Metal-Assisted Conversion of a N-ylide Mesomeric Betaine into its Carbenic Tautomer: Generation of N-(fluoren-9-yl)imidazol-2-ylidene Complexes

Laure Benhamou,^{*a,b*} Stéphanie Bastin,^{*a,b*} Noël Lugan,^{*a,b*} Guy Lavigne^{**a,b*} and Vincent César^{**a,b*}

^a CNRS, LCC (laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse Cedex 4, France
E-mail: vincent.cesar@lcc-toulouse.fr, guy.lavigne@lcc-toulouse.fr
^b Université de Toulouse, UPS, INPT, 31077 Toulouse, France

Supporting Information

Contents

Table S1. Crystal data and structures refinements for complexes 4, 5, 6, and 7		
¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 1	3	
¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 2	4	
¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 3	5	
¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 4	6	
¹ H and ¹³ C{ ¹ H} NMR spectra of 4' at -60°C	7	
¹³ C DEPT135 NMR spectrum and ¹³ C- ¹ H HMQC analysis of 4' at -60°C	8	
¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 5	9	
¹ H and ¹³ C{ ¹ H} NMR spectra of the reaction between 2 and $[RhCl(COD)]_2$ at -80°C	10	
13 C- 1 H HSQC and HMBC analysis of the reaction between 2 and [RhCl(COD)] ₂ at -80°C	11	
¹ H- ¹ H COSY analysis of the reaction between 2 and [RhCl(COD)] ₂ at -80°C	10	
1H NMR spectrum of the reaction between 2 and [RhCl(COD)] ₂ after returning at 25°C	12	
¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 6	13	
¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 7	14	
¹ H and ¹³ C $\{^{1}H\}$ NMR spectra of 8	15	

Table S1. Crystals data and structures refinments for complexes 4, 5, 6, and 7.

complex	4	5.CHCl ₃	6	7
empirical formula	$C_{25}H_{22}AuClN_2$	C ₃₃ H ₃₄ ClNRh, CHCl ₃	$C_{25}H_{22}AgBrN_2$	$C_{33}H_{33}N_2Rh$
molecular weight (g)	582.86	716.35	818.81	560.52
temperature (K)	100	180	100	173
λ (Å)	0.71069	0.71069	0.71069	0.71069
crystal system	monoclinic	monoclinic	monoclinic	
space group	C 2/c (#15)	P2 ₁ /n (#14)	P -1 (#2)	P2 ₁ /n (#14)
a (Å)	27.8036(11)	12.688(3)	10.4907(13)	17.2079(8)
b (Å)	8.4332(3)	16.274(3)	11.3717(10)	9.2276(9)
c (Å)	12.041(4)	16.218(3)	20.0840(19)	17.4436(11)
α(°)			101.272(8)	
β (°)	102.572(1)	106.45(3)	102.156(12)	103.472(4)
γ(°)			93.563(9)	
volume (Å ³)	4343.1(3)	3211.7(12)	4481.5(7)	2693.6(3)
Z	8	4	2	4
$D_{calcd.}$ (g.cm ⁻³)	1.783	1.481	1.565	1.372
μ (mm ⁻¹)	6.911	0.891	2.645	0.657
F ₀₀₀	2256	1464	1072	1160
θ _{max} (°)	26.4	26.4	28.8	26.4
completeness to θ_{max}	99	99	99	99

¹H NMR spectrum of 4' (400 MHz, CD_2Cl_2 , 214 K)

¹³C DEPT135 NMR of **4'**(105.5 MHz, CD₂Cl₂, 214 K)

10

 ${}^{13}C^{-1}H$ HSQC NMR of the mixture of **5**', **5** and [RhCl(COD)]₂ (500 MHz, CD₂Cl₂, 193 K)

 ${^{13}C^{-1}H}$ HMBC NMR of the mixture of **5**', **5** and [RhCl(COD)]₂ (500 MHz, CD₂Cl₂, 193 K)

11

¹H NMR spectrum of the reaction after returning to 25°C (500 MHz, CD₂Cl₂, 298 K)

