .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}\right)=1.12-1.19(\mathrm{~m}, 12 \mathrm{H}), 3.11(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 8$ H), $7.80-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{dd}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.21(\mathrm{~m}, 4 \mathrm{H}), 8,93(\mathrm{~d}, \mathrm{~J}=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 9.60-9.67(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR / DEPT135: $\delta\left(\mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}\right)=7.5$ (prim., 4 C), 52.9 (sec., 4 C), 117.5 (tert., 1 C), 120.4 (tert., 1 C), 121.4 (tert., 1 C), 125.0 (tert., 1 C), 125.3 (tert., 1 C), 128.4 (tert., 1 C), 128.7 (tert., 1 C), 140.5 (tert., 2 C), 143.5 (quat., 1 C), 144.3 (quat., 1 C), 151.0 (quat., 1 C), 152.0 (tert., 1 C), 152.1 (tert., 1 C), 160.5 (quat., 1 C), 161.0 (quat., 1 C), 168.0 (quat., 1 C), 168.4 (quat., 1 C). MS: (ESI-) $\mathrm{m} / \mathrm{z}=490$ [M-NEt $]^{\text {. }}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{CoN}_{6} \mathrm{O}_{4}$: C, 50.25 ; H, 5.03; N, 13.52. Found: C, 50.05; H, 4.96; N, 13.67.

${ }^{1} \mathrm{H}$-spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ of 11:

Experimental data for 12:

2.0 mmol of $\mathrm{CoCl}_{2}, 2.0 \mathrm{mmol}$ of ligand $4,4.0 \mathrm{mmol}$ triethylamine and 4.42 mmol of $\mathrm{NEt}_{4} \mathrm{Cl}_{2} \mathrm{O}$ were dissolved in 15 ml of DMF and stirred at RT under normal atmosphere for 12 hours. DMF was removed in vacuo and 50 ml of acetonitrile was added to the residue. A precipitate was formed, which was filtered and washed with 20 ml of a 1:1 acetonitrile/diethyl ether mixture. After drying under vacuo the product was isolated as a red powder. Yield $1060 \mathrm{mg}(88 \%)$.

IR (cm^{-1}): 3077 (w), 2984 (w), 2924 (w), 2856 (w), 1625 (vs), 1595 (s), 1577 (s), 1486 (m), 1456 (m), 1404 (s), 1290 (m), 1251 (m), 1178 (m), 1092 (w), 1003 (w), 943 (w), 889 (w), 765 (m), 681 (m), 651 (w), 509 (w), 406 (w). ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}\right.$) $=1.16$ (t, J = $7.3 \mathrm{~Hz}, 12 \mathrm{H}$), 2.29 (s, 6 H$), 3.10$ (q, J = $7.3 \mathrm{~Hz}, 8 \mathrm{H}$), 7.76 (t, J = $6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $8.05-8.16(\mathrm{~m}, 4 \mathrm{H}), 8.68(\mathrm{~s}, 2 \mathrm{H}), 9.64(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2$ H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR / DEPT135: δ (ppm, $\left.\mathrm{CD}_{3} \mathrm{CN}\right)=7.6$ (prim., 4 C), 20,0 (prim., 2 C), 52.9 (sec., 4 C), 123.9 (tert., 2 C), 124.4 (tert., 2 C), 127.5 (tert., 2 C), 131.9 (quat., 2 C), 140.0 (tert., 2 C), 142.1 (quat., 2 C), 151.7 (tert., 2 C), 162.4 (quat., 2 C). MS: (ESI-) $\mathrm{m} / \mathrm{z}=473\left[\mathrm{M}_{\mathrm{z}} \mathrm{NEt}_{4}\right]^{\circ}$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{CoN}_{5} \mathrm{O}_{2} . \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 54.03 ; \mathrm{H}, 6.15 ; \mathrm{N}, 11.25$. Found: C, $54.26 ; \mathrm{H}, 6.39 ; \mathrm{N}, 11.38$.

${ }^{1} \underline{H}$-spectrum in $\mathrm{CD}_{3} \underline{\mathrm{CN}}$ of $\mathbf{1 2}$:

Experimental data for 13 :

According to literature procedure [3] 2.0 mmol of $\mathrm{FeCl}_{2} \times 4 \mathrm{H}_{2} \mathrm{O}, 2.0 \mathrm{mmol}$ of $\mathrm{H}_{2} \mathrm{bpb}$ (1) and 4.0 mmol triethylamine were dissolved in 20 ml of DMF and stirred at RT under normal atmosphere for 20 min . Then 4.42 mmol of $\mathrm{NEt}_{4} \mathrm{Cl} \mathrm{H}_{2} \mathrm{O}$ was added and the solution was stirred at RT for additional 12 hours. DMF was removed in vacuo and the residue was dissolved in 30 ml of acetonitrile and filtered. Adding 30 ml of diethyl ether to the solution and cooling down to $2{ }^{\circ} \mathrm{C}$ yielded a green precipitate. After filtering, washing with 20 ml of $1: 1$ acetonitrile/diethyl ether mixture and drying under vacuo the product was isolated as a green powder. Yield $957 \mathrm{mg}(83 \%)$.

IR (cm^{-1}): 2982 (m), 2942 (m), 2739 (w), 2677 (m), 2491 (w), 1619 (s), 1591 (s), 1563 (s), 1472 (m), 1349 (s), 1292 (m), 1173 (m), 1096 (w), 1003 (m), 942 (w), $750(\mathrm{~m}), 668(\mathrm{~m}) . \mathrm{MS}:(\mathrm{EI}+) \mathrm{m} / \mathrm{z}=$ 372 [M-2Cl-NEt $\left.{ }_{4}\right]^{+}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{FeN}_{5} \mathrm{O}_{2}$: C, 54.47 ; H, 5.63; N, 12.22. Found: C, 53.55; H, 5.78; N, 11.69.

IR-spectrum of 13:

IKFT / KIT CN / IR-Labor

Name
 Complex $4 \quad-$

[3] X.-G. Zhou, J.-L. Zuo, L. Yang, R.-N. Wei, R. Li, J. Molecular Catalysis A: Chem., 2007, 266, 284.

Experimental data for 14:

According to literature procedure [4] 2.0 mmol of $\mathrm{FeCl}_{3}, 2.0 \mathrm{mmol}$ of ligand 2 and 4.0 mmol triethylamine were dissolved in 20 ml of DMF and stirred at RT under normal atmosphere for 20 min . Then 4.42 mmol of $\mathrm{NEt}_{4} \mathrm{Cl} \mathrm{H}_{2} \mathrm{O}$ was added and the solution was stirred at RT for additional 12 hours. DMF was removed in vacuo and 50 ml of acetonitrile was added to the residue. A precipitate was formed, which was filtered and washed with 20 ml of a 1:1 acetonitrile/diethyl ether mixture. After drying under vacuo the product was isolated as a green powder. Yield $957 \mathrm{mg}(83 \%)$.

IR (cm^{-1}): 3110 (w), 3054 (w), 2983 (m), 2947 (w), 1619 (s), 1593 (vs), 1559 (s), 1457 (s), 1373 (vs), 1343 (s), 1283 (m), 1235 (w), 1173 (w), 1109 (m), 1044 (w), 1021 (w), 951 (m), 886 (w), 816 (w), $762(\mathrm{~m}), 697(\mathrm{~m}), 642(\mathrm{w}), 542(\mathrm{w}), 442(\mathrm{w})$. MS: (EI^{-}) $\mathrm{m} / \mathrm{z}=512(100 \%), 510(81 \%)\left[\mathrm{M}^{2} \mathrm{NEt}_{4}\right]^{-}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{Cl}_{4} \mathrm{FeN}_{5} \mathrm{O}_{2}$: C, 48.63; H, 4.71; N, 10.91. Found: C, $48.51 ; \mathrm{H}, 4.53 ; \mathrm{N}, 10.89$.

IR-spectrum of 14:

Agilent Resolutions Pro

Name

[4] R.N. Mukherjee, M. Ray, J.F. Richardson, R.M. Buchanan, J. Chem. Soc. Dalton Trans., 1993, 1, 2451.

Experimental data for $\mathbf{1 5}$:

2.0 mmol of $\mathrm{FeCl}_{3}, 2.0 \mathrm{mmol}$ of ligand $\mathbf{3}, 4.0 \mathrm{mmol}$ triethylamine and 4.42 mmol of $\mathrm{NEt}_{4} \mathrm{Cl} \mathrm{H}_{2} \mathrm{O}$ were dissolved in 15 ml of DMF and stirred at RT and air for 12 hours. DMF was removed in vacuo and 50 ml of acetonitrile was added to the residue. The resulting precipitate was filtered and washed twice with 20 ml of a 1:1 acetonitrile/diethyl ether mixture. After drying under vacuo the product was isolated as a green powder. Yield $992 \mathrm{mg}(80 \%)$.

IR (cm^{-1}): (cm-1): 3122 (w), 3068 (w), 2983 (w), 2925 (w), 1625 (vs), 1594 (s), $1559(\mathrm{~s}), 1506(\mathrm{~m})$, 1471 (m), 1421 (w), 1346 (s), 1323 (vs), 1296 (s), 1136 (m), 1113 (m), 1045 (w), 1000 (w), 969 (w), $924(\mathrm{w}), 827(\mathrm{w}), 760(\mathrm{~m}), 696(\mathrm{~m}), 647(\mathrm{w}), 488(\mathrm{~m})$. MS: (ESI-) m/z = $487(100 \%), 489(65 \%)$ [M-NEt $]_{4}$]. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{FeN}_{6} \mathrm{O}_{4} . \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 49.08 ; \mathrm{H}, 5.23 ; \mathrm{N}, 13.21$. Found: C, 49.18; H, 4.95; N, 13.40.

IR-spectrum of 15:
Agilent Resolutions Pro

Experimental data for 16:

2.0 mmol of $\mathrm{FeCl}_{3}, 2.0 \mathrm{mmol}$ of ligand $4,4.0 \mathrm{mmol}$ triethylamine and 4.42 mmol of $\mathrm{NEt}_{4} \mathrm{Cl} \mathrm{H}_{2} \mathrm{O}$ were dissolved in 15 ml of DMF and stirred at RT and air for 12 hours. DMF was removed in vacuo and 20 ml of a $1: 1$ acetonitrile/diethyl ether mixture was added to the residue. The resulting precipitate was filtered and washed thrice with 20 ml of a 1:1 acetonitrile/diethyl ether mixture. After drying under vacuo the product was isolated as a green powder. Yield $818 \mathrm{mg}(68 \%)$.

IR (cm^{-1}): 3045 (w), 2985 (w), 2915 (w), 2865 (w), 1615 (s), 1582 (vs), 1563 (s), 1478 (s), 1455 (m), 1401 (m), 1354 (s), 1287 (m), 1254 (w), 1182 (w), 1093 (w), 1044 (m), 1002 (w), 954 (w), 893 (w), $764(\mathrm{~m}), 695(\mathrm{~m}), 648(\mathrm{w}), 504(\mathrm{w}), 470(\mathrm{w})$. MS: (ESI-) m/z = 470 [M-NEt $]_{4}$]. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{FeN}_{5} \mathrm{O}_{2} .2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 52.76$; H, 6.33; N, 10.99. Found: C, 53.03; H, 6.62; N, 11.19.

IR-spectrum of 16 :

Agilent Resolutions Pro

Experimental data for 17:

2.0 mmol of $\mathrm{CrCl}_{3} 6 \mathrm{H}_{2} \mathrm{O}, 2.0 \mathrm{mmol}$ of ligand $\mathbf{1}, 4.0 \mathrm{mmol}$ triethylamine and $4.42 \mathrm{mmol}^{2} \mathrm{NEt}_{4} \mathrm{Cl}$ $\mathrm{H}_{2} \mathrm{O}$ were dissolved in 15 ml of DMF and stirred at $120^{\circ} \mathrm{C}$ for 12 hours. After cooling the solution was stirred at RT and under air for additional 6 hours. DMF was removed in vacuo and 20 ml of a $1: 1$ acetonitrile/diethyl ether mixture was added to the residue yielding a precipitate, which was filtered, washed twice with 20 ml of a 1:1 acetonitrile/diethyl ether mixture. After drying under vacuo the product was isolated as a red powder. Yield $1005 \mathrm{mg}(88 \%)$.

IR (cm^{-1}): 3055 (w), 2987 (w), 2946 (w), 1620 (s), 1592 (vs), 1565 (vs), 1471 (s), 1363 (s), 1289 (m), 1183 (w), 1146 (w), $1094(\mathrm{w}), 1036(\mathrm{~m}), 961(\mathrm{w}), 906(\mathrm{w}), 764(\mathrm{~m}), 690(\mathrm{~m}), 654(\mathrm{w}), 595(\mathrm{w})$, $511(\mathrm{~m}), 328(\mathrm{~m})$. MS: (ESI-) $\mathrm{m} / \mathrm{z}=438$ [M-NEt $]^{\circ}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{CrN}_{5} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 53.16; H, 5.83; N, 11.92. Found: C, 52.48; H, 5.57; N, 11.86.

IR-spectrum of 17:

Agilent Resolutions Pro

Experimental data for 18 :

According to literature procedure [5] 2.0 mmol of $\mathrm{CrCl}_{3} 6 \mathrm{H}_{2} \mathrm{O}, 2.0 \mathrm{mmol}$ of ligand 2, 4.0 mmol triethylamine and 4.42 mmol of $\mathrm{NEt}_{4} \mathrm{Cl} \mathrm{H}_{2} \mathrm{O}$ were dissolved in 15 ml of DMF and stirred at $120^{\circ} \mathrm{C}$ for 12 hours. After cooling the solution was stirred at RT and under air for additional 6 hours. DMF was removed in vacuo and 50 ml of acetonitrile was added to the residue. The resulting precipitate was filtered and washed with 20 ml of a 1:1 acetonitrile/diethyl ether mixture. After drying under vacuo the product was isolated as a red-brown powder. Yield $906 \mathrm{mg}(71 \%)$.

IR (cm^{-1}): 3062 (w), 2982 (m), 2947 (w), 1630 (vs), 1595 (s), 1557 (s), 1466 (s), 1376 (s), 1285 (m), 1228 (w), 1199 (w), $1174(\mathrm{w}), 1094(\mathrm{~m}), 1048(\mathrm{w}), 1027(\mathrm{w}), 974(\mathrm{~m}), 885(\mathrm{w}), 810(\mathrm{w}), 761(\mathrm{~m})$, $691(\mathrm{~m}), 652(\mathrm{w}), 540(\mathrm{w}), 448(\mathrm{~m})$. MS: (ESI-) $\mathrm{m} / \mathrm{z}=506$ [M-NEt $\left.{ }_{4}\right]$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{CrN}_{5} \mathrm{O}_{2} . \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 53.16 ; \mathrm{H}, 5.83 ; \mathrm{N}, 11.92$. Found: C, $52.48 ; \mathrm{H}, 5.57 ; \mathrm{N}, 11.86$.

IR-spectrum of 18:

Agilent Resolutions Pro

[5] Y. Kim, Y.W. Choi, S.H. Kim, D.N. Lee, C. Kim, Acta. Cryst. E62, 2006, m2715.

Experimental data for 19:

2.0 mmol of $\mathrm{CrCl}_{3} 6 \mathrm{H}_{2} \mathrm{O}, 2.0 \mathrm{mmol}$ of ligand $4,4.0 \mathrm{mmol}$ triethylamine and $4.42 \mathrm{mmol}^{2} \mathrm{NEt}_{4} \mathrm{Cl}$ $\mathrm{H}_{2} \mathrm{O}$ were dissolved in 15 ml of DMF and stirred at $120^{\circ} \mathrm{C}$ for 12 hours. After cooling the solution was stirred at RT and under air for additional 6 hours. DMF was removed in vacuo and 20 ml of a 1:1 acetonitrile/diethyl ether mixture was added to the residue yielding a precipitate, which was filtered, washed twice with 20 ml of a $1: 1$ acetonitrile/diethyl ether mixture. After drying under vacuo the product was isolated as a red-brown powder. Yield 1035 mg (87%).

IR (cm^{-1}): 3067 (w), 2981 (w), 2924 (w), 1629 (s), 1562 (vs), 1514 (m), 1482 (s), 1366 (s), 1291 (m), 1238 (w), 1178 (m), 1095 (w), 1048 (w), 1003 (w), 892 (w), 764 (w), $695(\mathrm{~m}), 663(\mathrm{w}), 510(\mathrm{w})$, 422 (w). MS: (ESI-) m/z $=466\left[\mathrm{M}^{2} \mathrm{NEt}_{4}\right]^{-}$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{CrN}_{5} \mathrm{O}_{2} .2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 53.08 ; \mathrm{H}$, 6.36; N, 11.05. Found: C, 52.76; H, 6.33; N, 11.42.

IR-spectrum of 19 :
Agilent Resolutions Pro

Name
 Complex 19 -_

Experimental data for $\mathbf{2 0}$:

According to literature procedure [6] 2.0 mmol of $\mathrm{CoBr}_{2} \mathrm{xH}_{2} \mathrm{O}, 2.0 \mathrm{mmol}$ of ligand $\mathbf{1}$ and 4.0 mmol triethylamine were dissolved in 20 ml of DMF and stirred at RT and air for 20 min . Then 4.42 mmol of $\mathrm{NEt}_{4} \mathrm{Br}$ was added and the solution was stirred at RT under normal atmosphere for additional 12 hours. DMF was removed in vacuo and the residue was dissolved in 30 ml of acetonitrile and filtered. Through adding 30 ml of diethyl ether to the solution and cooling down to $2{ }^{\circ} \mathrm{C}$ a brown precipitate was formed. After filtering, washing with diethyl ether and drying under vacuo the product was separated as a brown powder. Yield 745 mg (56%).

IR (cm^{-1}): 3058 (w), 2984 (w), 2924 (m), 2853(w), 1620 (s$), 1595$ (vs), 1564 (s), 1475 (s), 1393 (s), $1291(\mathrm{~m}), 1183(\mathrm{w}), 1092(\mathrm{w}), 1031(\mathrm{~m}), 950(\mathrm{w}), 760(\mathrm{~s}), 678(\mathrm{~m}), 516(\mathrm{~m}) .{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm}$, dmso$\mathrm{d} 6)=1.16(\mathrm{tr}, J=5.5 \mathrm{~Hz}, 12 \mathrm{H}), 3.20(\mathrm{q}, J=7.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.00-7.07(\mathrm{~m}, 2 \mathrm{H}), 7,94-8.04(\mathrm{~m}, 2 \mathrm{H})$, $8.16(\mathrm{~d}, ~ J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.34(\mathrm{tr}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.85-8.95(\mathrm{~m} .2 \mathrm{H}), 9.85-9.95(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $/$ DEPT135: $\delta(\mathrm{ppm}$, dmso-d6) $=7.8$ (prim., 4 C), 52.0 (sec., 4 C), 122.7 (tert., 2 C),
124.2 (tert., 2 C), 124.8 (tert., 2 C), 128.9 (tert., 2 C), 141.2 (tert., 2 C), 143.0 (quat., 2 C), 152.8 (tert., 2 C), 160.6 (quat., 2 C), 167.5 (quat., 2 C). MS: (ESI-) m/z $=375$ [M-2Br-NEt $\left.]_{4}\right]^{-}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{CoN}_{5} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 45.70$; H, 5.02; N, 10,25. Found: C, 45.47; H, 4.93; N, 9.97.
${ }^{1} \mathrm{H}$-spectrum in DMSO-d6 of 20 :
(
[6] M. Adolph, T.A. Zevaco 介, O. Walter, E. Dinjus, M. Döring, Polyhedron, 2012, 48, 92.
Experimental data for 21:

2.0 mmol of $\mathrm{CoBr}_{2} \mathrm{xH}_{2} \mathrm{O}, 2.0 \mathrm{mmol}$ of ligand 2, 4.0 mmol triethylamine and 4.42 mmol of $\mathrm{NEt}_{4} \mathrm{Br}$ were dissolved in 15 ml of DMF and stirred under air at RT for 12 hours. DMF was removed in vacuo and 20 ml of acetonitrile was added to the residue. A precipitate was formed, which was filtered and washed twice with 20 ml of a $1: 1$ acetonitrile/diethyl ether mixture. After drying under vacuo the product was obtained as a brown powder. Yield 961 mg (65%).

IR (cm^{-1}): 3086 (w), 3051 (w), 2982 (w), 2945 (w), 1626 (vs), 1598 (s), 1558 (s), 1468 (s), 1395 (s), 1285 (m), 1200 (w), 1097 (m), 1049 (w), 975 (m), 925 (w), 887 (w), $760(\mathrm{~m}), 680(\mathrm{~m}), 546(\mathrm{~m})$, $482(\mathrm{w}), 447(\mathrm{w}) .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}\right)=1.18(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}), 3.13(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 8 \mathrm{H})$, $7.83(\operatorname{tr}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.07-8.17(\mathrm{~m}, 4 \mathrm{H}), 9,00(\mathrm{~s}, 2 \mathrm{H}), 9,70(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR} /$ DEPT135: δ (ppm, $\left.\mathrm{CD}_{3} \mathrm{CN}\right)=7.6$ (prim., 4 C), 52.9 (sec., 4 C), 123.3 (tert., 2 C), 124.9 (tert., 2 C), 125.1 (quat., 2 C), 128.4 (tert., 2 C), 140.3 (tert., 2 C), 144.1 (quat., 2 C), 153.0 (tert., 2 C), 161.6
(quat., 2 C), 167.9 (quat., 2C). MS: (ESI-) $\mathrm{m} / \mathrm{z}=602 \quad\left[\mathrm{M}_{-\mathrm{NEt}}^{4}\right.$]. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{CoN}_{5} \mathrm{O}_{2}$: C, 42.53; H, 4.12; N, 9.54. Found: C, 42.08; H, 4.52; N, 10.12 .
${ }^{1} \mathrm{H}$-spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ of $21:$

Experimental data for 22:

$\mathrm{CoBr}_{2} \mathrm{xH}_{2} \mathrm{O}, 2.0 \mathrm{mmol}$ of ligand $\mathbf{3}, 4.0 \mathrm{mmol}$ triethylamine and 4.42 mmol of $\mathrm{NEt}_{4} \mathrm{Br}$ were dissolved in 15 ml of DMF and stirred under air at RT for 12 hours. DMF was removed in vacuo and 50 ml of acetonitrile was added to the residue. A precipitate was formed, which was filtered and washed twice with 20 ml of a $1: 1$ acetonitrile/diethyl ether mixture. After drying under vacuo the product was obtained as a red-brown powder/crystal. For complex 22 red-brown crystals were obtained by slowly adding a small excess of diethyl ether into an acetonitrile solution of 22 and subsequently cooling down to $2{ }^{\circ} \mathrm{C}$. After 2 days small red-brown crystals were formed. Yield 887 mg (62%).

IR (cm^{-1}): 3124 (w), 3054 (w), 2987 (w), 2925 (w), 1631 (vs), 1598 (s), 1558 (vs), 1493 (s), 1478 (s), 1422 (m), 1389 (s), 1318 (s), 1293 (s), 1140 (m), 1094 (w), 1058 (m), 998 (w), 985 (w), 897 (w), $759(\mathrm{~m}), 682(\mathrm{~m}), 616(\mathrm{w}), 506(\mathrm{w}), 459(\mathrm{w}) .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}\right)=1.15-1.21(\mathrm{~m}, 12 \mathrm{H}), 3.14$ $(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 7.83-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{dd}, \mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.20(\mathrm{~m}, 4 \mathrm{H})$, $8,96(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.65-9.74(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR} / \mathrm{DEPT} 135: \delta\left(\mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}\right)=7.6$ (prim., 4 C), 52.9 (sec., 4 C), 117.9 (tert., 1 C), 120.5 (tert., 1 C), 121.8 (tert., 1 C), 125.0 (tert., 1 C),
125.3 (tert., 1 C), 128.5 (tert., 1 C), 128.8 (tert., 1 C), 140.4 (tert., 1 C), 140.5 (tert., 1 C), 143.6 (quat., 1 C), 143.7 (quat., 1 C), 151.1 (quat., 1 C), 153.0 (tert., 1 C), 153.1 (tert., 1 C), 161.2 (quat., 1 C), 161.7 (quat., 1 C), 167.5 (quat., 1 C), 167.7 (quat., 1 C). $\mathrm{MS}:(\mathrm{ESI}-) \mathrm{m} / \mathrm{z}=580$ [$\left.\mathrm{M}_{-N E t}^{4}\right]^{-}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{CoN}_{6} \mathrm{O}_{4}$: C, 43.96; H, 4.40; N, 11.83. Found: C, 43.68; H, 4.41; N, 12.25.
${ }^{1} \mathrm{H}$-spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ of 22:

Experimental data for 23:

2.0 mmol of $\mathrm{CoBr}_{2} \mathrm{xH}_{2} \mathrm{O}, 2.0 \mathrm{mmol}$ of ligand $4,4.0 \mathrm{mmol}$ triethylamine and 4.42 mmol of $\mathrm{NEt}_{4} \mathrm{Br}$ were dissolved in 15 ml of DMF and stirred under air at RT for 12 hours. DMF was removed in vacuo and 50 ml of acetonitrile was added to the residue. A precipitate was formed, which was filtered and washed twice with 20 ml of a $1: 1$ acetonitrile/diethyl ether mixture. After drying under vacuo the product was obtained as a brown powder/crystal. For complex 23 brown crystals were obtained by slowly adding a small excess of diethyl ether into an acetonitrile solution of $\mathbf{2 3}$ and subsequently cooling down to $2^{\circ} \mathrm{C}$. After 2 days small brown crystals were formed. Yield $1025 \mathrm{mg}(74 \%)$.

IR (cm-1): 3077 (w), 2984 (w), 2923 (w), 2858 (w), 1625 (s), 1594 (vs), 1485 (s), 1456 (m), 1404 (s), 1290 (w), 1251 (w), 1178 (w), 1093 (w), 1003 (m), 889 (w), 764 (m), 680 (m), 588 (w), 509 (w), $406(\mathrm{w}) .1 \mathrm{H}-\mathrm{NMR} \delta(\mathrm{ppm}, \mathrm{CD} 3 \mathrm{CN})=1.15-1.20(\mathrm{~m}, 12 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 3.13(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 8 \mathrm{H})$, $7.72-7.90(\mathrm{~m}, 2 \mathrm{H}), 8.02-8.28(\mathrm{~m}, 4 \mathrm{H}), 8.68(\mathrm{~s}, 2 \mathrm{H}), 9.56-9.70(\mathrm{~m}, 2 \mathrm{H}) .13 \mathrm{C}\{1 \mathrm{H}\}-\mathrm{NMR} /$

DEPT135: $\delta($ ppm, CD3CN $)=7.6$ (prim., 4 C), 20,0 (prim., 2 C), 53,0 (sec., 4 C), 124.3 (tert., 2 C), 124.4 (tert., 2 C), 127.7 (tert., 2 C), 127.7 (quat., 2 C), 132.2 (quat., 2 C), 140,0 (tert., 2 C), 142.0 (quat., 2 C), 152.7 (tert., 2 C), 163.1 (quat., 2 C). MS: (ESI-) m/z=561 [M-NEt4]. Anal. Calcd for C28H36CoN5O2.H2O: C, 47.27; H, 5.38; N, 9.84. Found: C, 46.28; H, 5.34; N, 9.71.
${ }^{1} \underline{\mathrm{H} \text {-spectrum in } \mathrm{CD}_{3}} \underline{\mathrm{CN} \text { of } 23:}$

TGA of complex 23 : [($\left.\left.\mathrm{LMe}_{2}\right) \mathrm{CoBr}_{2}\right] \mathrm{NEt}_{4}$ (TGA recorded for the purpose of the recycling study)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

Molecular structure structure of $\mathbf{2 2}$

Molecular structure structure of 23:

Quick evaluation of the operating conditions for the screening tests (propylene oxide with catalyst 10)
Table 1 Setting tests for propylene oxide with catalyst $10\left(\mathrm{Co} / \mathrm{LCl}_{2} / \mathrm{Cl}_{2}\right)^{\mathrm{a}}$

Entry	Mol \% catalyst	$\mathrm{p}(\mathrm{bar})$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Conversion (\%) $^{\mathrm{b}}$	Selectivity of the coupling $^{\mathrm{c}}$
1	0.2	35	60	0	0
2	0.2	35	80	78	$0 / 100$
3	0.2	35	100	94	$0 / 100$
4	0.2	50	80	3	$0 / 100$
5	0.5	35	80	86	$0 / 100$
6	0.1	35	80	71	$0 / 100$

$\quad \begin{aligned} & \text { a }\end{aligned}{\text { Standard reaction conditions: } 10 \mathrm{ml} \text { of Epoxide, } 20 \mathrm{~h}, 80^{\circ} \mathrm{C}}_{{ }^{\mathrm{b}} \text { Conversion }=\mathrm{n}(\text { Monomer units in isolated product) } / \mathrm{n}(\text { epoxide) }}+100$
${ }^{\mathrm{c}}$ Mass of isolated long chain polymers / mass of isolated cyclic monomer

Considering the different reaction parameters for complex $\mathbf{1 0}$ (Table 1), three parameters were firstly investigated. Studying the influence of temperature (Entry $1-3$, from $60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ in $20^{\circ} \mathrm{C}$ steps) revealed that higher temperatures increased the overall conversion up to $94 \% .80{ }^{\circ} \mathrm{C}$ seems to be the lowest temperature necessary to achieve an acceptable conversion.

The second parameter was the amount of carbon dioxide i.e. the epoxide: CO_{2} molar ratio. Two ratio were tested $1: 1$ (entry 2:35 bar, $7 \mathrm{~g} \mathrm{CO}_{2}$) and 1:2 (entry 4: $50,10 \mathrm{~g} \mathrm{CO}_{2}$), showing that higher CO_{2} concentration induces a markedly decreased conversion. This suggests that an excess of CO_{2} inhibits the coupling reaction via either a dilution effect of the reaction medium or a decrease of the catalyst solubility in this CO_{2}-expanded mixture.

The last parameter studied was the influence of the substrate-to-catalyst molar ratio (Entry 5: 0.5 $\mathrm{Mol} \%$ catalyst; Entry 2 : $0.2 \mathrm{Mol} \%$ catalyst and Entry $6: 0.1 \mathrm{Mol} \%$ catalyst) which showed that a lower substrate-to-catalyst molar ratio leads only two a slightly decreased conversion.

PCHC characterization:

${ }^{1} \mathrm{H}$-spectrum in benzene-d6 of PCHC (with traces of dichlormethane: 4.26 ppm) obtained from Table 8 Entry 1:

${ }^{13} \mathrm{C}$-spectrum in chloroform-d1 of PCHC obtained from Table 5 Entry 2:

IR-spectrum of PCHC obtained from Table 5 Entry 2:

Agilent Resolutions Pro

[^0]PC characterization:
${ }^{1}$ H-spectrum in benzene-d6 of PC obtained from Table 5 Entry 14:

IR-spectrum of PC obtained from Table 4 Entry 8:

Agilent Resolutions Pro

[^1]Characterization of products summarized in table 7:

Characterization of 4-phenyl-1,3-dioxolan-2-one (Entry 3):

${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}\right)=3.33(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.73 (dd, J = $7.6 \mathrm{~Hz}, \mathrm{~J}=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-7.00(\mathrm{~m}, 3 \mathrm{H})$.

Characterization of 4-butyl-dioxolan-2-one (Entry 4):

${ }^{\top} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}\right)=0.77-0.82(\mathrm{~m}, 3 \mathrm{H}), 1.15-1.30(\mathrm{~m}, 6 \mathrm{H}), 2.07(\mathrm{td}, \mathrm{J}=5.3 \mathrm{~Hz}, \mathrm{~J}=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.59(\mathrm{~m}, 1 \mathrm{H})$.

${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}\right)=2.42(\mathrm{dd}, \mathrm{J}=11.9 \mathrm{~Hz}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{~J}=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.54(\mathrm{~m}, 1 \mathrm{H})$.

Characterization of 4-phenyloxymethyl-1,3-dioxolan-2-one (Entry 6):

${ }^{\mathrm{T}} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}\right)=2.99(\mathrm{dd}, \mathrm{J}=10.4 \mathrm{~Hz}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, \mathrm{J}=10.4 \mathrm{~Hz}, \mathrm{~J}=3.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.27(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.75(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.82(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H})$.

Characterization of 4-Allyloxymethyl-1,3-dioxolan-2-one (Entry 7):

${ }^{1} \mathrm{H}-\mathrm{NMR} \delta\left(\mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}\right)=2.69(\mathrm{dd}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, \mathrm{J}=10.9 \mathrm{~Hz}, \mathrm{~J}=3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.36(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.71-3.77(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{dd}, \mathrm{J}=10.4 \mathrm{~Hz}, \mathrm{~J}=1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, \mathrm{J}=17.3 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-5.65(\mathrm{~m}, 1 \mathrm{H})$.

Recycle experiments for 23: ${ }^{1}$-spectrum of $\mathbf{2 3}$ in $\mathrm{CD}_{3} \underline{\mathrm{CN}}$:

Typical ${ }^{1}$-spectrum of $\mathbf{2 3}$ in $\mathrm{CD}_{3} \underline{\mathrm{CN}}$ (end of recycling, with traces of propylene carbonate):

[^0]: Name
 Polycyclohexenecarbonate

[^1]: Name
 Propylenecarbonate

