Supporting Information

[Ni(dap)₃]₄[As₁₀Cu₂S₁₈]: a new thioarsenate(II,III) containing the rare [As₃CuS₆] cluster with mixed-valence As²⁺/As³⁺ ions

Xing Liu, Jian Zhou*, Litao An, Guo-Qing Bian, Rongqing Zhao, Zongwen Mo

General Remarks

All analytical grade chemicals were obtained commercially and used without further purification. Elemental analyses (C, H, and N) were performed using a PE2400 II elemental analyzer. The UV/Vis spectra were recorded at room temperature using a computer-controlled PE Lambda 900 UV/Vis spectrometer equipped with an integrating sphere in the wavelength range of 250-800 nm. FT-IR spectra were recorded with a Nicolet Magna-IR 550 spectrometer in dry KBr disks in the 4000-400 cm⁻¹ range. Powder XRD patterns were collected on a D/MAX-3C diffractometer using graphite-mono-chromatized CuKa radiation ($\lambda = 1.5406$ Å).

Crystal Structure Determination

Single-crystal X-ray diffraction data for **1** were recorded on a Bruker APEX II diffractometer using a ω -scan method with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 296(2) K to a maximum 2θ value (53.0°). The structure of **1** was solved by Direct Method of SHELXS-97 and refined by full-matrix least-squares techniques using the SHELXL-97 program. Non-hydrogen atoms were refined with anisotropic temperature parameters. The H atoms bonded to C and N atoms were positioned with idealized geometry and refined with fixed isotropic displacement parameters, but H atom of C7 atom was not dealt with, due to the disorder of C7 atom. The occupancies of disordered C7/C7' are assigned as 50 and 50 %. Relevant crystal and collection data parameters and refinement results can be found in Table S1. Additional details of crystal data in CIF format can be found in the Supporting Information.

	1
formula	$C_{36}H_{120}As_{10}Cu_2N_{24}Ni_4S_{18}$
Fw	2577.88
crystal system	Monoclinic
space group	C2/c
<i>a</i> , Å	34.03(2)
<i>b</i> , Å	11.901(8)
<i>c</i> , Å	23.495(16)
β , deg	94.843(8)
V, Å ³	9480(11)
Ζ	4
<i>Т</i> , К	296(2)
Calcd density,Mg.m ⁻³	1.805
abs coeff, mm ⁻¹	5.121
<i>F</i> (000)	5160
$2\theta(\max)$, deg	53.0
Total reflns collected	29664
Unique reflns	9798
No. of param	433
$R1[I>2\sigma(I)]$	0.0378
wR2(all data)	0.0896

Table S1 Crystallographic data for 1.

$A_{s}(1) S(1)$	2 156(2)	$\frac{Cu(1) S(6)}{Cu(1) S(6)}$	2 2121(10)
As(1)-S(1)	2.130(2)	Cu(1)-S(0)	2.2121(19)
As(1)-S(3)	2.2700(17)	Cu(1)-S(3)	2.2123(17)
As(1)-S(2)	2.2740(10)	U(1)-S(4)	2.2212(10)
As(2)-S(4)	2.1858(19)	N(1) - N(9)	2.112(4)
As(2)-S(3)	2.255(2)	N1(1)-N(7)	2.125(4)
As(2)-As(3)	2.5/83(17)	N1(1)-N(12)	2.127(4)
As(3)-S(5)	2.2062(19)	N1(1)-N(8)	2.129(4)
As(3)-S(2)	2.256(2)	Ni(1)-N(11)	2.132(4)
As(4)-S(6)	2.1957(18)	Ni(1)-N(10)	2.142(4)
As(4)-S(8)	2.273(2)	Ni(2)-N(4)	2.092(4)
As(4)-S(7)	2.3051(17)	Ni(2)-N(2)	2.112(4)
As(5)-S(9)	2.1668(17)	Ni(2)-N(6)	2.114(4)
As(5)-S(7)	2.2876(17)	Ni(2)-N(1)	2.136(4)
Ni(2)-N(3)	2.146(4)	Ni(2)-N(5)	2.143(4)
S(1)-As(1)-S(3)	101.88(8)	S(6)-As(4)-S(7)	101.71(4)
S(1)-As(1)-S(2)	103.08(7)	S(8)-As(4)-S(7)	101.50(6)
S(3)-As(1)-S(2)	95.13(7)	S(9)-As(5)-S(7)	103.39(7)
S(4)-As(2)-S(3)	106.04(6)	S(9)-As(5)-S(8)#1	99.85(6)
S(4)-As(2)-As(3)	105.18(4)	S(7)-As(5)-S(8)#1	101.62(5)
S(3)-As(2)-As(3)	100.01(5)	S(6)-Cu(1)-S(5)	123.71(6)
S(5)-As(3)-S(2)	104.66(6)	S(6)-Cu(1)-S(4)	123.02(5)
S(5)-As(3)-As(2)	104.21(5)	S(5)-Cu(1)-S(4)	112.77(7)
S(2)-As(3)-As(2)	99.77(4)	N(9)-Ni(1)-N(7)	92.99(16)
S(6)-As(4)-S(8)	95.50(5)	N(9)-Ni(1)-N(12)	93.20(17)
N(4)-Ni(2)-N(6)	91.40(16)	N(7)-Ni(1)-N(12)	171.64(18)
N(2)-Ni(2)-N(6)	94.83(15)	N(9)-Ni(1)-N(8)	93.06(15)
N(4)-Ni(2)-N(1)	172.22(15)	N(7)-Ni(1)-N(8)	81.34(16)
N(2)-Ni(2)-N(1)	80.16(15)	N(12)-Ni(1)-N(8)	92.72(16)
N(6)-Ni(2)-N(1)	95.37(16)	N(9)-Ni(1)-N(11)	171.19(17)
N(4)-Ni(2)-N(5)	92.88(16)	N(7)-Ni(1)-N(11)	93.26(19)
N(2)-Ni(2)-N(5)	170.87(15)	N(12)-Ni(1)-N(11)	81.2(2)
N(6)-Ni(2)-N(5)	81.26(15)	N(8)-Ni(1)-N(11)	94.01(17)
N(1)-Ni(2)-N(5)	91.94(16)	N(9)-Ni(1)-N(10)	81.43(15)
N(4)-Ni(2)-N(3)	80.37(15)	N(7)-Ni(1)-N(10)	91.91(17)
N(2)-Ni(2)-N(3)	93.72(15)	N(12)-Ni(1)-N(10)	94.56(16)
N(6)-Ni(2)-N(3)	168.66(15)	N(8)-Ni(1)-N(10)	171.09(16)
N(1)-Ni(2)-N(3)	93.42(15)	N(11)-Ni(1)-N(10)	92.16(17)
N(5)-Ni(2)-N(3)	91.30(15)	N(4)-Ni(2)-N(2)	95.47(15)

Table S2. Selected Bond lengths [Å] and angles [deg] for 1

Fig. S1 Simulated and experimental powder XRD patterns of 1.

Fig. S2. IR spectrum of 1.

The appearance of the resonance band centered at $3135-3426 \text{ cm}^{-1}$ attributed to the v(N-H) vibration of amines confirms the presence of organic ammine groups.

Fig. S3 EDS spectrum of 1.