Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

<Supporting Information>

Narcissistic self-sorting vs. statistic ligand shuffling within a series of phenothiazine-based coordination cages

Contents

1.	Crys	tal Structure Analysis	2
		MR and ESI-MS spectra of the mixing experiments	
	2.1.1	Mixture of ligands L ¹ and L ² and cages [Pd ₄ L ¹ ₈] and [Pd ₄ L ² ₈]	5
	2.1.2	Mixture of ligands L ² and L ³ and cages [Pd ₄ L ² ₈] and [Pd ₄ L ³ ₈]	6
	2.1.3	Mixture of ligands L ² and L ⁴ and cages [Pd ₄ L ² ₈] and [Pd ₂ L ⁴ ₄]	7
	2.1.4	Mixture of ligands L ³ and L ⁴ and cages [Pd ₄ L ³ ₈] and [Pd ₂ L ⁴ ₄]	8
	2.1.5	Mixture of cages [Pd ₄ L ¹ ₈] and [Pd ₄ L ³ ₈] and 2-Picoline	9
	2.1.6	Temporal evolution of the heated samples of the mixture of ligands L^1 and L^3 and cap	ges
	[Pd ₄ L ¹	sl and [Pd ₄ L ³ ₈]	. 10

1. Crystal Structure Analysis

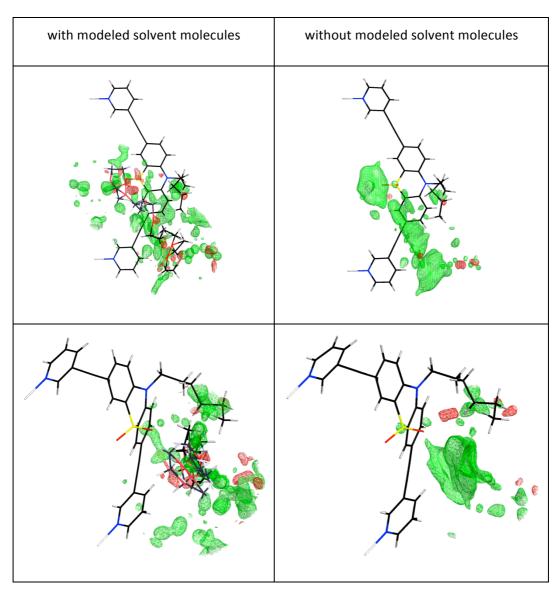
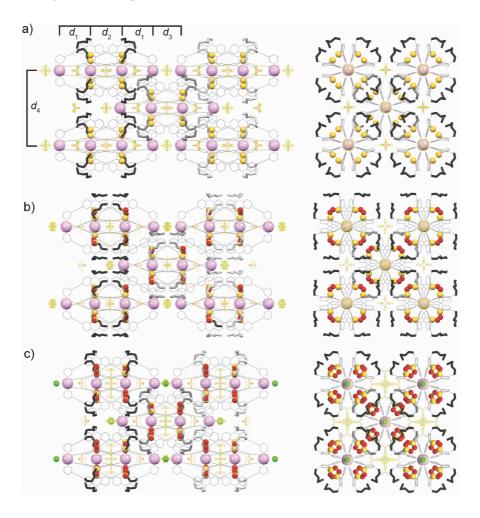


Fig. SI-1 Exemplification of the solvent accessible crystal voids.

The pictures only show the residual electron density in the solvent channels of one asymmetric unit, the rest of the density and the BF_4^- ions are omitted for clarity. Due to the low resolution of the data, it was not possible to adequately model the lattice solvent into these voids and get a stable refinement. In order to extinguish the influence of the electron density present in the voids, the SQUEEZE routine of the PLATON program package was used.¹


Table SI-1 Comparison of final model quality indicators.

	without solvent	with solvent	squeeze
R1	0.1158	0.0970	0.0797
wR2	0.3977	0.3804	0.3011
GooF*	1.360	1.612	1.010

^{*}restrained GooF for all data

In conclusion, the utilization of the SQUEEZE routine led to a significant improvement of the model quality of the cage and its counterions. Check-cif data can be found in the reference section.²

Comparison of Crystal Packing of $[Pd_4L^1_8]$, $[Pd_4L^2_8]$ and $[Pd_4L^3_8]$

Fig. SI-2 Side view (left) and view along (right) the Pd_n-axis of nine selected cages extracted from the X-ray crystal packing of (a) $[Pd_4L^3_8]$, (b) $[Pd_4L^3_8]$ and (c) $[Pd_4L^3_8]$ (only anions positioned on the Pd_n-axis are shown, other anions and solvent molecules were omitted for clarity. C: grey, N: blue, O: red, S: yellow, B: brown, F: light green, Cl: dark green, Pd: purple). The hexyl residues are highlighted in the colours black, grey and silver to indicate different planes in the packing.

Table SI-2 Parameters of the cage structures and packing extracted from the crystal structures.

	[Pd ₄ L ¹ ₈]	[Pd ₄ L ² ₈]	[Pd ₄ L ³ ₈]
d_1 (Pd _{outer} -Pd _{inner})	8.77 Å	8.16 Å	8.40 Å
d ₂ (Pd _{inner} -Pd _{inner})	8.85 Å	8.63 Å	8.47 Å
d ₃ (Pd _{outer} -Pd _{outer})	7.88 Å	7.77 Å	6.54 Å
d_4 (Pd _{Cage} -Pd _{Cage})	21.12 Å	21.96 Å	21.99 Å

The Pd-Pd distances for a BF_4^- enclosed between two Pd(pyridine)₄ planes is at least 7.77 Å. The minimum Pd-Pd distance for a CI^- is considerably smaller. It was found to be 6.54 Å for the $Pd_{outer}^ Pd_{outer}^-$ distance in the $[Pd_4L^3_8]$ double-cage (for comparison: the distance between two inner Palladium cations enclosing a chloride anion of a previously reported double-cage based on the suberone backbone was found to be 6.26 Å).³

2. ¹H NMR and ESI-MS spectra of the mixing experiments

2.1.1 Mixture of ligands L¹ and L² and cages [Pd₄L¹₈] and [Pd₄L²₈]

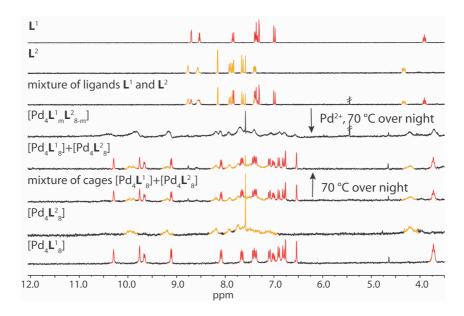
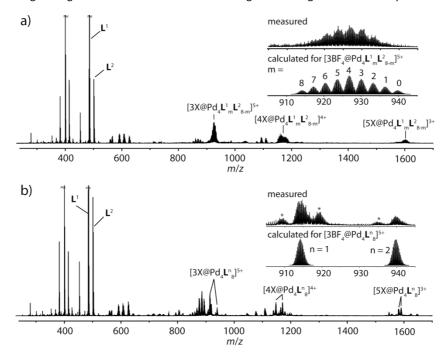



Fig. SI-3 1 H NMR spectra (300 MHz, 298 K, CD₃CN of a binary system containing two different long ligands $L^1 + L^2$ (250 μL of a 2.8 mM solution for each ligand). The outcome of the self-assembly gives mixed cages $[Pd_4L^1_{m}L^2_{8-m}]$, showing a statistical ligand distribution when the ligands are mixed prior to the addition of palladium and heating at 70 °C over night. In contrast, combining two preassembled double-cages $[Pd_4L^1_{8}] + [Pd_4L^2_{8}]$ (250 μL of a 0.35 mM solution for each cage) leads to a mixture of coexisting homogeneous structures between which ligand exchange is tremendously slowed down.

Fig. SI-4 (a) ESI-TOF mass spectra in positive mode of the solution after addition of 0.5 eq Pd(CH₃CN)₄(BF4)₂ to premixed ligands L^1 and L^2 (250 μL of a 2.8 mm solution for each ligand) and heating in CD₃CN at 70 °C. The spectra shows a statistical distribution of the ligands forming the double-cages [Pd₄L¹_mL²_{8-m}] with m = 8-0. (b) ESI-TOF mass spectra in positive mode of the solution after mixing the double cages [Pd₄L¹₈] and [Pd₄L²₈] (250 μL of a 0.35 mm solution for each cage) and heating at 70 °C. * denotes other anion combinations with X = BF₄, F, NO₃ and Cl⁻.

2.1.2 Mixture of ligands L² and L³ and cages [Pd₄L²₈] and [Pd₄L³₈]

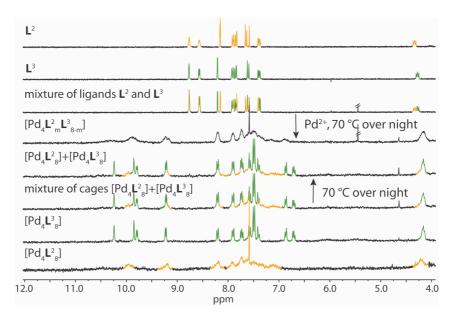
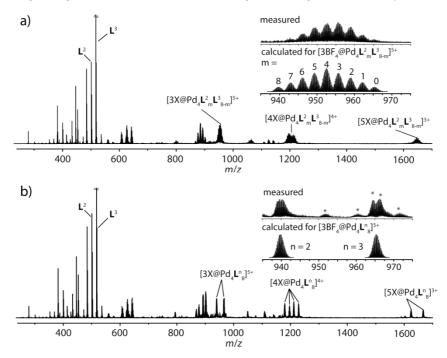



Fig. SI-5 1 H NMR spectra (300 MHz, 298 K, CD₃CN) of a binary system containing two different long ligands $L^2 + L^3$ (250 μL of a 2.8 mm solution for each ligand). The outcome of the self-assembly gives mixed cages $[Pd_4L^2_{m}L^3_{8-m}]$, showing a statistical ligand distribution when the ligands are mixed prior to the addition of palladium and heating at 70 °C over night. In contrast, combining two preassembled double-cages $[Pd_4L^2_{8}] + [Pd_4L^3_{8}]$ (250 μL of a 0.35 mm solution for each cage) leads to a mixture of coexisting homogeneous structures between which ligand exchange is tremendously slowed down.

Fig. SI-6 (a) ESI-TOF mass spectra in positive mode of the solution after addition of 0.5 eq Pd(CH₃CN)₄(BF4)₂ to premixed ligands L^2 and L^3 (250 μ L of a 2.8 mm solution for each ligand) and heating in CD₃CN at 70 °C. The spectra shows a statistical distribution of the ligands forming the double-cages $[Pd_4L^2_mL^3_{8-m}]$ with m = 8-0. (b) ESI-TOF mass spectra in positive mode of the solution after mixing the double cages $[Pd_4L^2_8]$ and $[Pd_4L^3_8]$ (250 μ L of a 0.35 mm solution for each cage) and heating at 70 C. * denotes other anion combinations with X = BF₄, F, NO₃ and Cl.

2.1.3 Mixture of ligands L² and L⁴ and cages [Pd₄L²₈] and [Pd₂L⁴₄]

Fig. SI-7 ¹H NMR spectra (300 MHz, 298 K, CD₃CN) of the binary system containing the long ligand L^2 and the short ligand L^4 . The outcome of the self-assembly is independent of the order of mixing of the components. In both cases, this system shows narcissistic self-sorting behaviour to give mixture of cages $[Pd_2L^2]$ and $[Pd_2L^4]$.

Fig. SI-8 (a) ESI-TOF mass spectra in positive mode of the solution after addition of 0.5 eq Pd(CH₃CN)₄(BF4)₂ to premixed ligands L^2 and L^4 (250 μ L of a 2.8 mM solution for each ligand) and heating in CD₃CN at 70 °C. (b) ESI-TOF mass spectra in positive mode of the solution of the mixed double cages $[Pd_4L^2_8]$ and $[Pd_2L^4_4]$ (250 μ L of a 0.35 mM solution for each cage) and after heating at 70 °C. The spectra show no exchange of the ligands. $X = BF_4$, F, NO_3 .

2.1.4 Mixture of ligands L³ and L⁴ and cages [Pd₄L³₈] and [Pd₂L⁴₄]

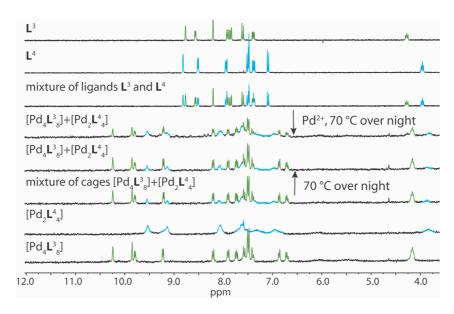
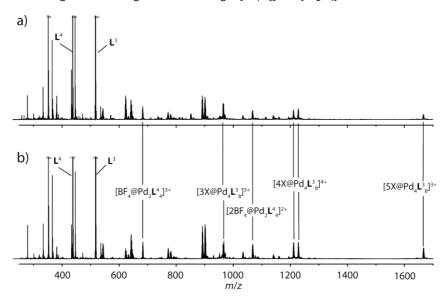
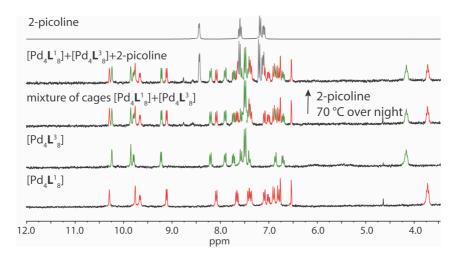




Fig. SI-9 ¹H NMR spectra (300 MHz, 298 K, CD₃CN) of the binary system containing the long ligand L^3 and the short ligand L^4 . The outcome of the self-assembly is independent of the order of mixing of the components. In both cases, this system shows narcissistic self-sorting behaviour to give mixture of cages $[Pd_2L^4_8]$ and $[Pd_2L^4_4]$.

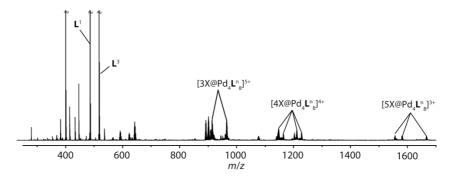


Fig. SI-10 (a) ESI-TOF mass spectra in positive mode of the solution after addition of 0.5 eq Pd(CH₃CN)₄(BF4)₂ to premixed ligands \mathbf{L}^3 and \mathbf{L}^4 (250 μ L of a 2.8 mM solution for each ligand) and heating in CD₃CN at 70 °C. (b) ESI-TOF mass spectra in positive mode of the solution of the mixed double cages $[Pd_4L^3_8]$ and $[Pd_2L^4_4]$ (250 μ L of a 0.35 mM solution for each cage)and after heating at 70 °C. The spectra show no exchange of the ligands. X = BF₄, F', NO₃.

2.1.5 Mixture of cages [Pd₄L¹₈] and [Pd₄L³₈] and 2-Picoline

Fig. SI-11 ¹H NMR spectra (300 MHz, 298 K, CD₃CN) of the mixture of cages $[Pd_4L^1_8]$ and $[Pd_4L^3_8]$ (250 μ L of a 0.35 mM solution for each cage) and 2-picoline (8 eq per cage molecule, 13 μ L of a 101 mM stock solution). The outcome shows no exchange of the ligands even after heating at 70 °C.

Fig. SI-12 ESI-TOF mass spectra in positive mode of the solution of the mixed double cages $[Pd_4L^1_8]$ and $[Pd_4L^3_8]$ (250 μ L of a 0.35 mm solution for each cage)and 2-picoline after heating at 70 °C. X = BF₄, F, NO₃.

2.1.6 Temporal evolution of the heated samples of the mixture of ligands L^1 and L^3 and cages $[Pd_4L^1_8]$ and $[Pd_4L^3_8]$

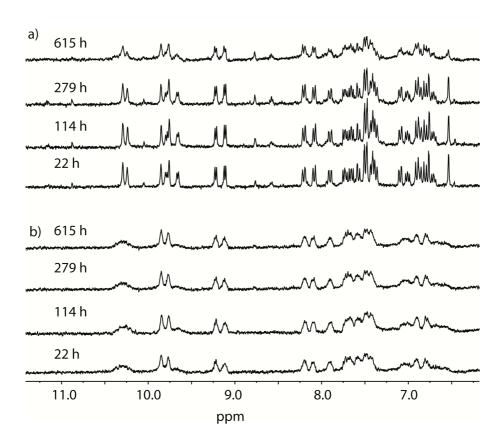


Fig. SI-13 a) 1 H NMR spectra (300 MHz, 298 K, CD $_3$ CN) of a binary system of mixed-ligand cages $[Pd_4L^1_mL^3_{8-m}]$ (m = 1 – 8), containing two different long ligands $L^1 + L^3$ (250 μ L of a 2.8 mM solution for each ligand) after heating at 70 °C for 22 h, 114 h, 279 h and 615 h. b) In contrast, combining two preassembled double-cages $[Pd_4L^1_8] + [Pd_4L^3_8]$ (250 μ L of a 0.35 mM solution for each cage) and heating at 70 °C leads to a mixture of coexisting homogeneous structures between which ligand exchange is tremendously slowed down.

² Check-cif data:

Bond precis	ion: C-C	C = 0.0087 A	Wavelength=0.71073				
Cell:	a=21.991(2)	b=21.991(2)	c=31.800(3)				
	alpha=90	beta=90	gamma=90				
Temperature: 100 K							
	Calc	ılated	Reported				
Volume	me 15379(3)		15379(3)				
Space group P		n n c	P 4/n n c				
Hall group	-P 4a	a 2bc	-P 4a 2bc				

¹ a) A. L. Spek, *J. Appl. Cryst.*, 2003, **36**, 7-13; b) P. van der Sluis, A. L. Spek, *Acta Cryst.*, 1990, **A46**, 194-201.

Moiety formula	2(C128 H108 0.13(B8 F3 0.54(B2		08 Pd 0.73(B4	12 S4) F16)	′C64 ′S2	Н54	в1.75	C10.25	F7	N6	04	Pd
Sum formula	С256 Н216 В7	Cl F28	N24 016	Pd4 S8	C64 S2	Н54	в1.75	C10.25	F7	N6	04	Pd
Mr	5209.80				1302	2.43						
Dx,g cm-3	1.125	1.125			1.125							
Z	2				8							
Mu (mm-1)				0.363								
F000		5328.0										
F000'	5324.85											
h,k,lmax	25,25,36				25,2	24,36	;					
Nref	5936				5937	7						
Tmin, Tmax	0.968,0.978				0.40	0,0.	428					
Tmin'	0.968											
Correction method= MULTI-SCAN												
Data completeness= 1	Theta(max)= 23	3.837									
R(reflections) = 0.07	wR2	2(reflec	tions)=	0.30	31(5937)						
S = 1.060 Npar= 682												

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level B

 ${\tt Crystal \ system \ given = tetragonal}$

 $\underline{\text{THETM01_ALERT_3_B}} \quad \text{The value of sine(theta_max)/wavelength is less than 0.575}$

Calculated sin(theta max)/wavelength = 0.5686

PLAT019_ALERT_1_B Check _diffrn_measured_fraction_theta_full/_max 0.850

PLAT973 ALERT 2 B Large Calcd. Positive Residual Density on Pd2 1.61 eA-3

→ Alert level C

REFNR01_ALERT_3_C Ratio of reflections to parameters is < 10 for a</pre>

centrosymmetric structure

sine(theta)/lambda 0.5686

Proportion of unique data used 1.0000

Ratio reflections to parameters 8.7053

RFACR01_ALERT_3_C The value of the weighted R factor is > 0.25

Weighted R factor given 0.303

```
PLAT088 ALERT 3 C Poor Data / Parameter Ratio ......
                                                                      8.71
PLAT094 ALERT 2 C Ratio of Maximum / Minimum Residual Density ....
                                                                      2.19
PLAT213 ALERT 2 C Atom F31
                                         has ADP max/min Ratio .....
                                                                              3.2
prolat
PLAT220 ALERT 2 C Large Non-Solvent C
                                          Ueq(max)/Ueq(min) ...
                                                                       3.5 Ratio
PLAT222 ALERT 3 C Large Non-Solvent
                                                                       4.3 Ratio
                                   H Uiso(max)/Uiso(min) ..
PLAT342 ALERT 3 C Low Bond Precision on C-C Bonds .....
                                                                    0.0087 Ang.
PLAT410 ALERT 2 C Short Intra H...H Contact H19 .. H27E ...
                                                                      1.94 Ang.
PLAT905 ALERT 3 C Negative K value in the Analysis of Variance ...
                                                                    -6.187
PLAT918 ALERT 3 C Reflection(s) # with I(obs) much smaller I(calc)
                                                                        7 Check
PLAT973 ALERT 2 C Large Calcd. Positive Residual Density on Pd1
                                                                     1.48 eA-3
Alert level G
PLAT002 ALERT 2 G Number of Distance or Angle Restraints on AtSite
                                                                        75 Note
PLAT003 ALERT 2 G Number of Uiso or Uij Restrained non-H Atoms ...
                                                                        77
PLAT042 ALERT 1 G Calc. and Reported MoietyFormula Strings Differ
                                                                    Please Check
PLAT045 ALERT 1 G Calculated and Reported Z Differ by ......
                                                                      0.25 Ratio
PLAT072 ALERT 2 G SHELXL First Parameter in WGHT Unusually Large.
                                                                     0.19
PLAT083 ALERT 2 G SHELXL Second Parameter in WGHT Unusually Large.
                                                                     36.09
PLAT301 ALERT 3 G Main Residue Disorder ..... Percentage =
                                                                       30 Note
PLAT371 ALERT 2 G Long C(sp2)-C(sp1) Bond C4 - C6
                                                                     1.42 Ang.
And 3 other PLAT371 Alerts
More ...
                                                                      325 A**3
PLAT605 ALERT 4 G Structure Contains Solvent Accessible VOIDS of .
PLAT811 ALERT 5 G No ADDSYM Analysis: Too Many Excluded Atoms ....
                                                                         ! Info
PLAT860 ALERT 3 G Number of Least-Squares Restraints ......
                                                                      1149 Note
PLAT869 ALERT 4 G ALERTS Related to the use of SQUEEZE Suppressed
                                                                        ! Info
PLAT909 ALERT 3 G Percentage of Observed Data at Theta(Max) still
                                                                        39 %
  0 ALERT level A = Most likely a serious problem - resolve or explain
  3 ALERT level B = A potentially serious problem, consider carefully
 13 ALERT level C = Check. Ensure it is not caused by an omission or oversight
 16 ALERT level G = General information/check it is not something unexpected
  3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
 14 ALERT type 2 Indicator that the structure model may be wrong or deficient
 12 ALERT type 3 Indicator that the structure quality may be low
  2 ALERT type 4 Improvement, methodology, query or suggestion
  1 ALERT type 5 Informative message, check
```

³ Sabrina Freye, Reent Michel, Dietmar Stalke, Martin Pawliczek, Holm Frauendorf, Guido H. Clever, *J. Am. Chem. Soc.*, 2013, **135**, 8476.