Supporting Information

New fluorescent sensor for Cu^{2+} and S^{2-} in 100% aqueous solution based on displacement approach

Yan Fu,^a Qing-Chuan Feng,^b Xiu-Juan Jiang,^a Hong Xu,^a Min Li,^a and Shuang-Quan Zang^a*

^a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China

^bDepartment of Cell Biology and Medical Genetics, Basic Medical College of Zhengzhou University, Zhengzhou 450001, P. R. China

Author for correspondence: Dr. S.-Q. Zang, E-mail: zangsqzg@zzu.edu.cn.

Fig. S1. ¹H NMR spectra of 3-formyl-2-hydroxy benzoic acid (400 MHz, DMSO- d_6).

Fig. S2. ¹³C NMR spectra of 3-formyl-2-hydroxy benzoic acid (400 MHz, DMSO- d_6).

Fig. S3. ¹H NMR spectra of HL (400 MHz, DMSO- d_6).

Fig. S4. ¹³C NMR spectra of **HL** (400 MHz, DMSO- d_6).

Fig. S5. ESI-MS spectrum of H_2L (a), L-Cu (b), L-Cu + S^{2-} (c).

Fig. S6. Fluorescence responses of **HL** (5 μ M) to various cations in aqueous solution HEPES-buffer (20 mM, pH 7.4). The blue bars represent the emission intensities of **HL** in the presence of cations of interest (50 μ M). The red bars represent the change of the emission that occurs upon the subsequent addition of Cu²⁺ to the above solution. ($\lambda_{ex} = 243 \text{ nm}$, $\lambda_{em} = 436 \text{ nm}$). 1. **HL**, 2. Na⁺, 3. K⁺, 4. Mg²⁺, 5. Ca²⁺, 6. Zn²⁺, 7. Cd²⁺, 8. Mn²⁺, 9. Co²⁺, 10. Ni²⁺, 11. Fe²⁺, 12. Cu²⁺, 13. Al³⁺, 14. Ba²⁺, 15. Ag⁺, 16. Hg²⁺, 17. Pb²⁺.

Fig. S7. Benesi–Hildebrand plot for L-Cu.

Fig. S8. The limit of detection (LOD) of **HL** for Cu^{2+} : fluorescence responses ($\lambda_{em} = 436$ nm) as a function of Cu^{2+} concentration. The solid line represents a linear fit to the experimental data. The detection limit for Cu^{2+} was determined to be 2.77×10^{-6} M.

Fig. S9. The pH effects on the fluorescence intensity at 436 nm of the compound HL (5 μ M) (\blacklozenge), the L-Cu ensemble (5 μ M) (\blacksquare), and the ensemble (5 μ M) toward S²⁻ (10 μ M) (\blacktriangle).

Fig. S10. Fluorescence responses of the **L-Cu** ensemble (5 μ M) to various anions in aqueous solution HEPES-buffer (20 mM, pH 7.4). The violet bars represented the emission intensities of **L-Cu** in the presence of different anions (500 μ M). The blue bars represented the subsequent addition of S²⁻ to the above solution. ($\lambda_{ex} = 243 \text{ nm}$, $\lambda_{em} = 436 \text{ nm}$). 1. S²⁻, 2. F⁻, 3. Cl⁻, 4. Br⁻, 5. Г, 6. SO₃²⁻, 7. NO₃⁻, 8. NO₂⁻, 9. SO₄²⁻, 10. CO₃²⁻, 11. H₂PO₄⁻, 12. ClO₄⁻, 13. AcO⁻, 14. PO₄³⁻, 15. N₃⁻, 16. HSO₄⁻, 17.HS⁻, 18. HSO₃⁻, 19. SCN⁻, 20. S₂O₅²⁻.

Fig. S11. The limit of detection (LOD) of L-Cu for S^{2-} was determined to be 2.51×10^{-6} M.

Table S1. Fluorescence lifetime decay parameters of HL, L-Cu ensemble and L-Cu + S^{2-} .

Samples	B_{I}	T_l/ns	B_2	T_2/ns	<t>/ns</t>	χ^2
HL	4.9273	4.05452				1.1185
L-Cu	3.4177	2.0073	1.8380	6.2557	3.4930	1.1096
$L-Cu+S^{2-}$	4.7801	4.0494				1.0637