TiO_2 nanoparticles doped SiO_2 films with ordered mesopore channels: A catalytic nanoreactor $\ensuremath{^\dagger}$

Jony Saha, Anuradha Mitra, Anirban Dandapat and Goutam De*

5 Electronic Supplementary Information (ESI)

10

35

Fig. S1 High angle XRD patterns of TiO_2 doped SiO_2 films heat-treated at 350 °C. A grazing incidence angle of 0.3° was used to record the XRD patterns.

40

45

Fig. S2 UV-visible absorption spectra of TiO_2 doped SiO_2 films after heat-treatment at 350 °C; the peak assignments are given in the body of the figure.

Fig. S3 (a) FTIR, (b) Raman and (c) TEM images of TiO_2 NPs dispersion used in this work. The particle size distribution (average size $\langle D \rangle \approx 5.8$ nm) evaluated from TEM is shown in (d).

Fig. S4 (a) Evolution of UV-visible absorption spectra during the reduction of KMnO₄ in presence of 185 ST-7 (7 mol% TiO₂ doped SiO₂) film catalyst at 25 °C; inset shows the UV-visible spectra of the reaction in absence of film catalyst; (b) pseudo first order plot of -ln (A₅₆₅-A_α) versus time for the reaction and inset shows the photos of initial (KMnO₄) and final (MnO₂) solutions.

Fig. S5 UV-visible spectral evolution of aqueous KMnO₄ solution in presence of TiO₂ dispersion used
225 in this work: (a) equivalent amount of TiO₂ present in the ST–7 films used for catalytic reaction and
(b) 4 times concentrated TiO₂ with respect to (a). The respective insects show the spectral changes of TiO₂ dispersion in water with time in absence of KMnO₄.