A series of rare earth complexes with novel 3D non-interpenetrating networks:

Synthesisis, structure, magnetic, optical properties.

Xiao-Hua wei^a, Lin-Yan Yang^a, Sheng-Yun Liao, Ming Zhang^a, Jin-Lei Tian^a,

Pei-Yao, Du^a, Wen Gu^{a,b}*, Xin Liu^{a,b}*

^aDepartment of Chemistry, Nankai University, Tianjin, China, 300071

^bTianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Tianjin , China, 300071

*Correspondence Author. Fax: +86-22-23502779. Tel: 23505020. E-mail: liuxin64@nankai.edu.cn

Table S1. Selected bonds (A) and angles (°) for 1				
Bond	Dist	Bond	Dist	
O(5)-Pr(1)#1	2.361(7)	O(8)-Pr(1)#2	2.514(7)	
O(9)-Pr(1)#3	2.426(8)	O(9)-Pr(1)#2	2.957(8)	
O(3)-Pr(1)#4	2.449(7)	O(2)-Pr(1)#5	2.455(7)	
Pr(1)-O(5)#1	2.361(7)	Pr(1)-O(6)	2.379(6)	
Pr(1)-O(9)#6	2.426(8)	Pr(1)-O(3)#7	2.449(7)	
Pr(1)-O(2)#8	2.455(7)	Pr(1)-O(8)#2	2.514(8)	
Pr(1)-O(7)	2.627(9)	Pr(1)-O(9)#2	2.957(8)	
Angle	(°)	Angle	(°)	
Pr(1)#3-O(9)-Pr(1)#2	104.2(2)	O(5)#1-Pr(1)-O(6)	86.4(2)	
O(5)#1-Pr(1)-O(9)#6	140.5(3)	O(6)-Pr(1)-O(9)#6	89.2(3)	
O(5)#1-Pr(1)-O(3)#7	146.7(3)	O(6)-Pr(1)-O(3)#7	86.0(2)	
O(9)#6-Pr(1)-O(3)#7	71.7(3)	O(5)#1-Pr(1)-O(2)#8	77.3(3)	
O(6)-Pr(1)-O(2)#8	130.6(3)	O(9)#6-Pr(1)-O(2)#8	76.1(3)	
O(3)#7-Pr(1)-O(2)#8	130.4(3)	O(5)#1-Pr(1)-O(8)#2	82.6(2)	
O(6)-Pr(1)-O(8)#2	141.3(3)	O(9)#6-Pr(1)-O(8)#2	121.8(3)	
O(3)#7-Pr(1)-O(8)#2	83.3(2)	O(2)#8-Pr(1)-O(8)#2	82.7(3)	
O(5)#1-Pr(1)-O(7)	73.8(3)	O(6)-Pr(1)-O(7)	71.3(3)	
O(9)#6-Pr(1)-O(7)	140.6(3)	O(3)#7-Pr(1)-O(7)	73.0(3)	
O(2)#8-Pr(1)-O(7)	142.2(3)	O(8)#2-Pr(1)-O(7)	70.0(3)	
O(5)#1-Pr(1)-O(9)#2	116.9(2)	O(6)-Pr(1)-O(9)#2	156.3(2)	
O(9)#6-Pr(1)-O(9)#2	75.8(2)	O(3)#7-Pr(1)-O(9)#2	72.1(2)	
O(2)#8-Pr(1)-O(9)#2	64.0(2)	O(8)#2-Pr(1)-O(9)#2	46.4(3)	
O(7)-Pr(1)-O(9)#2	109.1(2)			

Supporting Information

6

Symmetry transformations used to generate equivalent atoms: #1 -x+2,y,-z+3/2; #2 -x+2,-y+1,-z+2 #3 x,y-1,z ; #4 -x+3/2,y-1/2,-z+3/2; #5 x-1/2,-y+3/2,z-1/2; #6 x,y+1,z; #7 -x+3/2,y+1/2,-z+3/2; #8 x+1/2,-y+3/2,z+1/2.

Bond	Dist	Bond	Dist
O(1)-Nd(1)#1	2.417(5)	O(2)-Nd(1)#2	2.412(5)
O(6)-Nd(1)#3	2.383(6)	O(6)-Nd(1)#4	2.966(6)
O(10)-Nd(1)	2.594(6)	O(5)-Nd(1)#4	2.461(6)
Nd(1)-O(7)	2.328(4)	Nd(1)-O(8)#5	2.337(5)
Nd(1)-O(6)#6	2.383(6)	Nd(1)-O(2)#7	2.412(5)
Nd(1)-O(1)#1	2.417(5)	Nd(1)-O(5)#8	2.461(6)
Nd(1)-O(6)#8	2.966(6)	O(8)-Nd(1)#5	2.337(5)
Angle	(°)	Angle	(°)
Nd(1)#3-O(6)-Nd(1)#4	104.35(18)	O(7)-Nd(1)-O(8)#5	85.32(16)
O(7)-Nd(1)-O(6)#6	139.62(19)	O(8)#5-Nd(1)-O(6)#6	88.62(18)
O(7)-Nd(1)-O(2)#7	146.91(19)	O(8)#5-Nd(1)-O(2)#7	86.63(17)
O(6)#6-Nd(1)-O(2)#7	72.04(18)	O(7)-Nd(1)-O(1)#1	77.64(18)
O(8)#5-Nd(1)-O(1)#1	130.05(18)	O(6)#6-Nd(1)-O(1)#1	76.10(17)
O(2)#7-Nd(1)-O(1)#1	130.14(17)	O(7)-Nd(1)-O(5)#8	83.18(17)
O(8)#5-Nd(1)-O(5)#8	142.8(2)	O(6)#6-Nd(1)-O(5)#8	122.0(2)
O(2)#7-Nd(1)-O(5)#8	84.06(17)	O(1)#1-Nd(1)-O(5)#8	81.49(19)
O(7)-Nd(1)-O(10)	74.4(2)	O(8)#5-Nd(1)-O(10)	72.19(19)
O(6)#6-Nd(1)-O(10)	140.46(18)	O(2)#7-Nd(1)-O(10)	72.6(2)
O(1)#1-Nd(1)-O(10)	142.30(19)	O(5)#8-Nd(1)-O(10)	70.6(2)
O(7)-Nd(1)-O(6)#8	118.44(15)	O(8)#5-Nd(1)-O(6)#8	155.94(14)
O(6)#6-Nd(1)-O(6)#8	75.65(18)	O(2)#7-Nd(1)-O(6)#8	71.38(15)
O(1)#1-Nd(1)-O(6)#8	64.14(15)	O(5)#8-Nd(1)-O(6)#8	46.55(18)
O(10)-Nd(1)-O(6)#8	108.80(17)		

Table S2. Selected bonds (Å) and angles (°) for 2

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1; #2 x-1/2,y+1/2,z; #3 -x+1/2,y+1,-z+3/2; #4x,-y+3/2,z+1/2; #5 -x+1/2,y+0,-z+3/2; #6 -x+1/2,y-1,-z+3/2; #7 x+1/2,y-1/2,z; #8 x,-y+3/2,z-1/2

		() 0 ()	
Bond	Dist	Bond	Dist
O(1)-Sm(1)#1	2.435(5)	O(2)-Sm(1)#2	2.375(6)
O(5)-Sm(1)#3	2.311(5)	O(8)-Sm(1)#4	2.386(6)
O(7)-Sm(1)#5	2.418(6)	Sm(1)-O(5)#3	2.311(5)
Sm(1)-O(6)	2.347(5)	Sm(1)-O(2)#6	2.375(6)
Sm(1)-O(8)#7	2.386(6)	Sm(1)-O(7)#5	2.418(6)
Sm(1)-O(1)#8	2.435(5)	Sm(1)-O(9)	2.580(8)
Angle	(°)	Angle	(°)
O(5)#3-Sm(1)-O(6)	83.91(18)	O(5)#3-Sm(1)-O(2)#6	149.1(2)
O(6)-Sm(1)-O(2)#6	87.42(19)	O(5)#3-Sm(1)-O(8)#7	135.7(2)
O(6)-Sm(1)-O(8)#7	87.1(2)	O(2)#6-Sm(1)-O(8)#7	73.1(2)
O(5)#3-Sm(1)-O(7)#5	85.2(2)	O(6)-Sm(1)-O(7)#5	144.7(2)
O(2)#6-Sm(1)-O(7)#5	84.9(2)	O(8)#7-Sm(1)-O(7)#5	123.0(2)
O(5)#3-Sm(1)-O(1)#8	76.7(2)	O(6)-Sm(1)-O(1)#8	128.9(2)
O(2)#6-Sm(1)-O(1)#8	130.0(2)	O(8)#7-Sm(1)-O(1)#8	75.83(19)
O(7)#5-Sm(1)-O(1)#8	80.3(2)	O(5)#3-Sm(1)-O(9)	74.9(2)
O(2)#6-Sm(1)-O(9)	74.2(2)	O(8)#7-Sm(1)-O(9)	142.1(2)
O(7)#5-Sm(1)-O(9)	72.0(2)	O(1)#8-Sm(1)-O(9)	141.5(2)

 Table S3. Selected bonds (Å) and angles (°) for 3

Symmetry transformations used to generate equivalent atoms: #1 x+1/2, -y+2, z+1/2; #2

-x+1,y+1/2,-z+1/2; #3 -x+1/2,y+0,-z+1/2; #4 x,y+1,z; #5 -x+1/2,-y+5/2,-z; #6 -x+1,y-1/2,-z+1/2; #7 x,y-1,z; #8 x-1/2,-y+2,z-1/2.

Table 54. Selected bolids (A) and angles () for 4				
Bond	Dist	Bond	Dist	
O(5)-Eu(1)#1	2.310(6)	O(6)-Eu(1)#2	2.318(6)	
Eu(1)-O(5)#3	2.310(6)	Eu(1)-O(6)#2	2.318(6)	
Eu(1)-O(8)#4	2.353(8)	Eu(1)-O(2)#5	2.358(8)	
Eu(1)-O(1)#6	2.397(7)	Eu(1)-O(9)	2.526(9)	
Eu(1)-O(8)	3.003(8)	O(2)-Eu(1)#7	2.358(8)	
O(1)-Eu(1)#8	2.397(7)	O(8)-Eu(1)#4	2.353(8)	
Angle	(°)	Angle	(°)	
O(5)#3-Eu(1)-O(6)#2	83.0(2)	O(5)#3-Eu(1)-O(8)#4	133.2(3)	
O(6)#2-Eu(1)-O(8)#4	85.1(3)	O(5)#3-Eu(1)-O(2)#5	150.7(3)	
O(6)#2-Eu(1)-O(2)#5	88.0(3)	O(8)#4-Eu(1)-O(2)#5	73.1(3)	
O(5)#3-Eu(1)-O(1)#6	75.8(3)	O(6)#2-Eu(1)-O(1)#6	126.4(3)	
O(8)#4-Eu(1)-O(1)#6	75.7(2)	O(2)#5-Eu(1)-O(1)#6	130.4(3)	
O(5)#3-Eu(1)-O(9)	75.8(3)	O(6)#2-Eu(1)-O(9)	73.7(3)	
O(8)#4-Eu(1)-O(9)	142.0(3)	O(2)#5-Eu(1)-O(9)	74.9(3)	
O(1)#6-Eu(1)-O(9)	142.1(3)	O(5)#3-Eu(1)-O(8)	120.3(2)	
O(6)#2-Eu(1)-O(8)	156.7(2)	O(8)#4-Eu(1)-O(8)	77.7(3)	
O(2)#5-Eu(1)-O(8)	72.2(2)	O(1)#6-Eu(1)-O(8)	64.2(2)	
O(9)-Eu(1)-O(8)	111.2(2)	O(5)#3-Eu(1)-Eu(1)#4	138.20(19)	
O(6)#2-Eu(1)-Eu(1)#4	127.62(18)	O(8)#4-Eu(1)-Eu(1)#4	44.4(2)	
O(2)#5-Eu(1)-Eu(1)#4	67.52(18)	O(1)#6-Eu(1)-Eu(1)#4	63.19(17)	
O(9)-Eu(1)-Eu(1)#4	134.6(2)	O(8)-Eu(1)-Eu(1)#4	33.26(14)	
Eu(1)#4-O(8)-Eu(1)	102.3(3)			

Table S4. Selected bonds (Å) and angles (°) for 4

Symmetry transformations used to generate equivalent atoms: #1 x,-y+2,z-1/2; #2 -x+1,-y+2,-z+1; #3 x,-y+2,z+1/2; #4 -x+1,-y+1,-z+1; #5 x+1/2,-y+3/2,z+1/2; #6 -x+1/2,y-1/2,-z+1/2; #7 x-1/2,-y+3/2,z-1/2; #8 -x+1/2,y+1/2,-z+1/2.

Bond	Dist	Bond	Dist
O(7)-Gd(1)#1	2.379(9)	O(1)-Gd(1)#3	2.424(10)
O(3)-Gd(1)#4	2.319(7)	O(4)-Gd(1)#5	2.322(8)
Gd(1)-O(2)#4	2.328(9)	Gd(1)-O(3)#2	2.319(7)
Gd(1)-O(4)#6	2.322(8)	Gd(1)-O(7)#1	2.379(9)
Gd(1)-O(8)	2.378(10)	Gd(1)-O(1)#7	2.424(10)
Gd(1)-O(9)	2.841(6)	O(9)-Gd(1)#8	2.841(6)
Angle	(°)	Angle	(°)
O(2)#4-Gd(1)-O(3)#2	85.4(3)	O(2)#4-Gd(1)-O(4)#6	141.4(4)
O(3)#2-Gd(1)-O(4)#6	88.2(3)	O(2)#4-Gd(1)-O(7)#1	77.8(3)
O(3)#2-Gd(1)-O(7)#1	135.4(4)	O(4)#6-Gd(1)-O(7)#1	80.5(3)
O(2)#4-Gd(1)-O(8)	73.1(4)	O(3)#2-Gd(1)-O(8)	84.3(3)
O(4)#6-Gd(1)-O(8)	143.9(3)	O(7)#1-Gd(1)-O(8)	127.7(3)
O(2)#4-Gd(1)-O(1)#7	123.3(3)	O(3)#2-Gd(1)-O(1)#7	143.5(4)
O(4)#6-Gd(1)-O(1)#7	81.6(3)	O(7)#1-Gd(1)-O(1)#7	77.3(4)
O(8)-Gd(1)-O(1)#7	83.8(3)	O(2)#4-Gd(1)-O(9)	72.5(3)
O(3)#2-Gd(1)-O(9)	69.1(3)	O(4)#6-Gd(1)-O(9)	69.8(3)
O(7)#1-Gd(1)-O(9)	66.5(3)	O(8)-Gd(1)-O(9)	137.6(3)
O(1)#7-Gd(1)-O(9)	136.5(2)	Gd(1)#8-O(9)-Gd(1)	121.3(4)

Table S5. Selected bonds (Å) and angles (°) for 5 $\,$

Symmetry transformations used to generate equivalent atoms:#1 -x+2,-y+1,-z+2; #2 -x+3/2,y-1/2,-z+3/2; #3 x-1/2,-y+1/2,z-1/2; #4 -x+3/2,y+1/2,-z+3/2; #5 x-1/2,y+1/2,z; #6 x+1/2,y-1/2,z; #7 x+1/2,-y+1/2,z+1/2; #8 -x+2,y,-z+3/2.

Bond	Dist	Bond	Dist
O(1)-Tb(1)#1	2.357(7)	O(2)-Tb(1)#2	2.318(7)
O(8)-Tb(1)#3	2.265(6)	O(6)-Tb(1)#4	2.373(7)
O(5)-Tb(1)#5	2.305(8)	Tb(1)-O(8)#3	2.265(6)
Tb(1)-O(7)	2.297(6)	Tb(1)-O(5)#6	2.305(8)
Tb(1)-O(2)#7	2.318(7)	Tb(1)-O(1)#8	2.357(7)
Tb(1)-O(6)#4	2.373(7)	Tb(1)-O(9)	2.494(9)
	Angle	(°)	Angle
O(8)#3-Tb(1)-O(7)	83.2(2)	O(8)#3-Tb(1)-O(5)#6	133.6(3)
O(7)-Tb(1)-O(5)#6	85.7(3)	O(8)#3-Tb(1)-O(2)#7	149.9(3)
O(7)-Tb(1)-O(2)#7	87.2(2)	O(5)#6-Tb(1)-O(2)#7	73.5(3)
O(8)#3-Tb(1)-O(1)#8	77.0(3)	O(7)-Tb(1)-O(1)#8	130.0(3)
O(5)#6-Tb(1)-O(1)#8	76.4(3)	O(2)#7-Tb(1)-O(1)#8	129.2(3)
O(8)#3-Tb(1)-O(6)#4	87.0(2)	O(7)-Tb(1)-O(6)#4	145.8(3)
O(5)#6-Tb(1)-O(6)#4	123.4(3)	O(2)#7-Tb(1)-O(6)#4	85.1(3)
O(1)#8-Tb(1)-O(6)#4	78.6(3)	O(8)#3-Tb(1)-O(9)	76.5(3)
O(7)-Tb(1)-O(9)	73.8(3)	O(5)#6-Tb(1)-O(9)	141.6(3)
O(2)#7-Tb(1)-O(9)	73.4(3)	O(1)#8-Tb(1)-O(9)	141.2(3)
O(6)#4-Tb(1)-O(9)	72.1(3)	C(21)-O(7)-Tb(1)	144.5(6)

 Table S6. Selected bonds (Å) and angles (°) for 6

Symmetry transformations used to generate equivalent atoms: #1 x+1/2,-y+1,z+1/2; #2 -x+1,y-1/2,-z+1/2; #3 -x+1/2,y+0,-z+1/2; #4 -x+1/2,-y+1/2,-z; #5 x,y-1,z;

#6 x,y+1,z; #7 -x+1,y+1/2,-z+1/2; #8 x-1/2,-y+1,z-1/2

Bond	Dist.	Bond	Dist
O(7)-Dy(1)#1	2.341(4)	O(2)-Dy(1)#2	2.299(4)
O(1)-Dy(1)#3	2.361(4)	O(3)-Dy(1)#4	2.297(4)
O(4)-Dy(1)#5	2.247(4)	Dy(1)-O(4)#6	2.247(4)
Dy(1)-O(8)	2.293(4)	Dy(1)-O(3)#2	2.297(4)
Dy(1)-O(2)#4	2.299(4)	Dy(1)-O(7)#1	2.341(4)
Dy(1)-O(1)#7	2.361(4)	Dy(1)-O(10)	2.467(5)
Angle	(°)	Angle	(°)
O(4)#6-Dy(1)-O(8)	151.72(17)	O(4)#6-Dy(1)-O(3)#2	80.89(15)
O(8)-Dy(1)-O(3)#2	89.41(16)	O(4)#6-Dy(1)-O(2)#4	129.28(17)
O(8)-Dy(1)-O(2)#4	75.20(16)	O(3)#2-Dy(1)-O(2)#4	83.73(16)
O(4)#6-Dy(1)-O(7)#1	76.02(16)	O(8)-Dy(1)-O(7)#1	129.39(15)
O(3)#2-Dy(1)-O(7)#1	127.17(17)	O(2)#4-Dy(1)-O(7)#1	75.82(15)
O(4)#6-Dy(1)-O(1)#7	89.63(15)	O(8)-Dy(1)-O(1)#7	84.59(16)
O(3)#2-Dy(1)-O(1)#7	147.86(17)	O(2)#4-Dy(1)-O(1)#7	124.60(17)
O(7)#1-Dy(1)-O(1)#7	78.98(16)	O(4)#6-Dy(1)-O(10)	75.42(18)
O(8)-Dy(1)-O(10)	76.39(17)	O(3)#2-Dy(1)-O(10)	74.44(17)
O(2)#4-Dy(1)-O(10)	144.09(17)	O(7)#1-Dy(1)-O(10)	140.01(17)

Table S7. Selected bonds (Å) and angles (°) for 7 $\,$

Symmetry transformations used to generate equivalent atoms:#1 -x+2,-y+1,-z+2; #2 -x+3/2,y-1/2,-z+3/2; #3 x-1/2,-y+1/2,z-1/2; #4 -x+3/2,y+1/2,-z+3/2;

#5 x-1/2,y+1/2,z; #6 x+1/2,y-1/2,z; #7 x+1/2,-y+1/2,z+1/2.

Figure S1. XRPD patterns of 1-7 compared with a simulated pattern.

Figure S2. TG curves for compounds 2, 4, 5, 6, 7

Figure S3. Luminescence decay curves for complexes 2(a), 3(b), 4(c), 5(d) were obtained in the solid state at 298 K. The scattering points are experimental data and the solid lines are the fitting results.

Figure. S4 Temperature dependence of the $\chi_M T(\bullet)$ product and $\chi_M(\bullet)$ for 7(a), 4(b), 5(c)