Stable Core-modified Calixsmaragdyrins:

Synthesis, Structure and Specific Sensing of Hydrogen Sulfate Ion

Tamal Chatterjee, Avijit Ghosh, Sheri Madhu and Mangalampalli Ravikanth*

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India. E-

mail: ravikanth@chem.iitb.ac.in

Table of Contents

1.	HR-MS mass spectrum of compound 2a	S1
2.	HR-MS mass spectrum of compound 2b	S2
3.	HR-MS mass spectrum of compound 3	S3
4.	¹ H NMR spectrum of compound $2a$	S4
5.	¹ H NMR spectrum of compound 2b	S 5
6.	¹ H NMR spectrum of compound 3	S6
7.	¹³ C NMR spectrum of compound $2a$	S7
8.	¹³ C NMR spectrum of compound $2b$	S8
9.	13 C NMR spectrum of compound 3	S 9
10.	COSY spectrum of compound 2a	S10
11.	COSY spectrum of compound 3	S11
12.	NOESY spectrum of compound 2b	S12
13.	NOESY spectrum of compound 3	S13
14.	¹ H NMR spectrum of compound $2a.2H^{2+}$	S14
15.	COSY spectrum of compound $2a.2H^{2+}$	S15
16.	Absorption spectra of compound 2b upon systematic addition of TFA	S16

17. Absorption spectra of compound $2b.2H^{+2}$ in the presence of various anions S17
18. Absorption spectra of compound 3 upon systematic addition of TFA S18
19. Absorption spectra of compound $3.2H^{+2}$ in the presence of various anions S19
20. Variable temperature ¹ H NMR spectra of compound 2b S20
21. Square Wave Voltamogram of compound 2b upon titration with HSO ₄ ⁻ ion S21
22. Job's Plot S22
23. HR-MS mass spectrum of compound $2\mathbf{b} + \mathbf{HSO}_4^- \dots \dots \dots \dots \dots \dots \dots S23$
24. Table 1: Selected bond lengths [Å] and angles [°] for compound 2a S24
25. Table 2. Hydrogen bond lengths [Å] and angles [°] for compound 2a S25

Elemental Composition Report

Single Mass Analysis (displaying only valid results)

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 200.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 2 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

Figure S1. HR-MS spectrum of compound 2a

Elemental Composition Report

Single Mass Analysis (displaying only valid results)

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 200.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 2 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

Figure S2. HR-MS spectrum of compound 2b

Figure S3. HR-MS spectrum of compound 3

Figure S4. ¹H NMR spectrum of compound 2a recorded in CDCl₃ at room temperature.

Figure S5. ¹H NMR spectrum of compound **2b** recorded in CDCl₃ at room temperature.

Figure S6. ¹H NMR spectrum of compound **3** recorded in CDCl₃ at room temperature.

Figure S7. ¹³C NMR spectrum of compound **2a** recorded in CDCl₃ at room temperature.

Figure S8. ¹³C NMR spectrum of compound **2b** recorded in CDCl₃ at room temperature.

Figure S9. ¹³C NMR spectrum of compound **3** recorded in CDCl₃ at room temperature.

Figure S10. Partial ¹H-¹H COSY NMR spectrum of compound **2a** recorded in CDCl₃ at room temperature.

Figure S11. Partial ¹H-¹H COSY NMR spectrum of compound **3** recorded in CDCl₃ at room temperature.

Figure S12. Partial ¹H-¹H NOESY NMR spectrum of compound **2b** recorded in CDCl₃ at room temperature.

Figure S13. ¹H-¹H NOESY NMR spectrum of compound **3** recorded in CDCl₃ at room temperature.

•

Figure S14. Partial ¹H NMR spectrum of compound $2a.2H^{2+}$ recorded in CDCl₃ (\bigstar residual solvent peak) at room temperature.

Figure S15. Partial ¹H-¹H COSY NMR spectrum of compound **2a.2H**²⁺ showing the cross-peak connectivities between inner NH protons and β -pyrrole and β -furan protons recorded in CDCl₃ at room temperature.

Figure S16. Change in absorption spectra of compound **2b** $(1 \times 10^{-5} \text{ M})$ upon systematic addition of TFA solution (0-2 equiv.) in CHCl₃ solution.

Figure S17. Absorption spectra of compound **2b.2H**⁺² (1x10⁻⁵ M) in the presence of various anions such as F^- , CI^- , Br^- , Γ , CIO_4^- , CH_3COO^- , $H_2PO_4^-$, HPO_4^{-2} , HSO_4^- , SO_4^- , SCN^- , $S_2O_3^-$, NO_3^- and N_3^- (excess of equivalents) recorded in CHCl₃ solution.

Figure S18. Change in absorption spectra of compound **3** $(1 \times 10^{-5} \text{ M})$ upon systematic addition of TFA solution (0-2 equiv.) in CHCl₃ solution.

Figure **S19**. Absorption spectra of compound $3.2H^{+2}$ (1x10⁻⁵ M) in the presence of various anions F⁻, Cl⁻, Br⁻, Γ , ClO₄⁻, CH₃COO⁻, H₂PO₄⁻, HPO₄⁻², HSO₄⁻, SO₄⁻, SCN⁻, S₂O₃⁻, NO₃⁻ and N₃⁻ (excess of equivalents) recorded in CHCl₃ solution.

Figure S20. Variable temperature ¹H NMR spectra of compound **2b** recorded in the temperature range 20°C to -20°C in CDCl₃ (* CDCl₃ peak).

Figure S21. Square Wave Voltamogram of compound **2b** $(1.2 \times 10^{-2} \text{ M})$ upon titration with HSO_4^- ion (0-20 equiv.) recorded in CH₂Cl₂ containing 0.1 M TBAP as supporting electrolyte at scan rates of 50 mVs⁻¹.

Figure S22. Job's plot for evolution of binding stoichiometry between Compound **2b** and $HSO_4^$ in CHCl₃ solution. Where n_A is mole fraction of the anion added and A is absorbance of compound **2b** in the presence of anion and A_0 is the absorbance of compound **2b** in the absence of anion which forms 1:1 complex.

Figure S23. HR-MS spectrum of compound 2b+ HSO₄⁻ ion complex

Parameters	Bond length[Å]	Parameters	Bond angle[°]	
N(1)-C(1)	1.3617(17)	C(22)-C(23)-C(1)	111.64(11)	
N(1)-C(4)	1.3744(17)	C(24)-C(23)-C(25)	109.09(13)	
N(2)-C(5)	1.3327(17)	C(8)-C(9)-C(10)	128.57(12)	
N(2)-C(8)	1.3968(16)	C(8)-C(9)-C(26)	117.62(11)	
N(3)-C(15)	1.3929(17)	C(10)-C(9)-C(26)	113.78(11)	
N(3)-C(18)	1.3677(17)	C(13)-C(14)-C(15)	127.82(12)	
N(4)-C(19)	1.3834(18)	C(13)-C(14)-C(32)	114.40(11)	
N(4)-C(22)	1.3327(18)	C(15)-C(14)-C(32)	117.72(12)	
O(1)-C(10)	1.3834(15)			
O(1)-C(13)	1.3791(16)			
C(1)-C(23)	1.5186(19)			
C(22)-C(23)	1.5180(2)			
C(4)-C(5)	1.4322(18)			
C(18)-C(19)	1.3920(2)			

Table S1. Selected bond lengths [Å] and angles $[\degree]$ for compound **2a**.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3N)O(2)	0.89(2)	2.00(2)	2.8710(16)	165(2)
N(1)-H(1N)N(4)	0.87(2)	1.99(2)	2.6235(16)	128.7(18)
N(1)-H(1N)O(2)	0.87(2)	2.40(2)	3.0684(16)	134.7(17)
O(2)-H(1O)N(2)	0.823(2)	1.910(5)	2.7147(16)	165.6(19)

Table S2. Hydrogen bonding parameter for compound 2a [Å and °].