Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

A Theoretical Study on Tuning Electronic Structures and Photophysical Properties of New Designed Platinum (II) Complexes by Adding Substituents on Functionalized Ligands as Highly Efficient OLED Emitters

Luqiong Zhang, Li Tian, Ming Li, Rongxing He, Wei Shen*

School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400175,

China

Author for correspondence: Prof. Wei Shen. E-mail: shenw@swu.edu.cn

1. The comparison of the two configurations of Platinum (II) complex 1	1
Figure S1	1
Table S1	2
Figure S2	3
2. The energy-level Match of HOMO and LUMO among the typical Ir (III) complexes and host materials in OLEDs.	4
Figure S3	4
Figure S4	4
3. The analyses of MOs of complexes 1-7 at each S0 geometric optimization.	5
Table S3.	5
Table S4	5
Table S5.	6
Table S6	6
Table S7.	7
Table S8.	7
Table S9	8
4. The detailed absorption properties of each complex	9
Table S10.	9
Table S11.	10
Table S12.	11
Table S13.	12
Table S14.	13
Table S15.	14
Table S16.	15
5. The relationship between the frontier molecular orbitals and the natural transition orbitals	16
Figure S4	16
6. The calculation method of transition energies between 0-0 transition energy and $T_1 \rightarrow S_0$ vertical transition energy.	17
7. Cartesian coordinates of complexes 1-7 at their respective S_0 and $T_{1,opt}$ optimised geometries	18
Table S17. Cartesian coordinates of 1 at the S ₀ optimized geometry	18
Table S18. Cartesian coordinates of 1 at the T _{1,opt} optimized geometry	19
Table S19. Cartesian coordinates of 2 at the S0 optimized geometry	20
Table S20. Cartesian coordinates of 2 at the T _{1,opt} optimized geometry	21
Table S21. Cartesian coordinates of 3 at the S0 optimized geometry	22
Table S22. Cartesian coordinates of 3 at the T _{1,opt} optimized geometry	24
Table S23. Cartesian coordinates of 4 at the S ₀ optimized geometry	26
Table S24. Cartesian coordinates of 4 at the T _{1,opt} optimized geometry	28
Table S25. Cartesian coordinates of 5 at the S ₀ optimized geometry	30
Table S26. Cartesian coordinates of 5 at the T _{1,opt} optimized geometry	32
Table S28. Cartesian coordinates of 6 at the S ₀ optimized geometry	34
Table S29. Cartesian coordinates of 6 at the T _{1,opt} optimized geometry	36
Table S30. Cartesian coordinates of 7 at the S ₀ optimized geometry	38
Table S31. Cartesian coordinates of 7 at the T _{1,opt} optimized geometry	40
References	42

Contents

1. The comparison of the two configurations of Platinum ($\rm II$) complex 1.

1. The comparison of the two configurations of Platinum (II) complex 1.

Figure S1. Two different chemical structures of complex 1.

	trans	-(ppy)Pt(pic))		cis-(ppy)Pt(pic)				
	Energy	-1034.22688	11		Energy=	-1034.22136	58		
С	-4.789032	1.175485	0.221262	С	4.971846	1.022653	0.115150		
С	-2.474660	1.796831	0.385623	С	2.713808	1.826256	0.221661		
С	2.972399	-3.121599	0.122673	С	-1.774701	3.737222	-0.184664		
С	4.125477	-2.340119	0.231664	С	-3.130242	3.417668	-0.076979		
С	1.744317	-2.482201	0.017622	С	-0.851113	2.702077	-0.170254		
Ν	1.652066	-1.139214	0.013141	Ν	-1.198543	1.407993	-0.052090		
С	4.019107	-0.953775	0.223267	С	-3.500758	2.083711	0.019311		
С	2.760690	-0.350679	0.107598	С	-2.527892	1.074299	0.020815		
С	2.466015	1.079893	0.036485	С	-2.782688	-0.359571	0.065053		
С	3.463217	2.065571	0.017355	С	-4.058628	-0.943389	0.134546		
С	1.084402	1.409800	-0.089139	С	-1.621056	-1.163770	0.007108		
С	0.786059	2.760976	-0.314572	С	-1.763284	-2.556060	0.011734		
С	3.122075	3.403316	-0.156576	С	-4.182250	-2.328446	0.141759		
С	1.780287	3.743743	-0.341425	С	-3.034675	-3.129873	0.077909		
Pt	-0.138224	-0.192579	-0.015835	Pt	0.106005	-0.189814	-0.016592		
Ν	-2.074132	0.542132	0.105108	Ν	2.210021	0.590323	0.070450		
0	-1.255293	-2.008124	-0.086939	0	1.191692	-1.910362	-0.053878		
С	-2.535281	-1.861397	-0.224373	С	2.491960	-1.843158	-0.119947		
0	-3.367323	-2.738535	-0.422162	0	3.249171	-2.798291	-0.221138		
С	-4.374684	-0.129033	-0.030300	С	4.455945	-0.262297	-0.020508		
С	-3.015048	-0.422202	-0.066472	С	3.074045	-0.442895	-0.031466		
С	-3.817660	2.150883	0.449647	С	4.080250	2.088124	0.248049		
Н	-5.845306	1.426199	0.256467	Н	6.044647	1.192654	0.127053		
Н	-1.691287	2.517131	0.573128	Н	1.999299	2.632270	0.339551		
Н	3.016229	-4.205018	0.121576	Н	-1.434079	4.762271	-0.280551		
Н	5.101312	-2.808888	0.321386	Н	-3.885809	4.197847	-0.078719		
Н	0.800363	-3.011058	-0.061363	Н	0.207124	2.899193	-0.270279		
Н	4.905390	-0.335151	0.305174	Н	-4.546987	1.808292	0.085911		
Н	4.510124	1.792783	0.123867	Н	-4.952334	-0.326208	0.182651		
Н	-0.235769	3.071435	-0.506755	Н	-0.876895	-3.180287	-0.033202		
Н	3.893432	4.167909	-0.170732	Н	-5.166438	-2.785352	0.195700		
Н	1.504496	4.781246	-0.515620	Н	-3.135346	-4.212684	0.081346		
Н	-5.062206	-0.952337	-0.187833	Н	5.078588	-1.144851	-0.112201		
Н	-4.085999	3.176813	0.678845	Н	4.429179	3.108058	0.372883		

Table S1. Optimized geometries (Å) and energies (hartree) at the ground state (S0) of trans-
(ppy)Pt(pic) and cis-(ppy)Pt(pic), respectively

Figure S2. The optimized geometries of 1-7 at their S_0 and $T_{1,opt}$ excited states, respectively

Figure S3. The molecular energy-level diagrams of host materials at the ground state optimization

their ground state optimizations

3. The analyses of MOs of complexes 1-7 at each S_0 geometric optimization.

complex	Orbitals	Energy	MO compositions					
complex		Oronais	(eV)	pic	рру	substituent	Pt (d%)	Composition contribution>15%
	LUMO+4	-0.13	0.1645	0.3325	0.0000	0.5030(43.48)	$d^{*}(Pt)+\pi^{*}(ppy)+\pi^{*}(pic)$	
	LUMO+3	-1.07	0.4156	0.5692	0.0000	0.0152(1.48)	$\pi^*(\text{ppy})+\pi^*(\text{pic})$	
	LUMO+2	-1.19	0.5745	0.4186	0.0000	0.0069(0.08)	$\pi^*(\text{ppy})+\pi^*(\text{pic})$	
	LUMO+1	-1.57	0.4228	0.5359	0.0000	0.0412(3.87)	$\pi^*(\text{ppy})+\pi^*(\text{pic})$	
1	LUMO	-2.00	0.5358	0.4212	0.0000	0.0429(0.22)	$\pi^*(\text{ppy})+\pi^*(\text{pic})$	
	HOMO	-5.65	0.1538	0.4563	0.0000	0.3900(38.31)	$d(Pt)+\pi(ppy)+\pi(pic)$	
	HOMO-1	-6.27	0.1780	0.0710	0.0000	0.7510(58.67)	$d(Pt)+\pi(pic)$	
	HOMO-2	-6.39	0.5120	0.1954	0.0000	0.2927(25.16)	$d(Pt)+\pi(ppy)+\pi(pic)$	
	HOMO-3	-6.42	0.3370	0.5024	0.0000	0.1606(15.62)	$d(Pt)+\pi(pic)+\pi(ppy)$	
	HOMO-4	-6.66	0.1017	0.3677	0.0000	0.5306(53.00)	d(Pt)+π(ppy)	

Table S3. The analysis of the molecular orbitals at the S_0 geometry for 1 calculated by DFT/TDDFT approaches with GaussSum-2.2.5.

Table S4. The analysis of the molecular orbitals at the S_0 geometry for 2 calculated by DFT/TDDFT approaches with GaussSum-2.2.5.

aamnlav	Orbitala	Energy	MO compositions						
complex	Orbitals	(eV)	pic	рру	substituent	Pt (d%)	Composition contribution>15%		
	LUMO+4	-0.38	0.1536	0.3804	0.0071	0.4589(39.58)	$d^{*}(Pt)+\pi^{*}(ppy)+\pi^{*}(pic)$		
	LUMO+3	-1.13	0.1202	0.8586	0.0069	0.0143(1.20)	$\pi^*(\text{ppy})$		
	LUMO+2	-1.30	0.8599	0.1304	0.0022	0.0075(0.27)	$\pi^*(\text{pic})$		
	LUMO+1	-1.69	0.4005	0.5459	0.0109	0.0428(3.94)	$\pi^*(\text{ppy})+\pi^*(\text{pic})$		
2	LUMO	-2.14	0.5649	0.3849	0.0054	0.0448(0.30)	$\pi^*(\text{ppy})+\pi^*(\text{pic})$		
-	НОМО	-5.93	0.1798	0.4238	0.0058	0.3906(38.87)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})$		
	HOMO-1	-6.46	0.1830	0.5235	0.0482	0.2453(20.82)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})$		
	HOMO-2	-6.50	0.1841	0.2681	0.0255	0.5223(41.81)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})$		
	HOMO-3	-6.58	0.6477	0.0246	0.0007	0.3270(26.13)	$d(Pt)+\pi(pic)$		
	HOMO-4	-6.82	0.1199	0.2472	0.0084	0.6245(62.41)	d(Pt)+π(ppy)		

	0.1.1.1.	Energy			Ν	10 compositions	
complex	Orbitals	(eV)	pic	рру	substituent	Pt (d%)	Composition contribution>15%
	LUMO+3	-1.04	0.8918	0.0505	0.0454	0.0123(0.88)	$\pi^*(\text{pic})$
	LUMO+2	-1.32	0.1943	0.6602	0.1139	0.0316(2.73)	$\pi^*(\text{ppy})+\pi^*(\text{pic})$
	LUMO+1	-1.75	0.7277	0.1242	0.1217	0.0264(1.17)	$\pi^*(\text{pic})$
	LUMO	-2.23	0.0925	0.6251	0.2525	0.0298(0.75)	$\pi^*(\text{ppy})+\pi^*(\text{Substituent})$
	НОМО	-5.64	0.1618	0.4274	0.0147	0.3960(39.44)	$d(Pt)+\pi(ppy)+\pi(pic)$
	HOMO-1	-6.08	0.0262	0.0707	0.8741	0.0291(2.13)	π (Substituent)
3	HOMO-2	-6.21	0.0186	0.0448	0.8929	0.0438(3.6)	π (Substituent)
	HOMO-3	-6.25	0.0917	0.0815	0.5222	0.3047(23.97)	d(Pt)+π(Substituent)
	HOMO-4	-6.26	0.0983	0.0895	0.4279	0.3842(30.33)	$d(Pt)+\pi(Substituent)$
	HOMO-5	-6.36	0.6681	0.0176	0.0915	0.2228(18.12)	d(Pt)+π(pic)
	HOMO-6	-6.38	0.0465	0.0127	0.8944	0.0464(3.83)	π (Substituent)
	HOMO-7	-6.47	0.0932	0.3863	0.2100	0.3105(31.02)	$d(Pt)+\pi(ppy)+(Substituent)$
	HOMO-8	-6.67	0.0893	0.4411	0.0723	0.3972(39.64)	d(Pt)+π(ppy)

Table S5. The analysis of the molecular orbitals at the S_0 geometry for 3 calculated by DFT/TDDFT approaches with GaussSum-2.2.5.

Table S6. The analysis of the molecular orbitals at the S_0 geometry for 4 calculated by DFT/TDDFT approaches with GaussSum-2.2.5

	Orbitals	Energy	MO compositions						
complex		olex Ofoliais	ex Orbitals	x Orbitals	(eV)	pic	рру	substituent	Pt (d%)
	LUMO+5	-0.45	0.0018	0.1018	0.8857	0.0106(0.31)	π^* (Substituent)		
	LUMO+4	-0.53	0.0151	0.0746	0.8935	0.0167(1.27)	π^* (Substituent)		
	LUMO+3	-0.97	0.4603	0.5108	0.0116	0.0173(1.67)	$\pi^*(\text{ppy})+\pi^*(\text{pic})$		
	LUMO+2	-1.10	0.5364	0.4344	0.0212	0.0080(0.18)	$\pi^*(\text{ppy})+\pi^*(\text{pic})$		
	LUMO+1	-1.49	0.4224	0.4953	0.0445	0.0377(3.51)	$\pi^*(\text{ppy})+\pi^*(\text{pic})$		
4	LUMO	-1.90	0.5247	0.4110	0.0204	0.0439(0.26)	$\pi^*(\text{ppy})+\pi^*(\text{pic})$		
	HOMO	-5.08	0.0037	0.3867	0.5907	0.0190(1.89)	$\pi(\text{ppy})+\pi(\text{Substituent})$		
	HOMO-1	-5.65	0.1877	0.3257	0.0793	0.4073(40.44)	$d(Pt)+\pi(ppy)+\pi(pic)$		
	HOMO-2	-6.19	0.1615	0.0548	0.0031	0.7806(61.16)	$d(Pt)+\pi(pic)$		
	HOMO-3	-6.31	0.7595	0.0209	0.0017	0.2179(17.82)	$d(Pt)+\pi(pic)$		
	HOMO-4	-6.46	0.1377	0.2249	0.0681	0.5692(56.88)	$d(Pt)+\pi(ppy)$		

	Orbitals	Energy	gy MO compositions					
complex	Orbitals	(eV)	pic	fpy	Pt(d%)	Composition contribution>15%		
	LUMO+5	-0.19	0.0012	0.9934	0.0054(0.49)	$\pi^*(\text{fpy})$		
	LUMO+4	-0.25	0.0194	0.9269	0.0538(1.98)	$\pi^*(\mathrm{fpy})$		
	LUMO+3	-1.07	0.5554	0.4247	0.0199(1.90)	$\pi^*(\text{fpy})+\pi^*(\text{pic})$		
	LUMO+2	-1.21	0.4623	0.5271	0.0105(0.45)	$\pi^*(\text{fpy})+\pi^*(\text{pic})$		
	LUMO+1	-1.64	0.4906	0.4785	0.0309(2.97)	$\pi^*(\text{fpy})+\pi^*(\text{pic})$		
5	LUMO	-2.01	0.4383	0.5210	0.0408(0.23)	$\pi^*(\text{fpy})+\pi^*(\text{pic})$		
U	HOMO	-5.46	0.0748	0.6893	0.2358(13.49)	$d(Pt)+\pi(fpy)$		
	HOMO-1	-5.94	0.1270	0.6805	0.1925(19.04)	$d(Pt)+\pi(fpy)$		
	HOMO-2	-6.24	0.1381	0.0644	0.7975(62.38)	d(Pt)		
	HOMO-3	-6.37	0.7786	0.0243	0.1971(16.35)	$d(Pt)+\pi(pic)$		
	HOMO-4	-6.56	0.1383	0.1786	0.6831(68.26)	$d(Pt)+\pi(fpy)$		
	HOMO-8	-7.19	0.0653	0.9170	0.0177(0.95)	$\pi(\text{fpy})$		

Table S7. The analysis of the molecular orbitals at the S_0 geometry for 5 calculated by DFT/TDDFT approaches with GaussSum-2.2.5

Table S8. The analysis of the molecular orbitals at the S_0 geometry for 6 calculated by DFT/TDDFT approaches with GaussSum-2.2.5

	Orbitala	Energy		MO compositions						
complex	Orbitals	(eV)	pic	PhN ₂ -fpy	Pt (d%)	Composition contribution>15%				
	LUMO+6	-0.36	0.0027	0.9902	0.0071(0.11)	$\pi^*(Ph2N-fpy)$				
	LUMO+5	-0.37	0.0012	0.9953	0.0034(0.05)	$\pi^*(Ph2N-fpy)$				
	LUMO+3	-1.04	0.5330	0.4460	0.0210(1.98)	$\pi^*(\text{pic})+\pi^*(\text{Ph2N-fpy})$				
	LUMO+2	-1.17	0.4869	0.5027	0.0104(0.46)	$\pi^*(\text{pic})+\pi^*(\text{Ph2N-fpy})$				
	LUMO+1	-1.61	0.4838	0.4859	0.0303(2.90)	$\pi^*(\text{pic})+\pi^*(\text{Ph2N-fpy})$				
6	LUMO	-1.98	0.4427	0.5169	0.0404(0.22)	$\pi^*(\text{pic})+\pi^*(\text{Ph2N-fpy})$				
U	HOMO	-4.92	0.0018	0.9882	0.0100(0.99)	π (Ph2N-fpy)				
	HOMO-1	-5.55	0.1254	0.5430	0.3316(33.01)	$d(Pt)+\pi(Ph2N-fpy)$				
	HOMO-2	-6.10	0.0925	0.7928	0.1147(10.84)	π (Ph2N-fpy)				
	HOMO-3	-6.21	0.1287	0.0870	0.7843(61.48)	d(Pt)				
	HOMO-4	-6.34	0.7808	0.0257	0.1935(15.98)	$d(Pt)+\pi(pic)$				
	HOMO-5	-6.53	0.1319	0.2001	0.6680(66.75)	$d(Pt)+\pi(Ph2N-fpy)$				

	0.1.1.1.	Energy			MO compo	sitions
complex	Orbitals	(eV)	pic	CO-fpy	Pt(d%)	Composition contribution>15%
	LUMO+6	-0.22	0.1647	0.3305	0.5048(44.80)	$\pi^*(\text{CO-fpy})+\pi^*(\text{pic})+d^*(\text{Pt})$
	LUMO+5	-0.34	0.0205	0.9292	0.0503(2.11)	$\pi^*(\text{CO-fpy})$
	LUMO+3	-1.45	0.4819	0.5076	0.0106(0.46)	$\pi^*(\text{pic})+\pi^*(\text{CO-fpy})$
	LUMO+2	-1.75	0.1680	0.8148	0.0172(1.66)	$\pi^*(\text{pic})+\pi^*(\text{CO-fpy})$
	LUMO+1	-1.84	0.6210	0.3586	0.0203(1.21)	$\pi^*(\text{pic})+\pi^*(\text{CO-fpy})$
_	LUMO	-2.31	0.1418	0.8123	0.0459(1.40)	$\pi^*(\text{CO-fpy})$
7	HOMO	-5.75	0.0930	0.6585	0.2485(24.73)	d(Pt)+π(CO-fpy)
	HOMO-1	-6.21	0.1739	0.6337	0.1923(18.65)	$d(Pt)+\pi(CO-fpy)+\pi(pic)$
	НОМО-2	-6.3	0.3741	0.0860	0.5400(42.54)	$d(Pt)+\pi(pic)$
	HOMO-3	-6.38	0.5464	0.0180	0.4356(34.77)	$d(Pt)+\pi(pic)$
	HOMO-4	-6.57	0.0129	0.9802	0.0068(0.63)	π (CO-fpy)
	HOMO-5	-6.68	0.1338	0.1855	0.6807(68.02)	d(Pt)+ π (CO-fpy)

Table S9. The analysis of the molecular orbitals at the S_0 geometry for 7 calculated by DFT/TDDFT approaches with GaussSum-2.2.5

Note: ^aFrom **Table S3** to **Table S9**, "d" refers to the molecular orbitals with dominant d-orbital character, which took the contribution of d (Pt) orbitals over 10% into consideration

^bThe analyses of molecular fragment are calculated by GaussSum-2.2.5 and the atomic contribution are computed by Aomix.

4.The detailed	absorption	properties o	f each com	plex
----------------	------------	--------------	------------	------

State.	λcal	ſ	Ecal		Main conf	iguration		al and a first fragment of the state of the
State	(nm)	J	(eV)	ψi→ψj		Excitation	oroitanty interpretation	character of excitation
S1	426.2	0.019	2.91	$81 \rightarrow 82$	0.69948	H→L (98%)	$d(Pt)+\pi(ppy)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S2	372.3	0.012	3.33	$81 \rightarrow 83$	0.67768	H→L+1 (92%)	$d(Pt)+\pi(ppy)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S3	363.6	0.004	3.41	$80 \rightarrow 82$	0.65059	H-1→L (85%)	$d(Pt)+\pi(pic)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S4	355.7	0.002	3.49	$78 \rightarrow 82$	0.30827	H-3→L (19%)	$d(Pt)+\pi(pic)+\pi(ppy)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$79 \rightarrow 82$	0.54865	H-2→L (60%)	$d(Pt)+\pi(ppy)+\pi(pic)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S5	329.7	0.012	3.76	$79 \rightarrow 82$	0.15914	H-4→L (10%)	$d(Pt)+\pi(ppy) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$81 \rightarrow 84$	0.60521	H→L+2 (73%)	$d(Pt)+\pi(ppy)+\pi(pic)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S6	328	0.006	3.78	$79 \rightarrow 83$	0.24439	H-2→L+1 (12%)	$d(Pt)+\pi(ppy)+\pi(pic)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$80 \rightarrow 83$	0.63025	H-1→L+1 (79%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S 7	326.5	0.136	3.80	$78 \rightarrow 82$	0.49070	H-3→L (48%)	$d(Pt)+\pi(pic)+\pi(ppy)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$79 \rightarrow 82$	-0.32556	H-2→L (21%)	$d(Pt)+\pi(ppy)+\pi(pic)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$81 \rightarrow 84$	0.27580	H→L+2 (15%)	$d(Pt)+\pi(ppy)+\pi(pic)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S 8	320.4	0.006	3.87	$81 \rightarrow 85$	0.64635	H→L+3 (84%)	$d(Pt)+\pi(ppy)+\pi(pic)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S9	305.2	0.132	4.06	$77 \rightarrow 82$	0.57090	H-4→L (65%)	$d(Pt)+\pi(ppy)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$78 \rightarrow 82$	-0.23214	H-3→L (11%)	$d(Pt)+\pi(pic)+\pi(ppy)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S10	310.3	0.009	4.11	$79 \rightarrow 83$	0.38955	H-2→L+1 (30%)	$d(Pt)+\pi(pic)+\pi(ppy)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$81 \rightarrow 86$	-0.36798	H→L+4 (27%)	$d(Pt)+\pi(pic)+\pi(ppy)\rightarrow d^{*}(Pt)+\pi^{*}(ppy)+\pi^{*}(pic)$	MLCT+LLCT+ILCT
S25	256.8	0.156	4.83	$77 \rightarrow 83$	0.26193	H-4→L+1 (14%)	$d(Pt)+\pi(ppy)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$78 \rightarrow 85$	0.44981	H-3→L+3 (40%)	$d(Pt)+\pi(pic)+\pi(ppy)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT

Table S10. The abost properties of complex 1

	λcal	ſ	Ecal	Main c	onfiguration		
State	(nm)	f	(eV)	ψi→ψj	Excitation	orbitality interpretation	character of excitation
S1	406.2	0.017	3.05	$89 \rightarrow 90$ 0.6977	78 H→L (97%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{ppy})+\pi^*(\text{pic})$	MLCT+LLCT+ILCT
S2	359.6	0.033	3.45	86 → 90 -0.2389	4 H-3→L (11%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$87 \rightarrow 90 0.4014$	H-2→L (32%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{ppy})+\pi^*(\text{pic})$	MLCT+LLCT+ILCT
				88 → 90 -0.3532	9 H-1→L (25%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{ppy})+\pi^*(\text{pic})$	MLCT+LLCT+ILCT
				89 → 91 -0.3248	0 H→L+1 (21%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{ppy})+\pi^*(\text{pic})$	MLCT+LLCT+ILCT
S3	355.3	0.016	3.49	$89 \rightarrow 91$ 0.6045	54 H→L+1 (73%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{ppy})+\pi^*(\text{pic})$	MLCT+LLCT+ILCT
S4	349.9	0.003	3.84	$86 \rightarrow 90$ 0.5805	58 H-3→L (67%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$87 \rightarrow 90$ 0.3283	60 H-2→L (22%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{ppy})+\pi^*(\text{pic})$	MLCT+LLCT+ILCT
S5	329.2	0.106	3.77	$87 \rightarrow 90$ 0.3950	99 H-2→L (31%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic}) \rightarrow \pi^*(\text{ppy})+\pi^*(\text{pic})$	MLCT+LLCT+ILCT
				$88 \rightarrow 90$ 0.5368	84 H-1→L (58%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic}) \rightarrow \pi^*(\text{ppy})+\pi^*(\text{pic})$	MLCT+LLCT+ILCT
S6	319.9	0.000	3.88	$86 \rightarrow 91$ 0.3236	58 H-3→L+1 (21%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$87 \rightarrow 91$ 0.5241	.5 H-2→L+1 (55%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{ppy})+\pi^*(\text{pic})$	MLCT+LLCT+ILCT
				$88 \rightarrow 91 -0.3174$	9 H-1→L+1 (20%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{ppy})+\pi^*(\text{pic})$	MLCT+LLCT+ILCT
S7	315.1	0.006	3.94	$85 \rightarrow 90$ 0.2736	58 H-4→L (15%)	$d(Pt)+\pi(ppy) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$89 \rightarrow 92$ 0.6167	72 H→L+2 (76%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{pic})$	MLCT+LLCT+ILCT
S8	309.5	0.075	4.01	$85 \rightarrow 90$ 0.4702	28 H-4→L (44%)	$d(Pt)+\pi(ppy) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$89 \rightarrow 92 -0.2875$	0 H→L+2 (17%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{pic})$	MLCT+LLCT+ILCT
				$89 \rightarrow 93 0.3705$	58 H→L+3 (27%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{ppy})$	MLCT+LLCT+ILCT
S9	300.8	0.105	4.12	$85 \rightarrow 90 -0.3535$	2 H-4→L (25%)	$d(Pt)+\pi(ppy) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$89 \rightarrow 93$ 0.5346	59 H→L+3 (57%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{ppy})$	MLCT+LLCT+ILCT
S10	297.7	0.000	4.16	$86 \rightarrow 91$ 0.3952	P.7 H-3→L+1 (31%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				$88 \rightarrow 91$ 0.2954	H-1→L+1 (17%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{ppy})+\pi^*(\text{pic})$	MLCT+LLCT+ILCT
				$89 \rightarrow 94 -0.3028$	8 H→L+4 (18%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic}) \rightarrow d^{*}(\text{Pt})+\pi^{*}(\text{ppy})$ $+\pi^{*}(\text{pic})$	MLCT+LLCT+ILCT
S27	252.8	0.094	4.9	$86 \rightarrow 93$ 0.3384	49 H-3→L+3 (23%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(ppy)$	MLCT+LLCT
				87 → 93 -0.3358	6 H-2→L+3 (23%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic})\rightarrow\pi^*(\text{ppy})$	MLCT+LLCT+ILCT
				88 → 93 -0.2876	4 H-1→L+3 (17%)	$\pi(\text{ppy})+d(\text{Pt})+\pi(\text{pic}) \rightarrow \pi^*(\text{ppy})$	MLCT+LLCT+ILCT

 Table S11. The abost properties of complex 2

State.	λcal	ſ	Ecal	Main configuration		uration		land the Caracterian
State	(nm)	J	(eV)	ψi-	≁ψj	Excitation	orbitality interpretation	character of excitation
S1	451.3	0.037	2.75	148 →149	0.69128	H→L (96%)	$d(Pt)+\pi(ppy)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(Substituent)$	MLCT+LLCT+ILCT
S2	387.9	0.028	3.2	148 →150	0.67993	H→L+1 (92%)	$d(Pt)+\pi(ppy)+\pi(pic) \rightarrow \pi^*(pic)$	MLCT+LLCT+ILCT
S3	385.7	0.022	3.21	144 →149	-0.22117	H-4→L (10%)	$d(Pt)+\pi(Substituent) \rightarrow \pi^*(ppy)+\pi^*(Substituent)$	MLCT+LLCT+ILCT
				145 →149	-0.28692	H-3→L (16%)	$d(Pt)+\pi(Substituent) \rightarrow \pi^*(ppy)+\pi^*(Substituent)$	MLCT+LLCT+ILCT
				147 →149	0.54095	H-1→L (59%)	π (Substituent) $\rightarrow \pi^*$ (ppy)+ π^* (Substituent)	LLCT+ILCT
S4	377.3	0.051	3.29	144 →149	0.40114	H-4→L (32%)	$d(Pt)+\pi(Substituent) \rightarrow \pi^*(ppy)+\pi^*(Substituent)$	MLCT+LLCT+ILCT
				145 →149	0.32761	H-3→L (21%)	$d(Pt)+\pi(Substituent) \rightarrow \pi^*(ppy)+\pi^*(Substituent)$	MLCT+LLCT+ILCT
				147 →149	0.40005	H-1→L (32%)	π (Substituent) $\rightarrow \pi^*$ (ppy)+ π^* (Substituent)	LLCT+ILCT
S5	365.7	0.081	3.39	144 →149	-0.29105	H-4→L (17%)	$d(Pt)+\pi(Substituent) \rightarrow \pi^*(ppy)+\pi^*(Substituent)$	MLCT+LLCT+ILCT
				146 →149	0.61235	H-2→L (75%)	π (Substituent) $\rightarrow \pi^*$ (ppy)+ π^* (Substituent)	LLCT+ILCT
S6	360.3	0.001	3.44	143 →149	0.49820	H-5→L (50%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(Substituent)$	MLCT+LLCT
				143 →150	-0.33227	H-5→L+1 (22%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(pic)$	MLCT+ILCT
S 7	357	0.078	3.47	144 →149	-0.38603	H-4→L (30%)	$d(Pt)+\pi(Substituent) \rightarrow \pi^*(ppy)+\pi^*(Substituent)$	MLCT+LLCT+ILCT
				145 →149	0.51114	H-3→L (52%)	$d(Pt)+\pi(Substituent) \rightarrow \pi^*(ppy)+\pi^*(Substituent)$	MLCT+LLCT+ILCT
				146 →149	-0.23301	H-2→L (11%)	π (Substituent) $\rightarrow \pi^*$ (ppy)+ π^* (Substituent)	LLCT+ILCT
S 8	344.8	0.008	3.6	142 →149	0.52215	H-6→L (55%)	π (Substituent) $\rightarrow \pi^*$ (ppy)+ π^* (Substituent)	LLCT+ILCT
				148 →151	-0.42002	H→L+2 (35%)	$d(Pt)+\pi(ppy)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S9	344.3	0.007	3.6	142 →149	0.40204	H-6→L (32%)	π (Substituent) $\rightarrow \pi^*$ (ppy)+ π^* (Substituent)	LLCT+ILCT
				148 →151	0.53649	H→L+2 (58%)	$d(Pt)+\pi(Substituent) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT
	341.3	0.070	3.63	140 →149	0.22054	H-8→L (10%)	$d(Pt)+\pi(ppy) \rightarrow \pi^*(ppy)+\pi^*(Substituent)$	MLCT+LLCT+ILCT
S10				141 140	0 (2245		$d(Pt)+\pi(ppy)+\pi(Substituent) \rightarrow$	
				141 →149	0.62345	H-/→L (/8%)	$\pi^*(\text{ppy}) + \pi^*(\text{Substituent})$	MLCI+LLCI+ILCI
S15	316.3	0.081	3.92	140 →149	0.34036	H-8→L (23%)	$d(Pt)+\pi(ppy) \rightarrow \pi^*(ppy)+\pi^*(Substituent)$	MLCT+LLCT+ILCT
				148 →152	0.57244	H→L+3 (66%)	$d(Pt)+\pi(ppy)+\pi(pic) \rightarrow \pi^*(pic)$	MLCT+LLCT+ILCT
S22	299	0.090	4.15	140 →150	0.26455	H-8→L+1 (14%)	$d(Pt)+\pi(ppy) \rightarrow \pi^*(pic)$	MLCT+LLCT
				141 →150	0.50844	H-7→L+1 (52%)	$d(Pt)+\pi(ppy)+\pi(Substituent) \rightarrow \pi^*(pic)$	MLCT+LLCT

 Table S12. The abost properties of complex 3

	λcal	£	Ecal	Main confi	guration		abore stor of excitation
State	(nm)	J	(eV)	ψi→ψj	Excitation	oronanty interpretation	character of excitation
S1	456.1	0.095	2.72	125→126 0.68904	H→L (97%)	$\pi(\text{ppy})+\pi(\text{Substituent}) \rightarrow \pi^*(\text{ppy})+\pi^*(\text{pic})$	LLCT+ILCT
S2	409.1	0.026	3.03	124→126 0.67092	H-1→L (90%)	$d(Pt)+\pi(ppy)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S3	394.4	0.250	3.14	125→127 0.66823	H→L+1 (89%)	$\pi(\text{ppy})+\pi(\text{Substituent}) \rightarrow \pi^*(\text{ppy})+\pi^*(\text{pic})$	LLCT+ILCT
S4	362.2	0.018	3.42	123→126 -0.42731	H-2→L (37%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				124 →127 0.49735	H-1→L+1 (49%)	$d(Pt)+\pi(ppy)+\pi(pic)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S5	359.1	0.008	3.45	123→126 0.48931	H-2→L (48%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				124 →127 0.45719	H-1→L+1 (42%)	$d(Pt)+\pi(ppy)+\pi(pic)\rightarrow\pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S6	354.7	0.064	3.5	125→128 0.66311	H→L+2 (88%)	$\pi(\text{ppy})+\pi(\text{Substituent}) \rightarrow \pi^*(\text{ppy})+\pi^*(\text{pic})$	LLCT+ILCT
S 7	353	0.002	3.51	122→126 0.61204	H-3→L (75%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S 8	342.1	0.015	3.62	125 →129 0.67474	H→L+3 (91%)	$\pi(\text{ppy})+\pi(\text{Substituent})) \rightarrow \pi^*(\text{ppy})+\pi^*(\text{pic})$	LLCT+ILCT
S9	325.9	0.002	3.8	122 →127 -0.22790	H-3→L+1 (10%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				123→127 0.64884	H-2→L+1 (84%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S10	320.9	0.074	3.86	121→126 0.45327	H-4→L (41%)	$d(Pt)+\pi(ppy) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				124 →128 0.45773	H-1→L+2 (42%)	$d(Pt)+\pi(ppy)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S14	309.7	0.124	4	124 →129 -0.38152	H-1→L+3 (29%)	$d(Pt)+\pi(ppy)+\pi(pic) \rightarrow \pi^*(ppy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				125 →130 0.31330	H→L+4 (20%)	$\pi(\text{ppy})+\pi(\text{Substituent}) \rightarrow \pi^*(\text{Substituent})$	LLCT+ILCT
				125→131 0.47470	H→L+5 (45%)	$\pi(\text{ppy}) + \pi(\text{Substituent}) \rightarrow \pi^*(\text{Substituent})$	LLCT+ILCT

 Table S13. The abost properties of complex 4

<u>G</u> tata	λcal	ſ	Ecal	Main configuration		guration		-less dan e Camaidadian
State	(nm)	J	(eV)	ψi-	→ψj	Excitation	orbitality interpretation	character of excitation
S1	441.6	0.032	2.81	120 →121	0.67973	H→L (92%)	$d(Pt)+\pi(fpy) \rightarrow \pi^*(fpy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S2	387.4	0.056	3.2	120→122	0.66640	H→L+1 (89%)	$d(Pt)+\pi(fpy) \rightarrow \pi^*(fpy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S3	367.8	0.073	3.37	118 →121	0.47876	H-2→L (46%)	$d(Pt) \rightarrow \pi^*(fpy) + \pi^*(pic)$	MLCT
				119 →121	0.47359	H-1→L (45%)	$d(Pt)+\pi(fpy) \rightarrow \pi^*(fpy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S4	362.8	0.115	3.42	118 →121	0.48030	H-2→L (46%)	$d(Pt) \rightarrow \pi^*(fpy) + \pi^*(pic)$	MLCT
				$119 \rightarrow 121$	-0.47496	H-1→L (45%)	$d(Pt)+\pi(fpy) \rightarrow \pi^*(fpy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S5	356.9	0.003	3.47	117 →121	0.60986	H-3→L (74%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(fpy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				117 →122	0.25585	H-3→L+1 (13%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(fpy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S6	341.6	0.032	3.63	120 →123	0.64260	H→L+2 (83%)	$d(Pt)+\pi(fpy) \rightarrow \pi^*(fpy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S7	333	0.007	3.72	$118 \rightarrow 122$	0.63829	H-2→L+1 (81%)	$d(Pt) \rightarrow \pi^*(fpy) + \pi^*(pic)$	MLCT
S8	359.5	0.049	3.76	120 →124	0.61299	H→L+3 (75%)	$d(Pt)+\pi(fpy) \rightarrow \pi^*(fpy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S9	326.3	0.109	3.8	116 →121	-0.26117	H-4→L (14%)	$d(Pt)+\pi(fpy) \rightarrow \pi^*(fpy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				119 →122	0.57420	H→L+3 (66%)	$d(Pt)+\pi(fpy) \rightarrow \pi^*(fpy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				120 →124	0.22692	H→L+3 (10%)	$d(Pt)+\pi(fpy) \rightarrow \pi^*(fpy)+\pi^*(pic)$	MLCT+LLCT+ILCT
S10	317.5	0.306	3.91	116 →121	0.57391	H-4→L (66%)	$d(Pt)+\pi(fpy) \rightarrow \pi^*(fpy)+\pi^*(pic)$	MLCT+LLCT+ILCT
				119 →122	0.26410	H-1→L+1 (14%)	$d(Pt)+\pi(fpy) \rightarrow \pi^*(fpy)+\pi^*(pic)$	MLCT+LLCT+ILCT

 Table S14. The abost properties of complex 5

<u> </u>	λcal	ſ	Ecal		Main config	guration		ala mantana Camaitatian
State	(nm)	J	(eV)	ψi→	►ψj	Excitation	orbitality interpretation	character of excitation
S1	479.5	0.202	2.59	164 →165	0.68416	H→L (94%)	π (Ph2N-fpy) $\rightarrow \pi^*$ (pic)+ π^* (Ph2N-fpy)	LLCT+ILCT
S2	425.4	0.080	2.91	163 →165	0.67122	H-1→L (90%)	$d(Pt)+\pi(Ph2N-fpy) \rightarrow \pi^*(pic)+\pi^*(Ph2N-fpy)$	MLCT+LLCT+ILCT
S 3	419.9	0.351	2.95	164 →166	0.68766	H→L+1 (95%)	π (Ph2N-fpy) $\rightarrow \pi^{*}$ (pic)+ π^{*} (Ph2N-fpy)	LLCT+ILCT
S4	376.7	0.015	3.29	163 →166	0.65091	H-1→L+1 (85%)	$d(Pt)+\pi(Ph2N-fpy) \rightarrow \pi^*(pic)+\pi^*(Ph2N-fpy)$	MLCT+LLCT+ILCT
S5	367.7	0.065	3.37	164 →167	0.65556	H→L+2 (86%)	π (Ph2N-fpy) $\rightarrow \pi^{*}$ (pic)+ π^{*} (Ph2N-fpy)	LLCT+ILCT
S6	365.5	0.004	3.39	161 →165	0.63602	H-3→L (81%)	$d(Pt) \rightarrow \pi^*(pic) + \pi^*(Ph2N-fpy)$	MLCT
S7	356.9	0.002	3.47	$160 \rightarrow 165$	0.60575	H-4→L (73%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(pic)+\pi^*(Ph2N-fpy)$	MLCT+LLCT+ILCT
				160 →166	0.25316	H-4→L+1 (13%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(pic)+\pi^*(Ph2N-fpy)$	MLCT+LLCT+ILCT
S8	353.6	0.018	3.51	164 →16	0.66754	H→L+3 (89%)	π (Ph2N-fpy) $\rightarrow \pi^{*}$ (pic)+ π^{*} (Ph2N-fpy)	LLCT+ILCT
S9	339.7	0.158	3.65	162 →165	0.64031	H-2→L (82%)	π (Ph2N-fpy) $\rightarrow \pi^{*}$ (pic)+ π^{*} (Ph2N-fpy)	LLCT+ILCT
S10	332.5	0.000	3.73	161 →166	0.63736	H-3→L+1 (81%)	$d(Pt) \rightarrow \pi^*(pic) + \pi^*(Ph2N-fpy)$	MLCT
S14	317	0.158	3.91	159 →16	0.53172	H-5→L (57%)	d(Pt)+ π (Ph2N-fpy)→ π *(pic)+ π *(Ph2N-fpy)	MLCT+LLCT+ILCT
				163 →16	-0.31029	H-1→L+3 (19%)	d(Pt)+ π (Ph2N-fpy)→ π *(pic)+ π *(Ph2N-fpy)	MLCT+LLCT+ILCT
S15	309.8	0.188	4.00	164 →17	0.56069	H→L+5 (63%)	$\pi(Ph2N-fpy) \rightarrow \pi^*(Ph2N-fpy)$	ILCT
				164 →171	-0.40648	H→L+6 (33%)	$\pi(Ph2N-fpy) \rightarrow \pi^*(Ph2N-fpy)$	ILCT
S16	306.4	0.181	4.05	162 →166	0.51040	H-2→L+1 (52%)	π (Ph2N-fpy) $\rightarrow \pi^{*}$ (pic)+ π^{*} (Ph2N-fpy)	LLCT+ILCT
				164 →171	-0.24316	H→L+6 (12%)	$\pi(Ph2N-fpy) \rightarrow \pi^*(Ph2N-fpy)$	ILCT
S17	305.1	0.113	4.06	160 →166	0.33006	H-4→L+1 (22%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(pic)+\pi^*(Ph2N-fpy)$	MLCT+LLCT+ILCT
				164 →170	0.27327	H→L+5 (15%)	$\pi(Ph2N-fpy) \rightarrow \pi^*(Ph2N-fpy)$	ILCT
				164 →171	0.37447	H→L+6(28%)	π (Ph2N-fpy) $\rightarrow \pi^*$ (Ph2N-fpy)	ILCT

 Table S15. The abost properties of complex 6

	λcal		Ecal		Main config	uration		
State	(nm)	f	(eV)	ψi-	→ψj	Excitation	• orbitality interpretation	character of excitation
S1	450.3	0.027	2.75	107 →108	0.69426	H→L (96%)	$d(Pt)+\pi(CO-fpy) \rightarrow \pi^*(CO-fpy)$	MLCT+ILCT
S2	401	0.006	3.09	106 →108	-0.38052	H-1→L (29%)	$d(Pt)+\pi(CO-ppy)+\pi(pic) \rightarrow \pi^*(CO-fpy)$	MLCT+LLCT+ILCT
				107 →109	0.56666	H→L+1 (64%)	$d(Pt)+\pi(CO-fpy) \rightarrow \pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT
S 3	395.6	0.000	3.13	103 →108	0.58525	H-4→L (69%)	$\pi(\text{CO-fpy}) \rightarrow \pi^*(\text{CO-fpy})$	ILCT
				103 →109	0.31056	H-4→L+1 (19%)	$\pi(\text{CO-fpy}) \rightarrow \pi^*(\text{pic}) + \pi^*(\text{CO-fpy})$	LLCT+ILCT
S4	377.6	0.010	3.28	106 →108	-0.32181	H-1→L (21%)	$d(Pt)+\pi(CO-ppy)+\pi(pic) \rightarrow \pi^*(CO-fpy)$	MLCT+LLCT+ILCT
				107 →109	-0.34585	H→L+1 (24%)	$d(Pt)+\pi(CO-fpy) \rightarrow \pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT
				107 →110	0.48492	H→L+2 (47%)	$d(Pt)+\pi(CO-fpy) \rightarrow \pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT
S5	369.8	0.007	3.35	105 →108	0.60640	H-2→L (74%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(CO-fpy)$	MLCT+LLCT
S6	360.5	0.003	3.44	104 →108	0.54981	H-3→L (60%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(CO-fpy)$	MLCT+LLCT
				104 →109	-0.31152	H-3→L+1 (19%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT
				105 →109	0.22993	H-2→L+1 (11%)	$d(Pt)+\pi(pic)\rightarrow\pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT
S7	347.1	0.345	3.57	106 →108	0.42672	H-1→L (36%)	$d(Pt)+\pi(CO-ppy)+\pi(pic) \rightarrow \pi^*(CO-fpy)$	MLCT+LLCT+ILCT
				106 →109	-0.22997	H-1→L+1 (11%)	d(Pt)+π(CO- ppy)+π(pic)→π*(pic)+π*(CO-fpy)	MLCT+LLCT+ILCT
				107 →110	0.35164	H→L+2 (25%)	$d(Pt)+\pi(CO-fpy) \rightarrow \pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT
S8	333.6	0.029	3.73	$102 \rightarrow 108$	0.35202	H-5→L (25%)	$d(Pt)+\pi(CO-fpy) \rightarrow \pi^*(CO-fpy)$	MLCT+ILCT
				105 →109	0.40990	H-2→L+1 (34%)	$d(Pt)+\pi(pic) \rightarrow \pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT
				107 →111	0.23252	H→L+3 (11%)	$d(Pt)+\pi(CO-fpy) \rightarrow \pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT
S9	333.2	0.011	3.72	102 →108	0.32453	H-5→L (21%)	$d(Pt)+\pi(CO-fpy) \rightarrow \pi^*(CO-fpy)$	MLCT+ILCT
				105 →109	-0.25631	H-2→L+1 (13%)	$d(Pt)+\pi(pic)\rightarrow\pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT
				106 →109	-0.27690	H-1→L+1 (15%)	d(Pt)+ π (CO- ppy)+ π (pic)→ π *(pic)+ π *(CO-fpy)	MLCT+LLCT+ILCT
				107 →111	0.35728	H→L+3 (26%)	$d(Pt)+\pi(CO-fpy) \rightarrow \pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT
S10	328.6	0.047	3.77	102 →108	-0.13608	H-5→L (34%)	$d(Pt)+\pi(CO-fpy) \rightarrow \pi^*(CO-fpy)$	MLCT+ILCT
				106 →109	0.39305	H-1→L+1 (27%)	d(Pt)+π(CO- ppy)+π(pic)→π*(pic)+π*(CO-fpy)	MLCT+LLCT+ILCT
				107 →110	0.21739	H→L+3 (14%)	$d(Pt)+\pi(CO-fpy) \rightarrow \pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT
S11	322.7	0.118	3.84	106→109	0.39305	H-1→L+1 (31%)	d(Pt)+ π (CO- ppy)+ π (pic)→ π *(pic)+ π *(CO-fpy)	MLCT+LLCT+ILCT
				107 →111	0.39929	H→L+3 (32%)	$d(Pt)+\pi(CO-fpy) \rightarrow \pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT
S20	293.8	0.149	4.22	101 →108	0.38340	H-6→L (29%)	$\pi(\text{pic})+\pi(\text{CO-fpy}) \rightarrow \pi^*(\text{CO-fpy})$	LLCT+ILCT
				$102 \rightarrow 109$	0.27808	H-5→L+1 (15%)	$d(Pt)+\pi(CO-fpy) \rightarrow \pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT
				106 →111	0.22824	H-1→L+3 (10%)	$d(Pt)+\pi(CO-ppy)+\pi(pic) \rightarrow \pi^*(pic)+\pi^*(CO-fpy)$	MLCT+LLCT+ILCT

 Table S16. The abostption properties of complex 7

5. The relationship between the frontier molecular orbitals and the natural transition orbitals

Figure S4. Comparison between the conventional analyses based on frontier molecular orbitals (FMO) and natural transition orbital (NTO) analysis of the $T_1 \rightarrow S_0$ transition of complex 2 at its T_1 -state geometry. The description based on FMOs is displayed on the left-hand side and that based on NTOs on the right-hand side.

6. The calculation method of transition energies between 0-0 transition energy and $T_1 \rightarrow S_0$ vertical transition energy.

The 0-0 transition energies allow for the zero-point energies (zpe) of both S_0 and $T_{1,opt}$ at their respective optimized geometries. The vertical transition energies are achieved by the Δ SCF method, namely, it is the electronic-energy difference between the $T_{1,opt}$ and S_0 states at the $T_{1,opt}$ optimized geometries. The transition energy evaluated by the Δ SCF method is usually different from TDDFT. One of the reasons is that the former treats only a single configuration, DFT is a single-determinant theory; whilst the latter is a single-excitation theory, in which more than one configuration is considered in solving the eigenvalues of the excited states. Thus, the $T_{1,opt}$ excited state obtained from DFT calculations may differ from that obtained by TDDFT¹.

7. Cartesian coordinates of complexes 1-7 at their respective S_0 and $T_{1,opt}$ optimised geometries

		~ 1	
С	-4.789032	1.175485	0.221262
С	-2.474660	1.796831	0.385623
С	2.972399	-3.121599	0.122673
С	4.125477	-2.340119	0.231664
С	1.744317	-2.482201	0.017622
Ν	1.652066	-1.139214	0.013141
С	4.019107	-0.953775	0.223267
С	2.760690	-0.350679	0.107598
С	2.466015	1.079893	0.036485
С	3.463217	2.065571	0.017355
С	1.084402	1.409800	-0.089139
С	0.786059	2.760976	-0.314572
С	3.122075	3.403316	-0.156576
С	1.780287	3.743743	-0.341425
Pt	-0.138224	-0.192579	-0.015835
Ν	-2.074132	0.542132	0.105108
0	-1.255293	-2.008124	-0.086939
С	-2.535281	-1.861397	-0.224373
0	-3.367323	-2.738535	-0.422162
С	-4.374684	-0.129033	-0.030300
С	-3.015048	-0.422202	-0.066472
С	-3.817660	2.150883	0.449647
Н	-5.845306	1.426199	0.256467
Н	-1.691287	2.517131	0.573128
Н	3.016229	-4.205018	0.121576
Н	5.101312	-2.808888	0.321386
Н	0.800363	-3.011058	-0.061363
Н	4.905390	-0.335151	0.305174
Н	4.510124	1.792783	0.123867
Н	-0.235769	3.071435	-0.506755
Н	3.893432	4.167909	-0.170732
Н	1.504496	4.781246	-0.515620
Н	-5.062206	-0.952337	-0.187833
Н	-4.085999	3.176813	0.678845

Table S17. Cartesian coordinates of 1 at the S_0 optimized geometry.

С	4.801351	1.116344	-0.220772
С	2.495490	1.764758	-0.424105
С	-3.045289	-3.065347	-0.097656
С	-4.209594	-2.248560	-0.192683
С	-1.799136	-2.463647	-0.018474
Ν	-1.651561	-1.127223	-0.026205
С	-4.071077	-0.883243	-0.193451
С	-2.780914	-0.286033	-0.101490
С	-2.463449	1.079103	-0.046527
С	-3.410305	2.151682	-0.109783
С	-1.019784	1.395049	0.134497
С	-0.686347	2.725641	0.447028
С	-3.002590	3.436165	0.135107
С	-1.635318	3.737715	0.451651
Pt	0.129905	-0.199343	-0.009859
Ν	2.075218	0.518688	-0.123177
0	1.212763	-2.006095	0.104456
С	2.501453	-1.877159	0.252150
0	3.304434	-2.774132	0.470752
С	4.367504	-0.178906	0.047781
С	3.004695	-0.454730	0.075478
С	3.842550	2.099766	-0.476381
Н	5.860676	1.353438	-0.249948
Н	1.722968	2.490997	-0.636172
Н	-3.114808	-4.147130	-0.091148
Н	-5.192858	-2.703676	-0.257344
Н	-0.877256	-3.031902	0.048244
Н	-4.942554	-0.239520	-0.253187
Н	-4.455270	1.944026	-0.319972
Н	0.339119	2.977080	0.698749
Н	-3.729006	4.244655	0.110603
Н	-1.353338	4.759773	0.685170
Н	5.044631	-1.006915	0.225008
Н	4.126501	3.117927	-0.721169

Table S18. Cartesian coordinates of 1 at the $T_{\rm 1,opt}$ optimized geometry.

С	-2.127006	-3.789823	0.046560
С	-3.400367	-3.232726	0.176628
С	-1.037055	-2.934543	-0.040669
Ν	-1.190399	-1.597813	-0.009420
С	-3.552969	-1.850374	0.207137
С	-2.424536	-1.023907	0.106600
С	-2.374578	0.436211	0.070590
С	-3.493372	1.278339	0.065027
С	-1.068835	1.010200	-0.052781
С	-0.981890	2.392574	-0.250741
С	-3.404409	2.653500	-0.087166
С	-2.130504	3.178519	-0.260040
F	-4.737688	0.759408	0.202720
F	-2.005647	4.507374	-0.445506
Pt	0.408324	-0.356241	-0.009211
Ν	2.189300	0.701652	0.138991
0	1.815658	-1.940619	-0.111882
С	2.369210	1.997602	0.457080
С	3.631421	2.576763	0.524403
С	4.754167	1.791532	0.260060
С	4.569737	0.442187	-0.026842
С	3.280895	-0.080184	-0.064066
С	3.052440	-1.575082	-0.255045
0	4.016708	-2.295158	-0.478674
Н	-1.972428	-4.862622	0.016503
Н	-4.275261	-3.871966	0.253620
Н	-0.012881	-3.280002	-0.132114
Н	-4.531721	-1.404523	0.304736
Н	-0.039777	2.893082	-0.435610
Н	-4.288913	3.278028	-0.089572
Н	1.476122	2.565705	0.674893
Н	3.720872	3.626347	0.783801
Н	5.751231	2.220775	0.295858
Н	5.388162	-0.244430	-0.211561

Table S19. Cartesian coordinates of 2 at the S_0 optimized geometry.

		-	
С	2.181545	-3.759895	0.021717
С	3.481187	-3.184370	-0.099589
С	1.070145	-2.928467	0.072786
Ν	1.175674	-1.592719	0.016897
С	3.608857	-1.820828	-0.153584
С	2.452734	-0.979538	-0.085644
С	2.379207	0.416723	-0.076315
С	3.490504	1.327983	-0.152571
С	1.019868	1.006612	0.085955
С	0.925948	2.377186	0.350177
С	3.355247	2.666480	0.055347
С	2.056534	3.176816	0.338118
F	4.725042	0.836127	-0.410432
F	1.955096	4.496230	0.587499
Pt	-0.405551	-0.362887	-0.006274
Ν	-2.191268	0.687161	-0.154854
0	-1.792111	-1.944347	0.116665
С	-2.381671	1.982432	-0.478485
С	-3.647252	2.551786	-0.542861
С	-4.766132	1.759922	-0.274951
С	-4.571493	0.412398	0.015133
С	-3.279769	-0.101470	0.053421
С	-3.038260	-1.588221	0.253018
0	-3.988476	-2.325179	0.477465
Н	2.042043	-4.833952	0.067956
Н	4.358906	-3.820759	-0.145186
Н	0.057603	-3.310151	0.153654
Н	4.580971	-1.355609	-0.239612
Н	-0.021451	2.849372	0.580330
Н	4.213109	3.327745	0.018160
Н	-1.492609	2.555393	-0.702476
Н	-3.744415	3.599989	-0.805347
Н	-5.765906	2.182245	-0.311304
Н	-5.385866	-0.278497	0.202223

Table S20. Cartesian coordinates of 2 at the $T_{\rm 1,opt}$ optimized geometry.

С	4.572367	-4.176689	0.433610
С	3.502821	-4.992692	0.809469
С	4.323760	-2.838022	0.157333
С	2.223384	-4.452783	0.889785
Ν	3.082667	-2.324802	0.240562
С	2.018008	-3.099790	0.596113
С	0.745642	-2.378525	0.587090
С	-0.490068	-2.993673	0.842033
С	0.831822	-1.000261	0.234210
С	-0.383234	-0.322830	0.090324
С	-1.668883	-2.269724	0.716099
С	-1.644433	-0.914408	0.324667
В	-2.963781	-0.078128	0.157969
С	-4.316025	-0.827544	-0.184195
С	-2.874348	1.497112	0.336155
С	-2.366267	2.067867	1.534820
С	-3.263041	2.382703	-0.705725
С	-3.130555	3.765747	-0.540725
С	-2.647442	4.329527	0.642916
С	-2.273959	3.458881	1.669631
С	-3.784960	1.877330	-2.035982
С	-2.575447	5.828751	0.820327
С	-1.926735	1.223371	2.718731
С	-5.474340	-0.685056	0.629411
С	-4.405671	-1.680712	-1.317898
С	-5.605637	-2.339410	-1.610645
С	-6.736653	-2.213885	-0.803059
С	-6.643632	-1.385211	0.318303
С	-3.243608	-1.904069	-2.270082
С	-8.027092	-2.921758	-1.143003
С	-5.484398	0.181852	1.872907
Pt	2.720803	-0.352641	-0.051071
Ν	2.621123	1.711040	-0.255893
С	1.585409	2.530916	0.006348
С	1.659539	3.906658	-0.181317
С	2.848581	4.464607	-0.650920
С	3.931396	3.621654	-0.885116
С	3.796756	2.254311	-0.666992
С	4.994835	1.323467	-0.818127
0	4.762718	0.101015	-0.454767
0	6.053782	1.788862	-1.221660

Table S21. Cartesian coordinates of 3 at the S_0 optimized geometry.

Н	5.583027	-4.561963	0.356515
Н	3.664636	-6.042440	1.036975
Н	5.096734	-2.134081	-0.132620
Н	1.382407	-5.073149	1.177665
Н	-0.535847	-4.042929	1.123783
Н	-0.385413	0.708637	-0.243093
Н	-2.622289	-2.754775	0.907278
Н	-3.424302	4.421925	-1.358329
Н	-1.908156	3.872305	2.608390
Н	-3.006478	1.351357	-2.603844
Н	-4.616589	1.178550	-1.909119
Н	-4.131201	2.708664	-2.658423
Н	-1.837875	6.109826	1.580071
Н	-2.311252	6.333036	-0.116123
Н	-3.543083	6.236894	1.142200
Н	-2.551974	0.337011	2.859011
Н	-0.897622	0.863795	2.600701
Н	-1.968661	1.808247	3.643850
Н	-5.655671	-2.970297	-2.496672
Н	-7.510522	-1.273732	0.967532
Н	-3.610053	-2.211221	-3.255530
Н	-2.629988	-1.009573	-2.408792
Н	-2.571885	-2.691066	-1.907716
Н	-7.854969	-3.767936	-1.816471
Н	-8.526353	-3.299727	-0.243545
Н	-8.733208	-2.244356	-1.642133
Н	-4.797003	-0.196108	2.640401
Н	-5.187063	1.211931	1.655336
Н	-6.483590	0.205382	2.319474
Н	0.685014	2.069888	0.384142
Н	0.788301	4.513381	0.041265
Н	2.932371	5.535027	-0.815750
Н	4.898977	3.975161	-1.222973

		1,0pt 1	0 5
С	4.610629	-4.191905	0.168090
С	3.533844	-5.058702	0.469359
С	4.357544	-2.836839	0.012250
С	2.261965	-4.545722	0.592731
Ν	3.118906	-2.329925	0.136636
С	2.032470	-3.154615	0.420483
С	0.801074	-2.470802	0.478461
С	-0.463034	-3.061958	0.753322
С	0.861854	-1.010497	0.185928
С	-0.349166	-0.330422	0.034141
С	-1.608749	-2.318053	0.643483
С	-1.614887	-0.908497	0.259072
В	-2.918022	-0.089973	0.111295
С	-4.307306	-0.839875	-0.084398
С	-2.814535	1.501591	0.155524
С	-2.294602	2.171396	1.296233
С	-3.229291	2.303769	-0.942608
С	-3.117008	3.696718	-0.886830
С	-2.621655	4.356997	0.241222
С	-2.215821	3.571521	1.322318
С	-3.765744	1.686227	-2.217868
С	-2.570576	5.866571	0.300686
С	-1.828557	1.426383	2.535493
С	-5.423186	-0.599056	0.766279
С	-4.483246	-1.780381	-1.138363
С	-5.712465	-2.427879	-1.315110
С	-6.800075	-2.198330	-0.472321
С	-6.627561	-1.280875	0.567231
С	-3.381968	-2.113368	-2.128458
С	-8.125159	-2.889756	-0.691979
С	-5.349587	0.356761	1.939875
Pt	2.713563	-0.356250	0.007753
Ν	2.582630	1.726723	-0.075079
С	1.543011	2.522924	0.240178
С	1.604298	3.906619	0.118682
С	2.784545	4.498421	-0.331349
С	3.872269	3.677984	-0.619052
С	3.748774	2.300729	-0.472377
С	4.943614	1.387900	-0.693630
0	4.718039	0.136070	-0.405167
0	6.001177	1.866503	-1.076708

Table S22. Cartesian coordinates of **3** at the $T_{1,opt}$ optimized geometry.

Н	5.623386	-4.562619	0.059772
Н	3.708726	-6.122623	0.598308
Н	5.134416	-2.114336	-0.213924
Н	1.422132	-5.195123	0.814126
Н	-0.526144	-4.110347	1.032756
Н	-0.335958	0.705552	-0.284118
Н	-2.567707	-2.790283	0.841525
Н	-3.435189	4.283794	-1.746987
Н	-1.844942	4.060403	2.222524
Н	-2.996547	1.097277	-2.733972
Н	-4.606164	1.013506	-2.022206
Н	-4.104230	2.459939	-2.914767
Н	-1.905469	6.216432	1.097948
Н	-2.223350	6.296742	-0.646144
Н	-3.564242	6.290710	0.498243
Н	-2.458390	0.561656	2.762036
Н	-0.806368	1.042162	2.426682
Н	-1.839285	2.086850	3.409365
Н	-5.821660	-3.129747	-2.140472
Н	-7.458035	-1.086285	1.244080
Н	-3.800357	-2.589415	-3.021815
Н	-2.824910	-1.229087	-2.451546
Н	-2.646848	-2.809673	-1.704781
Н	-8.009345	-3.795061	-1.297372
Н	-8.592185	-3.174177	0.258022
Н	-8.835075	-2.234927	-1.215491
Н	-4.663932	-0.007044	2.716017
Н	-4.998545	1.348350	1.640639
Н	-6.332712	0.472450	2.407833
Н	0.648206	2.038195	0.601347
Н	0.727327	4.491098	0.374648
Н	2.858140	5.576367	-0.441723
Н	4.832672	4.058531	-0.947881

		* 1 0	2
С	-4.013765	-3.952515	-0.294627
С	-3.728430	-2.614676	-0.058221
С	-2.965695	-4.804705	-0.656490
С	-1.674953	-4.301380	-0.761354
С	-1.430072	-2.944337	-0.507268
С	-0.145908	-2.258035	-0.527672
С	1.079486	-2.900762	-0.758004
С	-0.191669	-0.866945	-0.213699
С	1.030472	-0.211331	-0.059248
С	2.276995	-2.205674	-0.666653
С	2.263675	-0.848880	-0.294663
Ν	3.474798	-0.129106	-0.156737
С	4.635229	-0.763744	0.373736
С	3.531740	1.252117	-0.494652
С	4.174666	2.168026	0.353326
С	2.948612	1.719251	-1.684987
С	2.994217	3.075497	-2.005654
С	3.636918	3.984582	-1.159787
С	4.231148	3.519834	0.015852
С	5.889700	-0.554293	-0.220353
С	7.027019	-1.163313	0.307800
С	6.930775	-2.000847	1.421537
С	5.682292	-2.216012	2.010042
С	4.542126	-1.597329	1.499476
Pt	-2.060535	-0.162410	0.049358
Ν	-2.475420	-2.134692	-0.164522
Н	-5.032690	-4.310661	-0.199060
Н	-4.481383	-1.883719	0.217164
Н	-3.155469	-5.855954	-0.854258
Н	-0.852633	-4.951276	-1.038542
Н	1.108451	-3.955748	-1.019232
Н	1.062271	0.815564	0.282144
Н	3.218886	-2.704221	-0.867071
Н	4.624995	1.814475	1.275280
Н	2.463251	1.013705	-2.351928
Н	2.543406	3.418178	-2.933552
Н	3.682165	5.038656	-1.418835
Н	4.732440	4.214420	0.684789
Н	5.965544	0.085822	-1.093804
Н	7.991065	-0.991462	-0.163671
Н	7.817949	-2.479229	1.826532

Table S23. Cartesian coordinates of 4 at the S_0 optimized geometry.

Н	5.594074	-2.858108	2.882463
Н	3.575642	-1.754902	1.967589
Ν	-1.894444	1.902241	0.147872
С	-0.839417	2.670789	-0.183726
С	-0.865189	4.056218	-0.069229
С	-2.024466	4.677376	0.396554
С	-3.128786	3.885110	0.697875
С	-3.043391	2.504282	0.550310
С	-4.268636	1.620857	0.763437
0	-4.084133	0.377399	0.448230
0	-5.303822	2.140366	1.163081
Н	0.033550	2.156953	-0.559591
Н	0.017779	4.623185	-0.344936
Н	-2.069680	5.757253	0.505301
Н	-4.076922	4.288876	1.034597

		-,• _F • 1 U	-
С	-3.903817	-4.018745	-0.227524
С	-3.659413	-2.666859	-0.026146
С	-2.825820	-4.868831	-0.595216
С	-1.567811	-4.334580	-0.737801
С	-1.343362	-2.944797	-0.521871
С	-0.124447	-2.250081	-0.588489
С	1.145972	-2.853787	-0.900105
С	-0.185535	-0.808392	-0.251609
С	1.014796	-0.152503	-0.075843
С	2.303045	-2.144825	-0.754993
С	2.270978	-0.779206	-0.302704
Ν	3.474848	-0.076736	-0.141182
С	4.615816	-0.733630	0.393193
С	3.548206	1.307262	-0.461922
С	4.209633	2.204205	0.393861
С	2.947262	1.790566	-1.637521
С	3.006630	3.148468	-1.943657
С	3.667852	4.040055	-1.092748
С	4.270015	3.558629	0.073113
С	5.895307	-0.481833	-0.133605
С	7.004652	-1.140286	0.389072
С	6.858888	-2.061563	1.431361
С	5.587848	-2.314690	1.952899
С	4.470509	-1.655153	1.444969
Pt	-2.057210	-0.170944	0.026927
Ν	-2.435295	-2.133999	-0.167516
Н	-4.910276	-4.402566	-0.105449
Н	-4.439024	-1.964642	0.250914
Н	-2.995328	-5.928862	-0.757954
Н	-0.728999	-4.966340	-1.011018
Н	1.189154	-3.881414	-1.248159
Н	1.032315	0.869739	0.283122
Н	3.258722	-2.595440	-1.002707
Н	4.662338	1.835792	1.308530
Н	2.447768	1.095030	-2.303941
Н	2.548505	3.507711	-2.861210
Н	3.717598	5.096911	-1.338420
Н	4.780550	4.242637	0.745414
Н	6.008073	0.219145	-0.954206
Н	7.987737	-0.942134	-0.029083
Н	7.727654	-2.575131	1.832621

Table S24. Cartesian coordinates of **4** at the $T_{1,opt}$ optimized geometry.

Н	5.463862	-3.019691	2.770209
Н	3.485557	-1.832925	1.863928
Ν	-1.940845	1.897863	0.131484
С	-0.910350	2.698675	-0.208125
С	-0.969387	4.080837	-0.082157
С	-2.139481	4.672031	0.399705
С	-3.218640	3.848808	0.707801
С	-3.100064	2.471233	0.552592
С	-4.295940	1.557250	0.779369
0	-4.080505	0.317723	0.462861
0	-5.342592	2.044787	1.191471
Н	-0.030620	2.208143	-0.599995
Н	-0.104957	4.673132	-0.363900
Н	-2.211056	5.749804	0.514062
Н	-4.173448	4.225202	1.057369

		* 1 U	2
С	-2.253209	4.508458	0.043836
С	-0.925087	4.916875	0.195111
С	-2.522317	3.149579	-0.048343
Ν	-1.536278	2.234601	-0.000573
С	0.086220	3.964510	0.239195
С	-0.229190	2.602763	0.134961
С	0.700595	1.477684	0.112945
С	2.097882	1.648293	0.131942
С	0.093140	0.190297	-0.010390
С	0.955470	-0.900318	-0.179699
С	2.926042	0.545689	-0.011086
С	2.343007	-0.730132	-0.166664
Pt	-1.924211	0.247942	-0.005033
Н	-3.068007	5.222500	0.000476
Н	-0.680067	5.972096	0.276366
Н	-3.522841	2.745011	-0.158762
Н	1.120266	4.268984	0.352774
Н	2.523152	2.639938	0.255875
Н	0.559324	-1.896839	-0.345618
С	3.417532	-1.723097	-0.264948
С	4.653870	-1.055298	-0.154971
С	3.368623	-3.110736	-0.422493
С	4.565511	-3.828778	-0.463236
С	5.842811	-1.776758	-0.197551
С	5.793828	-3.168139	-0.348933
С	4.454192	0.458343	-0.039685
С	5.114732	1.048367	1.235654
С	4.675104	0.411098	2.558513
С	5.063785	1.107730	-1.326288
С	4.914246	2.624045	-1.496001
Н	2.416589	-3.628038	-0.511826
Н	4.543515	-4.908610	-0.583896
Н	6.803930	-1.274752	-0.113271
Н	6.717863	-3.739367	-0.378975
Н	6.204810	0.955454	1.129354
Н	4.906329	2.125018	1.271395
Н	5.185692	0.890485	3.401523
Н	3.596477	0.519905	2.714426
Н	4.911796	-0.657615	2.586611
Н	6.132388	0.854068	-1.341863
Н	4.619661	0.608404	-2.196173

Table S25. Cartesian coordinates of 5 at the S_0 optimized geometry.

Н	5.419212	2.943306	-2.415047
Н	3.864130	2.920504	-1.582845
Н	5.362305	3.184440	-0.668020
С	-1.865143	-2.808867	0.479572
С	-2.436446	-4.074621	0.548204
С	-3.793082	-4.224119	0.257755
С	-3.906954	-1.848067	-0.093593
С	-4.534618	-3.089278	-0.056746
Ν	-2.574842	-1.717199	0.136389
0	-4.032847	0.516271	-0.166884
С	-4.716335	-0.574398	-0.315640
0	-5.911051	-0.675232	-0.567407
Н	-0.823151	-2.645363	0.714745
Н	-1.819438	-4.921539	0.829521
Н	-4.263138	-5.202643	0.294533
Н	-5.598588	-3.111719	-0.263601

		1,0pt 1	0
С	-2.220248	4.521023	-0.057916
С	-0.872994	4.936183	0.087973
С	-2.503872	3.162445	-0.110298
Ν	-1.540035	2.231938	-0.028633
С	0.121576	3.989256	0.167396
С	-0.196967	2.603136	0.105645
С	0.695015	1.516294	0.133471
С	2.124750	1.646796	0.247303
С	0.068597	0.169862	-0.036472
С	0.912094	-0.899186	-0.278392
С	2.912543	0.555666	0.029215
С	2.313992	-0.745245	-0.249630
Pt	-1.916390	0.256792	0.005118
Н	-3.029806	5.238668	-0.125641
Н	-0.628173	5.993173	0.131461
Н	-3.512263	2.775687	-0.215005
Н	1.159235	4.288077	0.268526
Н	2.560161	2.614657	0.474059
Н	0.505358	-1.883683	-0.487238
С	3.365391	-1.709202	-0.370511
С	4.619467	-1.065482	-0.175528
С	3.316016	-3.098105	-0.615908
С	4.504180	-3.819197	-0.655985
С	5.795384	-1.797563	-0.216950
С	5.738637	-3.180994	-0.455943
С	4.438784	0.443397	0.023309
С	5.079394	0.953922	1.341316
С	4.611009	0.241193	2.614720
С	5.072883	1.160915	-1.215520
С	4.966809	2.688419	-1.284289
Н	2.363679	-3.597971	-0.771028
Н	4.478969	-4.889385	-0.843706
Н	6.758462	-1.314926	-0.067706
Н	6.656979	-3.760334	-0.489611
Н	6.170337	0.858769	1.247057
Н	4.876305	2.027554	1.437152
Н	5.111871	0.662056	3.493806
Н	3.530973	0.354061	2.759622
Н	4.836224	-0.829866	2.580316
Н	6.133482	0.876696	-1.238955
Н	4.623038	0.730380	-2.118650

Table S26. Cartesian coordinates of **5** at the $T_{1,opt}$ optimized geometry.

Н	5.472215	3.051402	-2.186506
Н	3.925351	3.020244	-1.338631
Н	5.439990	3.178780	-0.426604
С	-1.846592	-2.793760	0.535293
С	-2.414011	-4.059755	0.616775
С	-3.769532	-4.218903	0.321629
С	-3.890027	-1.848631	-0.065972
С	-4.513363	-3.091164	-0.013295
Ν	-2.558934	-1.709353	0.170189
0	-4.013980	0.515224	-0.176034
С	-4.697307	-0.581445	-0.312249
0	-5.890464	-0.680208	-0.569465
Н	-0.806490	-2.621174	0.775310
Н	-1.796045	-4.900575	0.914079
Н	-4.236425	-5.198243	0.371434
Н	-5.576299	-3.121262	-0.224730

			-
С	5.885944	-3.461998	0.960280
С	5.620732	-2.120475	0.720662
С	4.823534	-4.369650	0.918532
С	3.538712	-3.912905	0.650626
Ν	4.373145	-1.687488	0.460865
С	3.313460	-2.547736	0.423737
С	2.034655	-1.890686	0.177749
С	0.806473	-2.579748	0.200731
С	2.105736	-0.475174	-0.004669
С	0.890158	0.218478	-0.058626
С	-0.378434	-1.874143	0.066231
С	-0.329667	-0.465169	-0.024582
С	-1.700786	0.044323	-0.037326
С	-2.589061	-1.047978	0.033983
С	-2.203220	1.347542	-0.091228
С	-3.961201	-0.845568	0.058596
С	-4.472757	0.466510	-0.000813
С	-3.580203	1.553577	-0.080688
С	-1.824739	-2.375430	0.050683
С	-2.174728	-3.249714	1.284662
С	-2.000351	-2.566467	2.645655
С	-2.167348	-3.130893	-1.275655
С	-1.452873	-4.463499	-1.527601
Н	6.900890	-3.781116	1.169238
Н	6.386014	-1.351525	0.721106
Н	4.997095	-5.427549	1.094402
Н	2.707009	-4.607158	0.615428
Н	0.787597	-3.655999	0.348766
Н	0.876033	1.303600	-0.086057
Н	-1.533630	2.201833	-0.152483
Н	-4.651064	-1.681258	0.127541
Ν	-5.873873	0.690246	0.016983
Н	-3.979213	2.561067	-0.135699
Н	-3.213464	-3.592766	1.178077
Н	-1.554952	-4.154953	1.258572
Н	-2.249144	-3.261163	3.456014
Н	-0.968061	-2.232460	2.795181
Н	-2.652747	-1.692369	2.741358
Н	-3.252404	-3.301394	-1.285171
Н	-1.957291	-2.451561	-2.111136
Н	-1.790628	-4.890227	-2.479095

Table S28. Cartesian coordinates of 6 at the S_0 optimized geometry.

Н	-0.367721	-4.334363	-1.594438
Н	-1.662946	-5.203041	-0.747069
Pt	3.990371	0.240913	-0.021305
Ν	3.861262	2.210824	-0.653654
С	2.818478	2.829425	-1.239668
С	2.872747	4.161340	-1.634909
С	4.047027	4.885146	-1.423931
С	5.136782	4.233490	-0.854201
С	5.023997	2.894037	-0.494641
С	6.235420	2.122031	0.019433
0	6.029018	0.851109	0.161778
0	7.280113	2.732746	0.211820
Н	1.935446	2.226910	-1.399463
Н	2.004157	4.612604	-2.102944
Н	4.113929	5.929573	-1.714725
Н	6.094645	4.712066	-0.684482
С	-6.741515	-0.164974	-0.717724
С	-6.414916	1.775641	0.760776
С	-7.953411	-0.602099	-0.158393
С	-8.805048	-1.431430	-0.886485
С	-8.458834	-1.853431	-2.172290
С	-6.400650	-0.582870	-2.014810
С	-7.250358	-1.426729	-2.728031
С	-5.933133	2.069086	2.047175
С	-6.460557	3.138938	2.768296
С	-7.485626	3.921662	2.231703
С	-7.973343	3.626105	0.956600
С	-7.439833	2.569502	0.220372
Н	-8.220848	-0.287586	0.845366
Н	-9.739029	-1.759891	-0.437972
Н	-9.122095	-2.505138	-2.733792
Н	-5.469956	-0.241941	-2.457048
Н	-6.970900	-1.739310	-3.730839
Н	-5.146133	1.455814	2.474445
Н	-6.075741	3.351348	3.762354
Н	-7.898945	4.750158	2.799735
Н	-8.766258	4.229697	0.522625
Н	-7.812933	2.352551	-0.775462

		-,• _F • 1 0	2
С	5.821697	-3.441509	1.159374
С	5.575488	-2.108450	0.860340
С	4.746956	-4.360664	1.112844
С	3.486696	-3.914637	0.781484
Ν	4.349682	-1.667534	0.533392
С	3.263920	-2.542487	0.486886
С	2.036677	-1.918239	0.170774
С	0.778724	-2.612244	0.098634
С	2.103583	-0.447167	-0.019026
С	0.911148	0.241127	-0.062876
С	-0.375707	-1.895469	-0.026087
С	-0.334779	-0.442393	-0.052639
С	-1.664437	0.045196	-0.047106
С	-2.581395	-1.053999	-0.045590
С	-2.177901	1.367799	-0.024931
С	-3.939931	-0.846107	-0.014805
С	-4.451006	0.481012	0.014879
С	-3.543834	1.572077	0.003814
С	-1.824222	-2.385075	-0.102445
С	-2.199522	-3.336360	1.064718
С	-2.034930	-2.746921	2.469800
С	-2.139776	-3.053110	-1.482595
С	-1.425539	-4.370372	-1.804854
Н	6.826440	-3.755830	1.417810
Н	6.351767	-1.350345	0.866332
Н	4.913739	-5.409590	1.339816
Н	2.651109	-4.605298	0.747596
Н	0.755420	-3.694403	0.182129
Н	0.901362	1.326746	-0.086762
Н	-1.504836	2.220379	-0.037769
Н	-4.633914	-1.680655	0.003762
Ν	-5.839384	0.710286	0.052038
Н	-3.939381	2.582332	0.007511
Н	-3.240584	-3.658781	0.921072
Н	-1.588374	-4.243668	0.985110
Н	-2.315189	-3.486090	3.228810
Н	-0.997560	-2.450349	2.657953
Н	-2.668097	-1.864624	2.611017
Н	-3.225515	-3.215002	-1.523200
Н	-1.910171	-2.322292	-2.268131
Н	-1.740420	-4.729031	-2.791586

Table S29. Cartesian coordinates of **6** at the $T_{1,opt}$ optimized geometry.

Н	-0.338844	-4.243787	-1.833785
Н	-1.660365	-5.159298	-1.082055
Pt	3.981083	0.233012	-0.013431
Ν	3.866601	2.186852	-0.695362
С	2.841144	2.787763	-1.331313
С	2.903564	4.109874	-1.754704
С	4.069033	4.844156	-1.525333
С	5.141799	4.209959	-0.905579
С	5.021980	2.879685	-0.515907
С	6.215667	2.124658	0.055698
0	6.007641	0.855620	0.221221
0	7.253853	2.740614	0.269299
Н	1.966718	2.175870	-1.505514
Н	2.048936	4.546393	-2.261200
Н	4.142450	5.880934	-1.840784
Н	6.092648	4.695874	-0.717878
С	-6.732196	-0.154630	-0.643527
С	-6.370524	1.809049	0.786701
С	-7.917906	-0.590883	-0.030687
С	-8.792746	-1.429637	-0.718344
С	-8.495553	-1.855048	-2.015724
С	-6.438488	-0.576083	-1.950696
С	-7.313675	-1.425717	-2.624770
С	-5.887064	2.105023	2.071725
С	-6.407457	3.184388	2.783161
С	-7.421976	3.973010	2.234582
С	-7.909741	3.674243	0.959790
С	-7.386801	2.605500	0.234456
Н	-8.143704	-0.271762	0.981686
Н	-9.705793	-1.761493	-0.231521
Н	-9.177844	-2.512701	-2.546434
Н	-5.528740	-0.229827	-2.430586
Н	-7.075871	-1.741488	-3.636980
Н	-5.109460	1.484436	2.505307
Н	-6.025899	3.400426	3.777378
Н	-7.828485	4.810181	2.794538
Н	-8.694395	4.283593	0.519554
Н	-7.757723	2.383184	-0.760932

			5
С	-2.400983	4.350837	-0.083169
С	-1.144644	4.937730	0.090335
С	-2.484972	2.966254	-0.144977
Ν	-1.386683	2.193987	-0.047847
С	-0.016445	4.131065	0.187797
С	-0.147196	2.738877	0.112400
С	0.926281	1.748759	0.147376
С	2.284994	2.099969	0.205713
С	0.501148	0.386181	0.038694
С	3.232154	1.096230	0.122117
С	1.501431	-0.597206	-0.099941
С	2.847035	-0.249391	-0.052056
С	4.074383	-1.074354	-0.159198
С	5.194905	-0.225663	-0.040341
С	4.255879	-2.440782	-0.344539
С	5.565704	-2.940437	-0.407516
С	6.490547	-0.715485	-0.101167
С	6.671576	-2.093192	-0.287175
С	4.720942	1.187199	0.141684
0	5.407757	2.187113	0.272126
Pt	-1.499113	0.172383	-0.004320
Н	-3.302092	4.948011	-0.166783
Н	-1.045255	6.017812	0.148054
Н	-3.419553	2.429447	-0.267710
Н	0.964644	4.572243	0.320758
Н	2.610822	3.132583	0.299264
Н	1.230430	-1.632684	-0.277276
Н	3.409374	-3.115437	-0.442293
Н	5.722365	-4.006012	-0.552989
Н	7.334997	-0.038472	-0.007097
Н	7.674656	-2.507001	-0.339375
Ν	-1.881999	-1.859103	0.188210
С	-1.044017	-2.833147	0.591438
С	-1.443646	-4.160851	0.693194
С	-2.758257	-4.501228	0.371844
С	-3.634342	-3.487805	-0.005433
С	-3.176875	-2.175447	-0.071236
0	-3.613834	0.147988	-0.223934
С	-4.141304	-1.029528	-0.357204
0	-5.302905	-1.294832	-0.637961
Н	-0.040560	-2.524694	0.848439

Table S30. Cartesian coordinates of 7 at the S_0 optimized geometry.

Н	-0.728976	-4.907037	1.024084
Н	-3.094441	-5.532178	0.433323
Н	-4.678734	-3.660326	-0.239651

		1,0pt 1	0 5
С	-2.310814	4.371842	-0.168800
С	-1.042222	4.945740	0.010937
С	-2.423520	2.987707	-0.202678
Ν	-1.347221	2.192343	-0.071218
С	0.065115	4.124273	0.140941
С	-0.088952	2.724217	0.095786
С	0.951730	1.738237	0.170095
С	2.313738	2.062728	0.305131
С	0.494322	0.321800	0.019413
С	3.243722	1.055946	0.188896
С	1.464489	-0.648904	-0.165333
С	2.835589	-0.329813	-0.090534
С	4.023623	-1.098967	-0.213177
С	5.166306	-0.242588	-0.010408
С	4.231002	-2.474968	-0.484659
С	5.524243	-2.956082	-0.545682
С	6.465122	-0.748331	-0.075862
С	6.643532	-2.101393	-0.342501
С	4.719896	1.138338	0.248464
0	5.402756	2.145175	0.463253
Pt	-1.493124	0.179662	0.001516
Н	-3.199491	4.983157	-0.278382
Н	-0.926713	6.024852	0.043922
Н	-3.369254	2.471197	-0.328168
Н	1.053846	4.548726	0.271568
Н	2.655160	3.082149	0.464296
Н	1.179753	-1.674797	-0.377559
Н	3.387181	-3.140703	-0.645687
Н	5.697262	-4.008479	-0.754244
Н	7.309476	-0.082798	0.079955
Н	7.645052	-2.518377	-0.399444
Ν	-1.910829	-1.838808	0.208580
С	-1.085644	-2.822347	0.616643
С	-1.506560	-4.142563	0.726466
С	-2.827995	-4.463884	0.412004
С	-3.689576	-3.439384	0.030227
С	-3.211696	-2.135227	-0.046689
0	-3.603267	0.195698	-0.222114
С	-4.154044	-0.975392	-0.342282
0	-5.321143	-1.216936	-0.619210
Н	-0.076858	-2.525524	0.868046

Table S31. Cartesian coordinates of **7** at the $T_{1,opt}$ optimized geometry.

Н	-0.803032	-4.898310	1.059496
Н	-3.180473	-5.488749	0.482219
Н	-4.737129	-3.598153	-0.199639

References

1. Tong, G.S.M. & Che, C.M. Emissive or Nonemissive? A Theoretical Analysis of the Phosphorescence Efficiencies of Cyclometalated Platinum (II) Complexes. *Chemistry-A European Journal* **15**, 7225-7237 (2009).