Supporting Information

The New type of Complex Alkali and Alkaline Earth Metal Borates with Isolated $(B_{12}O_{24})^{12}$ Anionic Group

Hongping Wu,^{*,a} Hongwei Yu,^{a,b} Shilie Pan,^{*,a} Anqing Jiao,^{a,b} Jian Han,^a Shujuan Han^a, Hongyi Li^a

^aKey Laboratory of Functional Materials and Devices for Special Environments of CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices; Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

To whom correspondence should be addressed. E-mail: wuhp@ms.xjb.ac.cn (Hongping Wu); slpan@ms.xjb.ac.cn (Shilie Pan).

, ,	, 10 0 4				<i>c</i> 1
Atom	Х	у	Z	U(eq)	BVS
K(1)	0	0	0	17(1)	0.957
K(2)	3333	6667	-59(1)	21(1)	1.054
Li(1)	3333	6667	1667	18(1)	1.084
Li(2)	3333	6667	-1643(2)	18(1)	0.817
Li(3)	7369(3)	501(3)	-508(1)	16(1)	0.917
B(1)	5035(2)	4920(2)	-1658(1)	9(1)	3.035
B(2)	6623(2)	7365(2)	-872(1)	10(1)	3.007
O(1)	5141(1)	6154(1)	-1164(1)	12(1)	2.014
O(2)	1859(1)	2358(1)	1148(1)	11(1)	2.032
O(3)	3313(1)	8811(1)	1320(1)	9(1)	1.974
O(4)	6613(1)	8234(1)	-335(1)	11(1)	2.153

Table S1(a). Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for Li₃KB₄O₈. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ii} tensor.

Table S1(b). Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for LiNa₂Sr₈B₁₂O₂₄F₆Cl. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	Х	у	Z	U(eq)	BVS
Sr(1)	6968(1)	7428(1)	1256(1)	10(1)	1.985
Sr(2)	6667	3333	1073(1)	9(1)	2.204
Na(1)	3333	6667	388(2)	24(1)	0.952
Li(1)	0	0	0	26(6)	1.022
B(1)	3965(6)	3774(6)	639(2)	9(1)	2.995
B(2)	6933(6)	8525(6)	15(2)	7(1)	3.033
F(1)	9655(3)	8069(3)	1476(1)	13(1)	1.065
Cl(1)	3333	6667	1667	21(1)	0.671
O(1)	7906(4)	7926(4)	270(1)	9(1)	2.079
O(2)	6003(4)	8716(4)	468(1)	9(1)	2.090
O(3)	4917(4)	4629(4)	1053(1)	10(1)	2.038
O(4)	8421(4)	5761(4)	377(1)	11(1)	1.961

K(1)-O(4)	2.7817(10)	O(4)-K(1)-O(4)#4	65.446(15)
K(1)-O(4)#1	2.7817(10)	O(4)#1-K(1)-O(4)#4	114.554(15)
K(1)-O(4)#2	2.7817(10)	O(4)#2-K(1)-O(4)#4	65.446(15)
K(1)-O(4)#3	2.7817(10)	O(4)#3-K(1)-O(4)#4	114.554(15)
K(1)-O(4)#4	2.7817(10)	O(4)-K(1)-O(4)#5	114.554(14)
K(1)-O(4)#5	2.7817(10)	O(4)#1-K(1)-O(4)#5	65.446(15)
K(1)-O(2)#1	3.0080(11)	O(4)#2-K(1)-O(4)#5	114.554(15)
K(2)-O(4)#6	2.6729(10)	O(4)#3-K(1)-O(4)#5	65.446(15)
K(2)-O(4)#7	2.6729(10)	O(4)#4-K(1)-O(4)#5	180
K(2)-O(4)	2.6729(10)	O(4)-K(1)-O(2)#1	48.12(3)
K(2)-O(1)#7	2.9183(11)	O(4)#1-K(1)-O(2)#1	131.88(3)
K(2)-O(1)#6	2.9183(11)	O(4)#2-K(1)-O(2)#1	115.07(3)
K(2)-O(1)	2.9183(11)	O(4)#3-K(1)-O(2)#1	64.93(3)
Li(1)-O(3)#10	2.0990(10)	O(4)#4-K(1)-O(2)#1	106.95(3)
Li(1)-O(3)	2.0990(10)	O(4)#5-K(1)-O(2)#1	73.05(3)
Li(1)-O(3)#6	2.0990(10)	O(4)#6-K(2)-O(4)#7	115.982(15)
Li(1)-O(3)#7	2.0990(10)	O(4)#6-K(2)-O(4)	115.982(15)
Li(1)-O(3)#11	2.0990(10)	O(4)#7-K(2)-O(4)	115.982(15)
Li(1)-O(3)#12	2.0990(10)	O(4)#6-K(2)-O(1)#7	74.18(3)
Li(2)-O(1)#6	2.162(2)	O(4)#7-K(2)-O(1)#7	49.75(3)
Li(2)-O(1)#7	2.162(2)	O(4)-K(2)-O(1)#7	117.66(4)
Li(2)-O(1)	2.162(2)	O(4)#6-K(2)-O(1)#6	49.75(3)
Li(2)-O(2)#18	2.251(2)	O(4)#7-K(2)-O(1)#6	117.66(4)
Li(2)-O(2)#19	2.251(2)	O(4)-K(2)-O(1)#6	74.18(3)
Li(2)-O(2)#20	2.251(2)	O(1)#7-K(2)-O(1)#6	70.49(4)
Li(3)-O(4)	1.872(3)	O(4)#6-K(2)-O(1)	117.66(4)
Li(3)-O(4)#4	1.907(3)	O(4)#7-K(2)-O(1)	74.18(3)
Li(3)-O(3)#8	1.938(3)	O(4)-K(2)-O(1)	49.75(3)
Li(3)-O(2)#3	2.135(3)	O(1)#7-K(2)-O(1)	70.49(4)
B(1)-O(1)	1.4622(16)	O(1)#6-K(2)-O(1)	70.49(4)
B(1)-O(3)#3	1.4652(16)	O(4)#6-K(2)-O(3)	69.79(3)
B(1)-O(3)#22	1.4812(16)	O(4)#7-K(2)-O(3)	130.85(3)
B(1)-O(2)#20	1.4846(17)	O(4)-K(2)-O(3)	100.58(3)
B(2)-O(4)	1.3297(18)	O(1)#7-K(2)-O(3)	136.01(3)
B(2)-O(1)	1.3845(17)	O(1)#6-K(2)-O(3)	102.64(3)
B(2)-O(2)#1	1.3999(17)	O(1)-K(2)-O(3)	150.26(2)
			-

Table S2(a). Selected bond lengths (Å) and angles (deg) for Li₃KB₄O₈.

O(4)-K(1)-O(4)#1	180.00(4)	O(3)#10-Li(1)-O(3)	180
O(4)-K(1)-O(4)#2	114.554(15)	O(3)#10-Li(1)-O(3)#6	70.05(2)
O(4)#1-K(1)-O(4)#2	65.446(15)	O(3)-Li(1)-O(3)#6	109.95(2)
O(4)-K(1)-O(4)#3	65.446(15)	O(3)#10-Li(1)-O(3)#7	70.05(2)
O(4)#1-K(1)-O(4)#3	114.554(15)	O(1)#6-Li(2)-O(2)#20	158.77(4)
O(4)#2-K(1)-O(4)#3	180	O(1)#7-Li(2)-O(2)#20	96.95(4)
O(3)-Li(1)-O(3)#7	109.95(2)	O(1)-Li(2)-O(2)#20	64.46(4)
O(3)#6-Li(1)-O(3)#7	109.95(2)	O(2)#18-Li(2)-O(2)#20	99.36(13)
O(3)#10-Li(1)-O(3)#11	109.95(2)	O(2)#19-Li(2)-O(2)#20	99.36(13)
O(3)-Li(1)-O(3)#11	70.05(2)	O(4)-Li(3)-O(4)#4	105.47(12)
O(3)#6-Li(1)-O(3)#11	180	O(4)-Li(3)-O(3)#8	120.95(13)
O(3)#7-Li(1)-O(3)#11	70.05(2)	O(4)#4-Li(3)-O(3)#8	131.18(14)
O(3)#10-Li(1)-O(3)#12	109.95(2)	O(4)-Li(3)-O(2)#3	118.76(13)
O(3)-Li(1)-O(3)#12	70.05(2)	O(4)#4-Li(3)-O(2)#3	100.64(12)
O(3)#6-Li(1)-O(3)#12	70.05(2)	O(3)#8-Li(3)-O(2)#3	70.95(9)
O(3)#7-Li(1)-O(3)#12	180	O(1)-B(1)-O(3)#3	109.96(10)
O(3)#11-Li(1)-O(3)#12	109.95(2)	O(1)-B(1)-O(3)#22	112.29(10)
O(1)#6-Li(2)-O(1)#7	102.32(13)	O(3)#3-B(1)-O(3)#22	109.71(12)
O(1)#6-Li(2)-O(1)	102.32(13)	O(1)-B(1)-O(2)#20	106.09(10)
O(1)#7-Li(2)-O(1)	102.32(13)	O(3)#3-B(1)-O(2)#20	112.71(10)
O(1)#6-Li(2)-O(2)#18	96.95(4)	O(3)#22-B(1)-O(2)#20	106.02(10)
O(1)#7-Li(2)-O(2)#18	64.46(4)	O(4)-B(2)-O(1)	120.98(12)
O(1)-Li(2)-O(2)#18	158.77(4)	O(4)-B(2)-O(2)#1	120.44(12)
O(1)#6-Li(2)-O(2)#19	64.46(4)	O(1)-B(2)-O(2)#1	118.57(12)
O(1)#7-Li(2)-O(2)#19	158.77(4)	O(2)#18-Li(2)-O(2)#19	99.36(13)
O(1)-Li(2)-O(2)#19	96.95(4)		

Symmetry transformations used to generate equivalent atoms:

Sr(1)-F(1)	2.413(3)	F(1)#1-Sr(1)-O(1)	92.44(9)
Sr(1)-O(3)	2.478(3)	F(1)-Sr(1)-F(1)#2	68.20(10)
Sr(1)-F(1)#1	2.502(3)	O(3)-Sr(1)-F(1)#2	63.49(10)
Sr(1)-O(1)	2.521(4)	F(1)#1-Sr(1)-F(1)#2	124.69(4)
Sr(1)-F(1)#2	2.571(3)	O(1)-Sr(1)-F(1)#2	123.05(10)
Sr(1)-O(3)#3	2.616(4)	F(1)-Sr(1)-O(3)#3	83.08(9)
Sr(1)-O(2)	2.692(3)	O(3)-Sr(1)-O(3)#3	113.48(11)
Sr(1)-Cl(1)	3.3642(14)	F(1)#1-Sr(1)-O(3)#3	62.51(9)
Sr(2)-O(3)#6	2.562(3)	O(1)-Sr(1)-O(3)#3	154.45(10)
Sr(2)-O(3)#7	2.562(3)	F(1)#2-Sr(1)-O(3)#3	73.19(10)
Sr(2)-O(3)	2.562(3)	F(1)-Sr(1)-O(2)	128.11(9)
Sr(2)-F(1)#8	2.572(3)	O(3)-Sr(1)-O(2)	95.22(10)
Sr(2)-F(1)#5	2.572(3)	F(1)#1-Sr(1)-O(2)	75.97(9)
Sr(2)-F(1)#2	2.572(3)	O(1)-Sr(1)-O(2)	53.92(10)
Sr(2)-O(4)#6	2.697(3)	F(1)#2-Sr(1)-O(2)	158.71(9)
Sr(2)-O(4)#7	2.697(3)	O(3)#3-Sr(1)-O(2)	118.69(10)
Sr(2)-O(4)	2.697(3)	F(1)-Sr(1)-Cl(1)	149.87(7)
Na(1)-O(2)#4	2.350(3)	O(3)-Sr(1)-Cl(1)	68.99(7)
Na(1)-O(2)	2.350(3)	F(1)#1-Sr(1)-Cl(1)	96.73(6)
Na(1)-O(2)#10	2.350(3)	O(1)-Sr(1)-Cl(1)	124.12(7)
Na(1)-O(4)#11	2.806(4)	F(1)#2-Sr(1)-Cl(1)	95.38(6)
Na(1)-O(4)#9	2.806(4)	O(3)#3-Sr(1)-Cl(1)	67.69(7)
Na(1)-O(4)#12	2.806(4)	O(2)-Sr(1)-Cl(1)	75.29(7)
Na(1)-Cl(1)	3.106(5)	O(3)#6-Sr(2)-O(3)#7	119.963(5)
Li(1)-O(1)#13	2.121(3)	O(3)#6-Sr(2)-O(3)	119.963(5)
Li(1)-O(1)#14	2.121(3)	O(3)#7-Sr(2)-O(3)	119.963(5)
Li(1)-O(1)#1	2.121(3)	O(3)#6-Sr(2)-F(1)#8	62.35(9)
Li(1)-O(1)	2.121(3)	O(3)#7-Sr(2)-F(1)#8	81.12(9)
Li(1)-O(1)#12	2.121(3)	O(3)-Sr(2)-F(1)#8	131.39(10)
Li(1)-O(1)#15	2.121(3)	O(3)#6-Sr(2)-F(1)#5	131.39(10)
B(1)-O(3)	1.335(6)	O(3)#7-Sr(2)-F(1)#5	62.35(9)
B(1)-O(4)#7	1.387(6)	O(3)-Sr(2)-F(1)#5	81.12(9)
B(1)-O(2)#10	1.396(6)	F(1)#8-Sr(2)-F(1)#5	71.10(10)
B(2)-O(1)#12	1.452(6)	O(3)#6-Sr(2)-F(1)#2	81.12(9)
B(2)-O(1)	1.467(6)	O(3)#7-Sr(2)-F(1)#2	131.39(10)
B(2)-O(4)#12	1.486(6)	O(3)-Sr(2)-F(1)#2	62.35(9)

Table 52(b). Selected bolid lengths (A) and angles (deg) for $\text{Eliva}_{2518}\text{D}_{12}\text{O}_{241}$	$a_2 Sr_8 B_{12} O_{24} F_6 Cl.$	for LiNa ₂ S	(deg) fo	and angles	(Å)	lengths (bond	. Selected	S2(b)	Table
--	----------------------------------	-------------------------	----------	------------	-----	-----------	------	------------	-------	-------

B(2)-O(2)	1.490(6)	F(1)#8-Sr(2)-F(1)#2	71.10(10)
F(1)-Sr(1)-O(3)	119.75(10)	F(1)#5-Sr(2)-F(1)#2	71.10(10)
F(1)-Sr(1)-F(1)#1	74.92(12)	O(3)#6-Sr(2)-O(4)#6	81.01(10)
O(3)-Sr(1)-F(1)#1	164.97(10)	O(3)#7-Sr(2)-O(4)#6	52.93(9)
F(1)-Sr(1)-O(1)	85.57(10)	O(3)-Sr(2)-O(4)#6	136.28(10)
O(3)-Sr(1)-O(1)	92.02(11)	F(1)#8-Sr(2)-O(4)#6	92.03(10)
F(1)#5-Sr(2)-O(4)#6	114.91(9)	O(4)#9-Na(1)-O(4)#12	80.84(14)
F(1)#2-Sr(2)-O(4)#6	159.70(9)	O(2)#4-Na(1)-Cl(1)	85.27(12)
O(3)#6-Sr(2)-O(4)#7	136.28(10)	O(2)-Na(1)-Cl(1)	85.27(12)
O(3)#7-Sr(2)-O(4)#7	81.01(10)	O(2)#10-Na(1)-Cl(1)	85.27(12)
O(3)-Sr(2)-O(4)#7	52.93(10)	O(4)#11-Na(1)-Cl(1)	131.52(9)
F(1)#8-Sr(2)-O(4)#7	159.70(9)	O(4)#9-Na(1)-Cl(1)	131.52(9)
F(1)#5-Sr(2)-O(4)#7	92.03(10)	O(4)#12-Na(1)-Cl(1)	131.52(9)
F(1)#2-Sr(2)-O(4)#7	114.91(9)	O(1)#13-Li(1)-O(1)#14	110.89(8)
O(4)#6-Sr(2)-O(4)#7	84.83(11)	O(1)#13-Li(1)-O(1)#1	180.00(17)
O(3)#6-Sr(2)-O(4)	52.93(9)	O(1)#14-Li(1)-O(1)#1	69.11(8)
O(3)#7-Sr(2)-O(4)	136.28(10)	O(1)#14-Li(1)-O(1)	180
O(3)-Sr(2)-O(4)	81.01(10)	O(1)#1-Li(1)-O(1)	110.89(8)
F(1)#8-Sr(2)-O(4)	114.91(9)	O(1)#13-Li(1)-O(1)#12	110.89(8)
F(1)#5-Sr(2)-O(4)	159.70(9)	O(1)#14-Li(1)-O(1)#12	110.89(8)
F(1)#2-Sr(2)-O(4)	92.03(10)	O(1)#1-Li(1)-O(1)#12	69.11(8)
O(4)#6-Sr(2)-O(4)	84.83(11)	O(1)-Li(1)-O(1)#12	69.11(8)
O(4)#7-Sr(2)-O(4)	84.83(11)	O(1)#13-Li(1)-O(1)#15	69.11(8)
O(2)#4-Na(1)-O(2)	119.33(4)	O(1)#14-Li(1)-O(1)#15	69.11(8)
O(2)#4-Na(1)-O(2)#10	119.33(4)	O(1)#1-Li(1)-O(1)#15	110.89(8)
O(2)-Na(1)-O(2)#10	119.33(4)	O(1)-Li(1)-O(1)#15	110.89(8)
O(2)#4-Na(1)-O(4)#11	54.48(11)	O(1)#12-Li(1)-O(1)#15	180.00(16)
O(2)-Na(1)-O(4)#11	91.95(12)	O(3)-B(1)-O(4)#7	119.1(4)
O(2)#10-Na(1)-O(4)#11	135.31(16)	O(3)-B(1)-O(2)#10	120.8(4)
O(2)#4-Na(1)-O(4)#9	91.95(12)	O(4)#7-B(1)-O(2)#10	120.1(4)
O(2)-Na(1)-O(4)#9	135.31(16)	O(1)#12-B(2)-O(1)	111.1(4)
O(2)#10-Na(1)-O(4)#9	54.48(11)	O(1)#12-B(2)-O(4)#12	109.4(4)
O(4)#11-Na(1)-O(4)#9	80.84(14)	O(1)-B(2)-O(4)#12	111.0(4)
O(2)#4-Na(1)-O(4)#12	135.31(16)	O(1)#12-B(2)-O(2)	111.6(4)
O(2)-Na(1)-O(4)#12	54.48(11)	O(1)-B(2)-O(2)	106.5(4)
O(2)#10-Na(1)-O(4)#12	91.95(12)	O(4)#12-B(2)-O(2)	107.1(4)
O(4)#11-Na(1)-O(4)#12	80.84(14)		

Symmetry transformations used to generate equivalent atoms:

Figure S1a. Experimental and calculated XRD patterns of compound **1**. The red curve is experimental pattern; the black one is calculated one.

Figure S1b. Experimental and calculated XRD patterns of compound **2**. The red curve is experimental pattern; the black one is calculated one.

Figure S2. The coordinated environments and the connect patterns of Li atoms in the crystal structure of compound 1.

Figure S4. The arrangement of $(B_{12}O_{24})^{12}$ groups in the crystal structure of compounds 1 (a, b) and 2 (c, d).

Figure S5. (a) The distribution of K atoms in the $(B_{12}O_{24})^{12}$ groups. (b) The distribution of Sr atoms in the $(B_{12}O_{24})^{12}$ groups.

Figure S7. The TG-DSC curves for compound 2.

