Electronic Supplementary Information

Engineering of cis-Ru(II) dyes based on dissymmetric bipyridine ligands for interfacial and light-harvesting optimization

Maria Grazia Lobello,^aKuan-Lin Wu,^{b,d}Marri Anil Reddy, ^cGabriele Marotta,^aMichael Grätzel,^bMohammad K. Nazeeruddin,^b Yun Chi,^d Malapaka Chandrasekharam,^{c,*} Giuseppe Vitillaro, Filippo De Angelis^{a,*}

Figure S1. Optimized molecular structure of the MC112 isomers A and B.

Figure S2. Cyclic voltammogram of MC112 dye.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2013

Figure S4. Comparison between experimental absorption spectra of MC112 (blue lines) and monoprotonated $N3^{1}$ (red lines).

Figure S5. Comparison between absorption spectra on MC112 (black lines) and N719 (red lines) adsorbed on the TiO₂.

Synthesis:

MC112

Scheme S1. Synthesis of sensitizers MC112. Reagents and conditions: a) Pd(dppf)₂Cl₂, KF, KOAc, DMF, 85^o C; b) ArB(OH)₂, Pd(PPh₃)₄, 2M Na₂CO₃, DME, 90^o C; c) Ru(P-cymene)₂Cl₂, DMF, 60^o C then Bipyridine dicarboxylic acid, NH₄SCN, 150^o C.

Figure S6. 1HNMR of 4-bromo-4'-(5-hexylthiophen-2-yl)-2,2'-bipyridine (1a).

Figure S7. 13CNMR of 4-bromo-4'-(5-hexylthiophen-2-yl)-2,2'-bipyridine (1a).

Figure S8. 1HNMR of 4-(2-(4-(5-hexylthiophen-2-yl)pyridin-2-yl)pyridin-4-yl)benzoic acid (1b).

Figure S9. 13CNMR of 4-(2-(4-(5-hexylthiophen-2-yl)pyridin-2-yl)pyridin-4-yl)benzoic acid (1b).

Figure S10. 1HNMR of MC112.

Figure 11. HMRS spectrum of the MC112 dye.

Table S1. Energies of the lowest unoccupied and highest occupied Kohn-Sham orbitals of MC112 triple protonated (3H), doubly protonated (2H), mono protonated, (1H) and doubly deprotonated (0H). Energy in eV.

	MC112_3H	MC112_2H	MC112_1H	MC112_0H
H-6	-6.94	-6.56	-6.41	-6.23
H-5	-6.88	-6.51	-6.40	-6.20
H-4	-6.38	-6.32	-6.25	-6.13
H-3	-6.25	-6.16	-6.08	-6.03
H-2	-5.80	-5.63	-5.50	-5.46
H-1	-5.74	-5.61	-5.49	-5.41
Н	-5.52	-5.39	-5.24	-5.20
L	-3.15	-2.88	-2.68	-2.46
L+1	-2.82	-2.71	-2.23	-2.16
L+2	-2.58	-2.25	-2.20	-1.79
L+3	-2.32	-2.09	-1.83	-1.67
L+4	-2.18	-1.88	-1.36	-1.27
L+5	-1.95	-1.51	-1.31	-1.25
L+6	-1.29	-1.24	-1.15	-0.45

Table S2. Computed excitation energies (eV and nm) and oscillator strengths (*f*) for the optical transitions of MC112 in acetonitrile solution.

Complex	N_state	E (eV)	WL (nm)	f	Composition (%)	
MC112_3H	1	1.68	739	0.0279	$H \rightarrow L$	90
	3	2.05	605	0.0979	H-2 → L	47
					$H \rightarrow L+1$	40
	4	2.09	592	0.0386	H-2 → L	36
					$H \rightarrow L+1$	49
	5	2.32	534	0.0945	H-2 → L+1	25
					H-1 → L+1	57
	6	2.36	525	0.0493	H-2 → L+1	63
					H-1 → L+1	11
	7	2.45	505	0.0668	H-1 → L+1	19
					$H \rightarrow L+2$	56
	9	2.61	476	0.0385	H-3 → L	81
	10	2.64	470	0.0516	H-2 → L+2	82
	11	2.70	460	0.0454	$H \rightarrow L+3$	50
					$H \rightarrow L+4$	31
	12	2.77	447	0.0463	$H \rightarrow L+3$	30
					$H \rightarrow L+4$	62
	14	2.90	427	0.0372	H-1 → L+3	82
	15	2.96	419	0.0198	H-3 → L+1	62
					H-2 → L+3	18
	16	2.96	419	0.0180	H-3 → L+1	30
					H-2 → L+3	31
					H-2 → L+4	32
	18	3.00	413	0.0429	H-1 \rightarrow L+4	39
					$H \rightarrow L+5$	47
	20	3.09	401	0.1271	H-5 → L	62

					H-4 → L+1	25
MC112_2H	1	1.87	664	0.0486	H→L	86
_	2	2.01	618	0.0382	$H \rightarrow L+1$	76
	4	2.17	571	0.1160	H-2 → L	71
	5	2.20	563	0.0401	H-1 → L+1	74
	6	2.36	525	0.0707	H-2 → L+1	60
	7	2.64	470	0.0726	H → L+2	72
					$H \rightarrow L+3$	23
	8	2.73	455	0.0538	$H \rightarrow L+2$	18
					$H \rightarrow L+3$	66
	9	2.82	440	0.0290	H-3 → L	84
	10	2.85	434	0.0251	H-1 → L+2	72
	11	2.88	430	0.0428	H-1 → L+2	67
	12	2.90	427	0.0137	H-1 → L+3	62
	13	2.92	424	0.0283	$H \rightarrow L+4$	80
	15	2.97	417	0.0426	H-3 → L+1	93
	16	3.04	409	0.0331	H-4 → L	90
MC112_1H	1	1.90	651	0.0482	$H \rightarrow L$	83
	3	2.23	556	0.1299	H-2 → L	56
					$H \rightarrow L+1$	20
	4	2.30	539	0.0314	$H \rightarrow L+1$	41
					$H \rightarrow L+2$	34
	5	2.51	493	0.0134	H-1 → L+1	46
					H-1 \rightarrow L+2	19
	6	2.55	487	0.1094	$H \rightarrow L+1$	21
					$H \rightarrow L+2$	55
	7	2.67	465	0.1286	$H-2 \rightarrow L+1$	47
	8	2.77	448	0.0190	$H-1 \rightarrow L+1$	30
					$H-1 \rightarrow L+2$	56
	10	2.82	439	0.0235	$H-2 \rightarrow L+2$	20
			100	0.00.00	$H \rightarrow L+3$	69
		2.93	423	0.0259	$H-3 \rightarrow L$	96
MC112_0H	1	2.02	613	0.0269	$H \rightarrow L$	92
	3	2.30	539	0.0562	$H \rightarrow L+1$	80
	4	2.38	522	0.1480	$H-2 \rightarrow L$	34
					$H-1 \rightarrow L$	40
	6	2.67	464	0.0868	$H-2 \rightarrow L+1$	80
	-7	2.85	436	0.0192	$H \rightarrow L+2$	78
	8	2.96	419	0.1206	$H \rightarrow L+3$	77
	9	3.04	407	0.0676	$H-1 \rightarrow L+2$	75
	10	3.07	404	0.0368	$H-3 \rightarrow L$	90
	11	3.09	401	0.0667	H-2 → L+2	86

Figure S12. Comparison between computed (red lines) and experimental (blue lines) absorption spectra of **MC112** in acetonitrile. Red vertical lines correspond to calculated excitation energies and oscillator strengths for the various protonated forms calculated for the **MC112** dye.

Figure S13. Comparison between computed absorption spectra of the totally deprotonated **MC112** in acetonitrile (red lines) and ethanol (blue lines) solution. Red and blue vertical lines correspond to calculated excitation energies and oscillator strengths for the **MC112** dye in acetonitrile and ethanol solution, respectivelly.

Figure S14. Comparison between computed (red lines) and experimental (blue lines) absorption spectra of totally deprotonated MC112_A in acetonitrile.

Figure S15. Comparison between computed (red lines) and experimental (blue lines) absorption spectra of totally deprotonated MC112_B in acetonitrile.

Figure S16. Comparison between experimental (blue lines) and computed (red lines) absorption spectra of totally deprotonated MC112 in acetonitrile. The computed spectra is the average of the isomers A and B.

References:

1. G. Pizzoli, M. G. Lobello, B. Carlotti, F. Elisei, M. K. Nazeeruddin, G. Vitillaro and F. De Angelis, *Dalton Trans.*, 2012, **41**, 11841-11848.