Supporting Information

Bi- and tri-metallic Rh and Ir complexes containing click derived (pyrazolyl-1,2,3-triazolyl) $\mathrm{N}-\mathrm{N}^{\prime}$ donor ligands and their application as alkyne dihydroalkoxylation catalysts

Khuong Q. Vuong, ${ }^{a, b}$ Chin M. Wong, ${ }^{a}$ Mohan Bhadbhade ${ }^{a, c}$ and Barbara A. Messerle ${ }^{*, a}$
${ }^{a}$ School of Chemistry and ${ }^{c}$ X-ray Diffraction Laboratory, Mark Wainwright Analytical Centre, The University of New South Wales, Kensington, NSW 2052, Australia.
${ }^{b}$ Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833

Telephone: +61-2-9385 4653

Fascimile: +61-2-9385 6141

Email: b.messerle@unsw.edu.au

Table of Contents for Supporting Information

S1. Synthesis of ligands	SI-4
S1.1 Synthesis of $m-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2}(\mathbf{1 b})$	SI-4
S1.2 Synthesis of $p-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2}(\mathbf{1 c})$	SI-5
S1.3 Synthesis of 1,3,5-C6 $\mathrm{H}_{4}(\mathrm{PyT})_{3}(\mathbf{1 d})$	SI-6
S2. Synthesis of $\mathrm{Rh}(\mathrm{CO})_{2}$ Complexes	SI-7
S2.1 Synthesis of $m-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{Rh}(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}$ (2b)	SI-7
S2.2 Synthesis of $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{Rh}(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{2 c})$	SI-8
S2.3 Synthesis of 1,3,5-C6 $\mathrm{H}_{3}\left[(\mathrm{PyT}) \mathrm{Rh}(\mathrm{CO})_{2}\right]_{3}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{3}$ (2d)	SI-9
S3. Synthesis of $\operatorname{Ir}(\mathrm{CO})_{2}$ Complexes	SI-10
S3.1 Synthesis of $m-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{Ir}(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{3 b})$	SI-10
S3.2 Synthesis of $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{Ir}(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{3 c})$	SI-11
S3.3 Synthesis of 1,3,5-C6 $\mathrm{H}_{3}\left[(\mathrm{PyT}) \mathrm{Rh}(\mathrm{CO})_{2}\right]_{3}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{3}$ ($\mathbf{3 d}$)	SI-12
S4. Synthesis of RhCp* Complexes	SI-14
S4.1 Synthesis of $m-\mathrm{C}_{6} \mathrm{H}_{4}[(\mathrm{PyT}) \mathrm{RhCp} * \mathrm{Cl}]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}$ (4b)	SI-14
S4.2 Synthesis of $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{RhCp} * \mathrm{Cl}_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(4 \mathrm{c})\right.$	SI-15
S4.3 Synthesis of 1,3,5-C6 $\mathrm{H}_{3}\left[(\mathrm{PyT}) \mathrm{RhCp}^{*} \mathrm{Cl}_{3}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{3}(4 \mathrm{~d})\right.$	SI-16
S5. Synthesis of IrCp* complexes	SI-17
S5.1 Synthesis of m - $\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \operatorname{IrCp}^{*} \mathrm{Cl}_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{5 b})\right.$	SI-17
S5.2 Synthesis of $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{IrCp}^{*} \mathrm{Cl}_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{5 c})\right.$	SI-19
S5.3 Synthesis of 1,3,5-C ${ }_{6} \mathrm{H}_{3}\left[(\mathrm{PyT}) \mathrm{IrCp} * \mathrm{Cl}_{3}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{3}(\mathbf{5 d})\right.$	SI-20
Table S1: $\mathrm{vCO}\left(\mathrm{cm}^{-1}\right)^{\mathrm{a}}$ and $\delta(\mathrm{ppm})$ of the carbonyls co-ligands in complexes 2a-d and 3a-d.	SI-22
Table S2: Molar ratios of different diastereoisomers in solution of complexes 4a-d and 5a-d as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.	SI-23
S6: Experimental for X-ray Crystallography	SI-24
Table S3: Crystallographic data $m-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2}(\mathbf{1 b}), p-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2}(\mathbf{1 c})$, $\left[\mathrm{Cp} * \mathrm{RhCl}_{3} \mathrm{Cp}^{*}\right]\left[\mathrm{BAr}^{\mathrm{F}} 4\right]$ (6) and $\left[\mathrm{Cp} * \mathrm{IrCl}_{3} \mathrm{Cp}^{*}\right]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right]$ (7)	SI-25
Table S4: Crystallographic data for $m-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{Rh}(\mathrm{CO})_{2}\right]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right]_{2}(\mathbf{2 b}), p-\mathrm{C}_{6} \mathrm{H}_{4}$ $\left[(\mathrm{PyT}) \mathrm{Rh}(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{2 c})$ and $o-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{RhCp}^{*} \mathrm{Cl}_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{4 a})\right.$.	SI-26

$\left.\begin{array}{|l|l|}\hline \text { Figure S1: ORTEP depictions of the cationic fragment of the single crystal solid state } & \text { SI-27 } \\ \text { structures of }\left[\mathrm{Cp} * \mathrm{Rh}(\mu-\mathrm{Cl})_{3} \mathrm{RhCp}^{*}\right]\left[\mathrm{BAr}_{4}\right](6) \text { and }\left[\mathrm{Cp} * \operatorname{Ir}(\mu-\mathrm{Cl})_{3} \mathrm{IrCp}^{*}\right][\mathrm{BAr} & 4](7) \text { at }\end{array}\right)$.

S1. Synthesis of Ligands

S1.1 Synthesis of $\mathrm{m}_{-\mathrm{C}_{6}} \mathrm{H}_{4}(\mathrm{PyT})_{2}$ (1b)

Dimethylsulfoxide (30 mL) was added to a flask containing sodium azide ($1.27 \mathrm{~g}, 21.0 \mathrm{mmol}$) under an atmosphere of nitrogen and the reaction mixture was stirred at room temperature for 1 hour. 1,3-Bis(bromomethyl)benzene ($2.64 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added and the yellow solution was stirred overnight. 1-Propargylpyrazole ($2.13 \mathrm{~g}, 20.0 \mathrm{mmol}$) was then added to the reaction mixture and the reaction mixture was deoxygenated by briefly putting the reaction flask under vacuum and refilling with nitrogen (house vacuum ca. 20 mmHg , x3)Sodium Lascorbate $(0.800 \mathrm{~g}, 4.0 \mathrm{mmol}, 40 \mathrm{~mol} \%)$ and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(0.250 \mathrm{~g}, 5.0 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were added to the reaction mixture and the reaction mixture was stirred overnight at room temperature.

The reaction mixture was poured into a saturated aqueous Na_{2} EDTA solution (100 mL), extracted with dichloromethane ($3 \times 150 \mathrm{~mL}$), washed with saturated aqueous Na_{2} EDTA (5×30 mL , until the Na_{2} EDTA layer became colourless) and water ($2 \times 30 \mathrm{~mL}$). The organic layer was dried over anhydrous magnesium sulfate, filtered and the solvent was removed in vacuo to afford a very pale yellow solid. The crude product was purified by recrystallization from hot methanol to afford the ligand $m-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2}(\mathbf{1 b})$ as white needle-like crystals. Yield: $3.53 \mathrm{~g}, 88 \%$; m.p. 159$161^{\circ} \mathrm{C}$.

Elemental analysis, found: C, 59.50; H, 4.99 and N, 35.23 ; calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{10}$: C, 59.99; H, 5.03 and $\mathrm{N}, 34.98 \%$.

ESI-MS (ESI ${ }^{+}$, acetonitrile): $m / z\left(\%\right.$, assignment): 423.15 (100, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$amu.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52$ (d, ${ }^{3} J=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 3$), 7.50 (d, ${ }^{3} J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 5$), 7.43 (s, 2H, Tz-H5'), 7.35 (t, ${ }^{3} J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{H} 5$), $7.20\left(\mathrm{dd},{ }^{3} J=7.6 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $m-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{H} 4$ and H6), 7.13 (s, 1H, $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{H} 2$), 6.26 (apparent t, ${ }^{3} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 4$), 5.45 (s, 4H, Tz-NCH2), 5.42 (s, 4H, Pz-NCH2) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.20$ (Tz-C4'), $139.89(\mathrm{Pz}-\mathrm{C} 3), 135.51\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C} 1\right.$ and $\left.\mathbf{C} 3\right)$, $130.04\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathbf{C} 5\right), 129.50(\mathrm{Pz}-\mathrm{C} 5), 128.41\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C} 4\right.$ and $\left.\mathbf{C} 6\right), 127.54\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C} 2\right), 122.57$ (Tz-C5'), 106.12 (Pz-C4), $53.80\left(\mathrm{TzN-CH}_{2}\right), 47.38\left(\mathrm{Pz}_{\mathrm{N}} \mathrm{NCH}_{2}\right) \mathrm{ppm}$.

S1.2 Synthesis of $p-C_{6} H_{4}(P y T)_{2}(1 c)$

$p-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2} \mathbf{1 c}$

Dimethylsulfoxide (40 mL) was added to a flask containing sodium azide $(1.37 \mathrm{~g}, 21.0 \mathrm{mmol})$ and the mixture was stirred at room temperature for one hour. 1,4-Bis(bromomethyl)benzene $(2.64 \mathrm{~g}, 10.0 \mathrm{mmol})$ was then added and the reaction mixture was stirred at room temperature under nitrogen for one day. 1-Propargylpyrazole ($2.13 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added. The reaction mixture was deoxygenated by briefly putting the reaction flask under vacuum and refilling with nitrogen (house vacuum ca. 20 mmHg , x3). Sodium L-ascorbate (0.800 g, 4.00 mmol$)$ and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(0.250 \mathrm{~g}, 1.00 \mathrm{mmol})$ were added to the reaction mixture and the reaction mixture was stirred at room temperature for 48 hours.

The reaction mixture was poured into an aqueous saturated Na_{2} EDTA solution with rigorous stirring. A white precipitate formed together with a yellow green solution. The precipitate was collected by filtration, washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{EDTA}$ until the filtrate become colourless $(15 \times 15 \mathrm{~mL})$ and water ($5 \times 20 \mathrm{~mL}$). The precipitate was air dried and then dried in a vacuum desiccator for two days. Yield: $3.29 \mathrm{~g}, 82 \%$; m.p. 221-223 ${ }^{\circ} \mathrm{C}$.

Elemental analysis, found: $\mathrm{C}, 59.31$; $\mathrm{H}, 4.95$; $\mathrm{N}, 34.59$; calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{10} .0 .25 \mathrm{H}_{2} \mathrm{O}$: C , 59.32; H, 5.10; N, 34.59 \%.

HR-MS (ESI $\left.{ }^{+}, \mathrm{MeOH}\right): m / z\left(\%\right.$, assignment): $423.2500\left(100,[\mathrm{M}+\mathrm{Na}]^{+}\right), 401.3333\left(10,[\mathrm{M}+\mathrm{H}]^{+}\right)$ amu.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.51$ (d, $\left.{ }^{3} J=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 5\right), 7.50\left(\mathrm{~d},{ }^{3} J=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 3\right)$, 7.43 (s, 2H, Tz-H5'), 7.24 (s, 4H, C ${ }_{6} \mathrm{H}_{4}-\mathrm{H}$), 6.25 (apparent t, ${ }^{3} J=1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 4$), 5.47 (s, 4H, Tz-NCH 2), $5.42\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Pz}-\mathrm{NCH}_{2}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 144.35$ (Tz-C4'), 140.03 ($\mathrm{Pz}-\mathrm{C} 3$), 135.28 (ipso-C of $\mathrm{C}_{6} \mathrm{H}_{4}$), $129.63\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}\right), 128.96$ (Pz-C5), 122.66 (Tz-C5'), 106.26 ($\mathrm{Pz}-\mathrm{C} 4$), $53.86\left(\mathrm{Tz}^{2}-\mathrm{NCH}_{2}\right), 47.54$ $\left(\mathrm{Pz}_{\mathrm{N}} \mathrm{NCH}_{2}\right) \mathrm{ppm}$.

S1.3 Synthesis of 1,3,5- $\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{PyT})_{3}(1 d)$

$1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{PyT})_{3}$ 1d

Dimethylsulfoxide (30 mL) was added to a flask containing sodium azide $(1.07 \mathrm{~g}, 16.5 \mathrm{mmol})$ under an atmosphere of nitrogen. The reaction mixture was stirred under nitrogen for 1 hour and 1,3,5-tris(bromomethyl)benzene (1.78 g, 5.0 mmol) was added, the brownish yellow solution obtained was stirred at room temperature for three days. 1-Propargylpyrazole ($1.59 \mathrm{~g}, 15.0 \mathrm{mmol}$) was added and the reaction mixture was deoxygenated by placing it under vacuum and refilling with nitrogen (x3). Sodium L-ascorbate $(0.60 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(0.187 \mathrm{~g}, 0.75 \mathrm{mmol})$ were added to the reaction mixture and the reaction mixture was stirred for one week at room temperature. The reaction mixture was poured into saturated aqueous Na_{2} EDTA (150 mL) and stirred vigorously for 30 minutes at room temperature. A white solid precipitate formed, together with some brown solid and a yellowish green solution. The mixture was extracted with dichloromethane ($5 \times 120 \mathrm{~mL}$). The combined organic layer was washed with aqueous saturated Na_{2} EDTA ($5 \times 30 \mathrm{~mL}$), water (2 x 30 mL) and dried over anhydrous magnesium sulfate before it was filtered through a pad of Celite. The solvent was removed in vacuo to afford an off-white solid.

Yield: $1.59 \mathrm{~g}, 57 \%$; m.p. $147-149^{\circ} \mathrm{C}$.

Elemental analysis, found: C, 57.47; H, 4.84 and $\mathrm{N}, 37.48$; calculated for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{15}$: C, $57.41 ; \mathrm{H}$, 4.85 and N, 37.41\%.

MS (ESI, MeOH): $m / z\left(\%\right.$, assignment): $584.20\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right) \mathrm{amu}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52$ (d, $\left.{ }^{3} J=2.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 5\right), 7.50\left(\mathrm{~d},{ }^{3} J=1.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 3\right)$, $7.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Tz}-\mathrm{H} 5\right.$ '), $7.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}\right), 6.25$ (apparent t, $\left.{ }^{3} \mathrm{~J}=1.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 4\right)$, $5.42(\mathrm{~s}, 6 \mathrm{H}$, Tz-NCH 2), 5.39 (s, 6H, Pz-NCH 2) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.35$ (Tz-C4'), 139.98 ($\mathrm{Pz}-\mathrm{C} 3$), 136.77 (ipso-C of $\mathrm{C}_{6} \mathrm{H}_{3}$), 129.74 (Pz-C5), $127.78\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathbf{C H}\right), 122.90$ (Tz-C5'), 106.26 ($\left.\mathrm{Pz}-\mathrm{C} 4\right), 53.43\left(\mathrm{Pz}^{2}-\mathrm{NCH}_{2}\right), 47.39$ $\left(\mathrm{Tz}-\mathrm{NCH}_{2}\right) \mathrm{ppm}$.
${ }^{1} \mathrm{H}$ NMR (600 MHz , dmso- d_{6}): $\delta 8.05(\mathrm{~s}, 3 \mathrm{H}), 7.77(\mathrm{~s}, 3 \mathrm{H}), 7.45(\mathrm{~s}, 3 \mathrm{H}), 7.25(\mathrm{~s}, 3 \mathrm{H}), 6.26(\mathrm{~s}, 3 \mathrm{H})$, $5.55(\mathrm{~s}, 6 \mathrm{H}), 5.40(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 MHz , dmso- d_{6}): $\delta 138.94,137.11,129.88,127.55,123.88,105.48,52.29$ and 46.37 ppm .

S2. Synthesis of $\mathbf{R h}(\mathbf{C O})_{2}$ Complexes

S2.1 Synthesis of $\boldsymbol{m - C _ { 6 }} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{Rh}(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(2 b)$

Dichloromethane (25 mL) was added to a flask containing $\left[\mathrm{Rh}(\mathrm{Cl})(\mathrm{CO})_{2}\right]_{2}(0.039 \mathrm{~g}, 0.10$ $\mathrm{mmol})$ and $m-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2}(\mathbf{1 b}, 0.040 \mathrm{~g}, 0.10$ mmol) under an atmosphere of argon. The pale yellow solution was stirred at room temperature for 45 minutes. $\mathrm{NaBAr}_{4}(0.177 \mathrm{~g}, 0.20 \mathrm{mmol})$ was added and the reaction mixture was stirred at room temperature for one hour. The reaction mixture was filtered through a pad of Celite, rinsed with dichloromethane ($2 \times 15 \mathrm{~mL}$) and the solvent was reduced in vacuo until about 3 mL of solvent left. Pentane (30 mL) was added to the reaction mixture with rigorous stirring. The solid and oil mixture obtained was collected by filtration, washed with pentane ($2 \times 5 \mathrm{~mL}$) and dried in vacuo to afford complex 2b as a bright yellow solid. Yield: $0.225 \mathrm{~g}, 92 \%$; m.p. $65-70^{\circ} \mathrm{C}$.

MS (MeOH): $m / z\left(\%\right.$, assignment): $661.25\left(8,[\mathrm{M}-2 \mathrm{CO}+\mathrm{H}]^{+}\right), 633.01\left(12,[\mathrm{M}-3 \mathrm{CO}+\mathrm{H}]^{+}\right), 503.20$ $\left(100,\left[\mathrm{M}-\mathrm{Rh}(\mathrm{CO})_{4}\right]^{+}\right) \mathrm{amu}$.

Elemental Analysis, found: C, 43.24; H, 1.83 and N, 5.82; calculated for $\mathrm{C}_{88} \mathrm{H}_{44} \mathrm{~B}_{2} \mathrm{~F}_{48} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{Rh}_{2}$: C, 43.23; H, 1.81; N, 5.73 \%.

FT-IR (DCM): $v 2109(\mathrm{~s}, \mathrm{vCO}), 2051(\mathrm{~s}, \mathrm{vCO}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DCM- $\left.d_{2}, 400 \mathrm{MHz}\right): \delta 7.80\left(\mathrm{~d},{ }^{3} J=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 3\right.$), 7.73 (s, 2H, Tz-H5'), 7.71 (br $\mathrm{m}, 16 \mathrm{H}, o-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.65\left(\mathrm{~d},{ }^{3} J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 5\right), 7.53\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, p-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.37(\mathrm{t}$, $\left.{ }^{3} J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{H} 5\right), 7.35\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{H} 2\right), 7.28\left(\mathrm{dd},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{H} 4\right.$ and H6), 6.51 (apparent t, ${ }^{3} J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 4$), 5.54 (s, $4 \mathrm{H}, \mathrm{Tz}-\mathrm{NCH}_{2}$), 5.34 (s, 4H, Pz-NCH ${ }_{2}$) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{DCM}-d_{2}, 100 \mathrm{MHz}\right): \delta 182.46\left(\mathrm{~d},{ }^{1} J_{\mathrm{Rh}-\mathrm{C}}=69.3 \mathrm{~Hz}, \mathrm{CO}\right), 181.90\left(\mathrm{~d},{ }^{1} J_{\mathrm{Rh}-\mathrm{C}}=69.9\right.$ $\mathrm{Hz}, \mathbf{C O}), 162.13\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.5 \mathrm{~Hz}\right), 147.24(\mathrm{Pz}-\mathrm{C} 3), 140.39\left(\mathrm{Tz}-\mathrm{C} 4{ }^{\prime}\right), 135.18\left(o-\mathrm{CH}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right)$, ~ 135.15 (Pz-C5) (last two resonances overlap), $133.52\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C} 5\right), 131.35\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C} 1\right.$ and $\left.\mathbf{C} 3\right)$, $130.31\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathbf{C} 4\right.$ and $\left.\mathbf{C} 6\right), 129.29\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathbf{C} 2\right), 129.24\left(\mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=31.0 \mathrm{~Hz}, \mathbf{C C H}_{3}\right), 124.96\left(\mathrm{q},{ }^{1} J=\right.$ 271. $2 \mathrm{~Hz}, \mathbf{C F}_{3}$), 123.93 (Tz-C5'), 117.90 ($p-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$), 109.07 ($\mathrm{Pz}-\mathrm{C} 4$), $56.21\left(\mathrm{Tz}^{2}-\mathrm{NCH}_{2}\right)$, $45.67\left(\mathrm{Pz}_{\mathrm{Z}}-\mathrm{NCH}_{2}\right) \mathrm{ppm}$.

S2.2 Synthesis of p-C $\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{Rh}(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(2 \mathrm{c})$

Dichloromethane (25 mL) was added to a flask containing $\left[\mathrm{Rh}(\mathrm{Cl})(\mathrm{CO})_{2}\right]_{2} \quad(0.039 \mathrm{~g}, \quad 0.10$ $\mathrm{mmol})$ and $p-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2}(\mathbf{1 c}, 0.040 \mathrm{~g}, 0.10 \mathrm{mmol})$ under an atmosphere of argon. The pale yellow solution was stirred at room temperature for 30 minutes. $\mathrm{NaBAr}^{\mathrm{F}} 4(0.177 \mathrm{~g}, 0.20 \mathrm{mmol})$ was added and the reaction mixture was stirred at room temperature for one hour. The reaction mixture was filtered through a pad of Celite, rinsed with dichloromethane $(2 \times 15 \mathrm{~mL})$ and the solvent was reduced to approximately 3 mL . Pentane (30 mL) was added to the reaction mixture with rigorous stirring. The solid and oil mixture obtained was collected by filtration, washed with pentane (2×5 mL) and dried in vacuo to afford complex $\mathbf{2 c}$ as a pale creamy yellow solid. Yield: $0.193 \mathrm{~g}, 79 \%$.
m.p. $177-181^{\circ} \mathrm{C}$ (melted then decomposed).

Elemental analysis, found: C, 43.51 ; H, 2.03 and N, 5.40 ; calculated for $\mathrm{C}_{88} \mathrm{H}_{44} \mathrm{~B}_{2} \mathrm{~F}_{48} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{Rh}_{2}$: C, 43.23; H, 1.81; N, 5.73 \%.

HR-MS (MeOH): $m / z(\%$, assignment $): 1581.2500\left(2,\left[\mathrm{M}+\mathrm{BAr}^{\mathrm{F}}\right]^{+}\right), 559.2500\left(8,\left[\mathrm{M}-\mathrm{Rh}(\mathrm{CO})_{2}\right]^{+}\right)$, $531.2500\left(12,[\mathrm{M}-\mathrm{Rh}-3 \mathrm{xCO}]^{+}\right), 503.1667\left(32,[\mathrm{M}-\mathrm{Rh}-4 \times \mathrm{CO}]^{+}\right) \mathrm{amu}$.

IR (dcm): v2109(s, vCO), $2051(\mathrm{~s}, \mathrm{vCO}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DCM- $\left.d_{2}, 600 \mathrm{MHz}\right): \delta 7.79\left(\mathrm{~d},{ }^{3} J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 3\right), 7.72\left(\mathrm{br} \mathrm{s}, 18 \mathrm{H}, o-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$ and Tz-H5'), 7.63 (d, ${ }^{3} J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 5$), 7.54 (br s, $8 \mathrm{H}, p-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}}$), 7.31 (s, $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-$ H), 6.50 (apparent t, ${ }^{3} J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 4$), $5.52\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Tz}-\mathrm{NCH}_{2}\right), 5.32$ ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Pz}-\mathrm{NCH}_{2}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{DCM}-d_{2}, 150 \mathrm{MHz}\right): \delta 182.49\left(\mathrm{~d},{ }^{1} J_{\mathrm{Rh}-\mathrm{C}}=69.8 \mathrm{~Hz}, \mathrm{CO}\right), 181.82\left(\mathrm{~d},{ }^{1} J_{\mathrm{Rh}-\mathrm{C}}=70.6\right.$ $\mathrm{Hz}, \mathbf{C O}), 162.16\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.7 \mathrm{~Hz}\right), 147.25(\mathrm{Pz}-\mathrm{C} 3), 140.395(\mathrm{Tz}-\mathrm{C} 4$ ' $), 135.21\left(o-\mathrm{CH}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right)$, 135.14 (Pz-C5), $133.86\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C} 5\right), 130.06\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}\right), 129.28\left(\mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=31.0 \mathrm{~Hz}, \mathrm{CCF}_{3}\right), 124.99$ ($\mathrm{q},{ }^{1} J=271.2 \mathrm{~Hz}, \mathbf{C F}_{3}$), 123.94 (Tz-C5'), $117.92\left(p-\mathbf{C H}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), 109.07 ($\left.\mathrm{Pz}-\mathrm{C} 4\right)$, 56.21 (Tz$\left.\mathrm{NCH}_{2}\right), 45.67\left(\mathrm{Pz}^{2}-\mathrm{NCH}_{2}\right) \mathrm{ppm}$.

S2.3 Synthesis of 1,3,5- $\boldsymbol{C}_{6} \mathrm{H}_{3}\left[(\mathrm{PyT}) \mathrm{Rh}\left(\mathrm{CO}_{2}\right)_{3}\left[\mathrm{BAr}^{F_{4}}\right]_{3}(2 d)\right.$

and the reaction mixture went cloudy. The reaction mixture was stirred at room temperature for two hours, filtered through a pad of Celite, rinsed with dichloromethane ($3 \times 15 \mathrm{~mL}$) and the filtrate was reduced in vacuo to approximately 3 mL . Pentane (25 mL) was added to the reaction mixture with rigorous stirring. The oil and solid mixture was collected by filtration and washed with pentane
($3 \times 5 \mathrm{~mL}$) and dried in vacuo to afford complex 2d as a yellow solid. Yield: $0.219 \mathrm{~g}, 86 \%$; m.p. 74$77^{\circ} \mathrm{C}$ (melted then decomposed).

Elemental analysis, found: $\mathrm{C}, 42.98 ; \mathrm{H}, 1.96$ and $\mathrm{N}, 5.78$; calculated for $\mathrm{C}_{129} \mathrm{H}_{63} \mathrm{~B}_{3} \mathrm{~F}_{72} \mathrm{~N}_{15} \mathrm{O}_{6} \mathrm{Rh}_{3}$: C , 42.71; H, 1.75 and N, 5.79%.

HRMS (ESI, MeOH): $m / \mathrm{z}\left(\%\right.$, assignment): 2764.0719 (3, $\left[\mathrm{M}+2 \mathrm{BAr}^{\mathrm{F}} \mathrm{H}^{+}\right]^{+}$, $1714.1176(17,[\mathrm{M}-$ $\left.\left.\mathrm{Rh}(\mathrm{CO})_{3}+2 \mathrm{BAr}_{4}\right]^{+}\right), 950.5026\left(100,\left[\mathrm{M}+\mathrm{BAr}_{4}\right]^{2+}\right) \mathrm{amu}$.

FTIR (dcm): v2110 (s, vCO), $2052(\mathrm{~s}, v \mathrm{CO}) \mathrm{ppm}$.
${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 600 \mathrm{MHz}$): $\delta 8.72$ (s, $3 \mathrm{H}, \mathrm{Tz}-\mathrm{H} 5$ '), 8.27 (m (two overlapping doublets), ${ }^{3} \mathrm{~J}=$ $2.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 3$ \& H5), $7.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}-\mathrm{H}\right), 7.79\left(\mathrm{~m}, 24 \mathrm{H}, o-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.67(\mathrm{~s}, 12 \mathrm{H}, p-$ CH of $\mathrm{BAr}^{\mathrm{F}}$), 6.72 (apparent $\mathrm{t},{ }^{3} J=2.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 4$), $5.97\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Tz}-\mathrm{NCH}_{2}\right), 5.95(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Pz}-$ NCH_{2}) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $d_{6}, 150 \mathrm{MHz}$): $\delta 183.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{Rh}-\mathrm{C}}=69.3 \mathrm{~Hz}\right.$, two COs overlapping), 162.52 $\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=50.81 \mathrm{~Hz}\right.$, ipso-CB of $\mathrm{BAr}^{\mathrm{F}}$ 4), $147.78(\mathrm{Pz}-\mathrm{C} 3), 142.00(\mathrm{Tz}-\mathrm{C} 4$ '), 136.86 (Pz-C5), 136.75 (ipso \mathbf{C} of $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right), 135.54\left(o-\mathbf{C H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}\right), 130.75\left(\mathrm{C}_{6} \mathrm{H}_{3}-\mathbf{C H}\right), 130.02\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=30.2 \mathrm{~Hz}, \mathrm{CCF}_{3}\right)$, 126.66 (Tz-C5'), 125.41 ($\mathrm{q},{ }^{1} J=271.5 \mathrm{~Hz}, \mathbf{C F}_{3}$), $118.50\left(p-\mathbf{C H}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), 108.99 (Pz-C4), 55.81 (Tz-NCH 2), $46.09\left(\mathrm{Pz}^{2} \mathrm{NCH}_{2}\right) \mathrm{ppm}$.

S3. Synthesis of $\operatorname{Ir}(\mathbf{C O})_{2}$ Complexes

S3.1 Synthesis of m-C $\mathbf{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{Ir}(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}} 4\right]_{2}(3 \mathrm{~B})$

argon. The bright yellow solution was stirred at RT for 30 minutes and $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(0.178 \mathrm{~g}, 0.10$ mmol) was added. The cloudy yellow solution was stirred at RT at 1 hour, filtered through a pad of Celite and rinsed with dichloromethane (2 x 20 mL). The combined organic layer was deoxygenated via freeze-pump-thaw (x2) and
was placed under at atmosphere of carbon monoxide and stirred overnight. The solvent was reduced to approximately 3 mL and pentane (35 mL) was added to the reaction mixture with vigorous stirring. The yellow solid and thick oil residue obtained was collected by filtration, washed with pentane ($3 \times 7 \mathrm{~mL}$) and dried in vacuo to afford $\mathbf{3 b}$ as an orangish yellow solid. Yield: 0.203 g , 81%; m.p. $70-80^{\circ} \mathrm{C}$ (slowly decomposed).

HR-MS (MeOH): $m / z\left(\%\right.$, assignment): $1761.1578\left(5,\left[\mathrm{M}+\mathrm{BAr}^{\mathrm{F}}\right]^{+}\right), 649.1384\left(100,\left[\mathrm{M}-\operatorname{Ir}(\mathrm{CO})_{2}\right]^{+}\right)$ amu.

Elemental analysis, found: C, 40.80; H, 1.75 and $\mathrm{N}, 5.60$; calculated for $\mathrm{C}_{88} \mathrm{H}_{44} \mathrm{~B}_{2} \mathrm{~F}_{48} \mathrm{Ir}_{2} \mathrm{~N}_{10} \mathrm{O}_{4}$: C, 40.29; H, 1.69; N, 5.34 \%.

FT-IR (DCM): v 2098 (s, vCO), $2034(\mathrm{~s}, v \mathrm{CO}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DCM- $d_{2}, 600 \mathrm{MHz}$): $\delta 7.96$ (d, ${ }^{3} J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 3$), 7.80 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Tz}-\mathrm{H} 5$ '), 7.71 (br $\mathrm{m}, 18 \mathrm{H}, o-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}} 4$ and Pz-H5), $7.54\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, p-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.40\left(\mathrm{t},{ }^{3} J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\right.$ H5), $7.39\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{H} 2\right), 7.32\left(\mathrm{dd},{ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{H} 4\right.$ and $\left.\mathbf{H} 6\right), 6.60$ (apparent t, $\left.{ }^{3} J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 4\right), 5.57$ ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Tz}-\mathrm{NCH}_{2}$), 5.34 (s, 4H, Pz-NCH2) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{DCM}-d_{2}, 150 \mathrm{MHz}\right): \delta 170.31(\mathrm{CO}), 169.18(\mathrm{CO}), 162.16\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.5 \mathrm{~Hz}\right.$, ipso-C of $\mathrm{BAr}^{\mathrm{F}}$), 147.24 ($\mathrm{Pz}-\mathrm{C} 3$), 140.06 (Tz-C4'), 135.79 (Pz-C5), 135.20 (o-CH of $\mathrm{BAr}^{\mathrm{F}} 4$), $133.23\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C} 1\right.$ and $\left.\mathbf{C} 3\right)$, $131.49\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C} 5\right), 130.61\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C} 4\right.$ and $\left.\mathbf{C} 6\right), 129.50\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C} 2\right)$, $129.25\left(\mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=30.9 \mathrm{~Hz}, \mathbf{C C H}_{3}\right), 124.97\left(\mathrm{q},{ }^{1} J=271.2 \mathrm{~Hz}, \mathbf{C F}_{3}\right), 124.24(\mathrm{Tz}-\mathbf{C} 5$) $), 117.93(p-\mathbf{C H}$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 109.78(\mathrm{Pz}-\mathrm{C} 4), 56.56\left(\mathrm{Tz}-\mathrm{NCH}_{2}\right), 45.85\left(\mathrm{Pz}-\mathrm{NCH}_{2}\right) \mathrm{ppm}$.

S3.2 Synthesis of p- $\mathrm{C}_{6} \mathrm{H}_{3}\left[(\mathrm{PyT}) \operatorname{Ir}(\mathrm{CO})_{2} 2_{2}\left[\mathrm{BAr}^{F_{4}}\right]_{2}(3 \mathrm{c})\right.$

Dichloromethane (25 mL) was added to a mixture of $p-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2}(\mathbf{1} \mathbf{c}, 0.040 \mathrm{~g}, 0.10 \mathrm{mmol})$ and $[\operatorname{IrCl}(\mathrm{COD})]_{2}(0.067 \mathrm{~g}, 0.10 \mathrm{mmol})$ under argon. The bright yellow solution was stirred at RT for 30 minutes and $\mathrm{NaBAr}_{4}{ }_{4}(0.180 \mathrm{~g}, 0.10 \mathrm{mmol})$ was
added. The cloudy yellow solution was stirred at RT at 1 hour, filtered through a pad of Celite and rinsed with dichloromethane ($2 \times 25 \mathrm{~mL}$). The combined organic layer was deoxygenated via freeze-pump-thaw (x2) and was placed under at atmosphere of carbon monoxide and stirred overnight. The solvent was reduced to approximately 3 mL and pentane (35 mL) was added to the reaction mixture with vigorous stirring. The pale yellow solid and thick oil residue obtained was collected by filtration, washed with pentane ($3 \times 7 \mathrm{~mL}$) and dried in vacuo to afford $\mathbf{3 c}$ as an orange solid. Yield: $0.209 \mathrm{~g}, 83 \%$; m.p. $69-72^{\circ} \mathrm{C}$ (melted and turned red).

Elemental analysis, found: C, $40.59 ; \mathrm{H}, 1.82$ and $\mathrm{N}, 5.28$; calculated for $\mathrm{C}_{88} \mathrm{H}_{44} \mathrm{~B}_{2} \mathrm{~F}_{48} \mathrm{Ir}_{2} \mathrm{~N}_{10} \mathrm{O}_{4}$: C, 40.29; H, 1.82; N, 5.28 \%.

HR-MS (MeOH): $m / z\left(\%\right.$, assignment): $1759.1558\left(67,\left[\mathrm{M}+\mathrm{BAr}^{\mathrm{F}}\right]^{+}\right.$), 649.1382 (100, $[\mathrm{M}-$ $\left.\left.\operatorname{Ir}(\mathrm{CO})_{2}\right]^{+}\right)$, amu.

FT-IR (DCM): v 2099 ($\mathrm{s}, \nu \mathrm{vCO}$), $2034(\mathrm{~s}, \nu \mathrm{CO}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 600 \mathrm{MHz}$): $\delta 8.80$ (s, 2H, Pz-H5'), 8.40 (s, 2H, Pz-H3), 8.36 (s, 2H, Pz-H5), 7.78 (br m, 16H, $o-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.67\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, p \mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.60\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{H}\right), 6.79(\mathrm{~s}, 2 \mathrm{H}$, Pz-H4), 6.04 (s, 4H, Tz-NCH2), 6.00 (s, 4H, Pz-NCH2) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}, 150 \mathrm{MHz}\right): \delta 172.15(\mathrm{CO}), 171.40(\mathrm{CO}), 162.58\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{B}-\mathrm{C}}=49.9 \mathrm{~Hz}\right.$, ipso-C-B of $\mathrm{BAr}^{\mathrm{F}} 4$), 148.57 ($\mathrm{Pz}-\mathrm{C} 3$), 141.84 (Tz-C4'), $135.52\left(o-\mathbf{C H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4, \mathbf{C 1} \& \mathbf{C 4}\right), 130.36$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathbf{C H}\right), 130.00\left(\mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=31.0 \mathrm{~Hz}, \mathrm{CCF}_{3}\right), 126.87\left(\mathrm{Tz}-\mathbf{C} 5\right.$ '), $125.53\left(\mathrm{q},{ }^{1} J=271.4 \mathrm{~Hz}, \mathbf{C F}_{3}\right)$, $118.46\left(p-\mathrm{CH}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 109.45(\mathrm{Pz}-\mathrm{C} 4), 56.18\left(\mathrm{Tz}-\mathrm{NCH}_{2}\right), 46.35\left(\mathrm{Pz}-\mathrm{NCH}_{2}\right) \mathrm{ppm}$.

S3.3 Synthesis of 1,3,5- $\mathrm{C}_{6} \mathrm{H}_{3}-\left[(\mathrm{PyT}) \operatorname{Ir}(\mathrm{CO})_{2}\right]_{3}\left[\mathrm{BAr}_{4}{ }_{4}\right]_{3}(3 d)$

Dichloromethane (25 mL) was added to a mixture of $1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{PyT})_{3}(\mathbf{1 d}, 0.393 \mathrm{~g}, 0.70$ $\mathrm{mmol})$ and $[\operatorname{IrCl}(\mathrm{COD})]_{2}(0.071 \mathrm{~g}, 1.05 \mathrm{mmol})$ in a flask under an atmosphere of argon. The bright orange yellow solution obtained was stirred at room
temperature for 30 minutes. $\mathrm{NaBAr}_{4}{ }_{4}(0.187 \mathrm{~g}, 2.10 \mathrm{mmol})$ was added and the cloudy yellow reaction mixture was stirred for one hour at room temperature. The reaction mixture was filtered through a pad of Celite and rinsed with dichloromethane ($2 \times 20 \mathrm{~mL}$). The combined filtrate was reduced until about 25 mL of solvent was left. The solution was then degassed via three cycles of freeze-pump-thaw and placed under an atmosphere of carbon monoxide overnight. The reaction mixture was degassed again and placed under carbon monoxide for 3 hours. The solvent was reduced to approximately 3 ml and pentane (30 mL) was added to the reaction mixture with vigorous stirring. The yellow orange solid and thick oil residue obtained was collected by filtration, washed with pentane ($3 \times 10 \mathrm{~mL}$) and dried in vacuo to afford the product as an orange solid. Yield: $0.249 \mathrm{~g}, 91 \%$; m.p. $77-80^{\circ} \mathrm{C}$.

Elemental analysis, found: $\mathrm{C}, 40.26$; $\mathrm{H}, 1.49$ and $\mathrm{N}, 5.10$; calculated for: $\mathrm{C}_{129} \mathrm{H}_{63} \mathrm{~B}_{3} \mathrm{Irr}_{72} \mathrm{~N}_{15} \mathrm{O}_{6}$: C , 39.77; H, 1.63 and N, 5.39 \%.

MS (ESI, MeOH): $m / \mathrm{z}\left(\%\right.$, assignment): 1695.49 (40, $\left.\left[\mathrm{M}-2 \operatorname{Ir}(\mathrm{CO})_{2}+\mathrm{NaBAr}^{\mathrm{F}}\right]^{+}\right), 810.26$ (100, $\left[\mathrm{M}-2 \operatorname{Ir}(\mathrm{CO})_{2}\right]^{+} \mathrm{amu}$.

FT-IR (DCM): v 2099 (s, vCO), $2035(\mathrm{~s}, \mathrm{vCO}) \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (DCM- $d_{2}, 400 \mathrm{MHz}$): $\delta 7.91$ (d, ${ }^{3} J=2.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 3$), 7.80 (s, 3H, Tz-H5'), 7.71 (br $\mathrm{m}, 24 \mathrm{H}, o-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $7.67\left(\mathrm{~d},{ }^{3} J=2.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 3\right.$), $7.53\left(\mathrm{br} \mathrm{s}, 12 \mathrm{H}, p-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), 7.37 (s, 3H, C ${ }_{6} \mathrm{H}_{3}-\mathrm{H}$), 6.56 (apparent t, ${ }^{3} J=2.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathrm{H} 4$), 5.43 (s, $6 \mathrm{H}, \mathrm{Tz}-\mathrm{NCH}_{2}$), 5.34 (s, 6H, PzNCH_{2}) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DCM- $\left.d_{2}, 150 \mathrm{MHz}\right): \delta 169.86(\mathrm{CO}), 169.41(\mathrm{CO}), 162.11\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.5 \mathrm{~Hz}\right.$, ipso$\mathbf{C B}$ of $\mathrm{BAr}^{\mathrm{F}}$) , 148.30 ($\mathrm{Pz}-\mathrm{C} 3$), 140.26 ($\mathrm{Tz}-\mathrm{C} 4$ ') , 135.74 ($\mathrm{Pz}-\mathrm{C} 5$), 135.16 ($o-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}} 4$), 134.74 (ipso-C of $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.80\left(\mathrm{C}_{6} \mathrm{H}_{3}-\mathbf{C H}\right), 129.20\left(\mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=30.6 \mathrm{~Hz}, \mathrm{CCF}_{3}\right), 126.27($ Tz-C5'), 124.91 $\left(\mathrm{q},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=272.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 117.91\left(p-\mathrm{CH}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}\right), 109.82(\mathrm{Pz}-\mathrm{C} 4), 55.73\left(\mathrm{Tz}-\mathrm{NCH}_{2}\right), 45.59(\mathrm{Pz}-$ NCH_{2}) ppm.

S4. Synthesis of RhCp* Complexes

S4.1 Synthesis of $\mathrm{m}_{-\mathrm{C}_{6}} \mathrm{H}_{4}-\left[(\mathrm{PyT}) \mathrm{Rh}(\mathrm{Cp} *)_{\mathrm{Cl}_{2}}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(4 \mathrm{~b})\right.$

Dichloromethane (25 mL) was added to a flask containing a solid mixture of $m-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2}$ ($\mathbf{1 b}, 0.040 \mathrm{~g}, 0.10 \mathrm{mmol}),\left[\mathrm{Rh}\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}_{2}\right]_{2}(0.062 \mathrm{~g}$ $0.10 \mathrm{mmol})$ and $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(0.178 \mathrm{~g}, 0.20 \mathrm{mmol})$
under argon. The slightly cloudy orange solution obtained was stirred at RT for 3 hours. The reaction mixture was filtered through a pad of Celite and rinsed with dichloromethane ($2 \times 15 \mathrm{~mL}$). The combined filtrate was reduced to approximately 3 mL and pentane (30 mL) was added to the reaction mixture with rigorous stirring. The bright yellow precipitate formed was collected by filtration, washed with pentane (2 x 5 mL) and dried in vacuo. Yield: $0.232 \mathrm{~g}, 87 \%$; m.p. 98-103 ${ }^{\circ} \mathrm{C}$. The product is a mixture of two diastereoisomers, $\mathbf{I 1}$ and $\mathbf{I 2}(\mathbf{I} 1: \mathbf{I 2}=1.37: 1.00)$.

Elemental analysis, found: C, 47.16 ; $\mathrm{H}, 2.93$; and $\mathrm{N}, 5.18$; calculated for: $\mathrm{C}_{104} \mathrm{H}_{74} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{48} \mathrm{~N}_{10} \mathrm{Rh}_{2}$: C, $46.71, \mathrm{H}, 2.93$ and N, 5.24%.

HR-MS (MeOH): m / z (\%, assignment): 1809.3334 (3, $\left.\left[\mathrm{M}+\mathrm{BAr}^{\mathrm{F}}\right]^{+}\right), 673.3334$ (33, $\left.\left[\mathrm{M}-\mathrm{RhCp}^{*} \mathrm{Cl}\right]^{+}\right), 637.4167\left(23,\left[\mathrm{M}-\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]^{+}, 473.2500\left(16,[\mathrm{M}]^{2+}\right) \mathrm{amu}\right.$.
${ }^{1} \mathrm{H}$ NMR (DCM- $\left.d_{2}, 400 \mathrm{MHz}\right): \delta 7.82$ (I1, s, 2H, Tz-H5'), 7.81 (I2, s, 2H, Tz-H5'), 7.73-7.70 (I1 + $\mathbf{I 2}, \mathrm{m}, 18 \mathrm{H}+18 \mathrm{H}, o-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}} 4(16 \mathrm{H})$ and Pz-H5), $7.64\left(\mathbf{I 1}, \mathrm{~d},{ }^{3} J=2.5 \mathrm{~Hz}, \mathrm{Pz}-\mathrm{H} 3\right), 7.56-7.54$ (br s and d (overlapped), $8 \mathrm{H}+8 \mathrm{H}+2 \mathrm{H}, p-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}} 4(\mathbf{I} 1+\mathbf{I 2})$ and $\mathrm{Pz}-\mathbf{H} 3(\mathbf{I 2})$), 7.42-7.40 (I1 + $\mathbf{I 2}, \mathrm{m}, 2 \mathrm{H}+2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathbf{- H} 4$ and H6), 7.38-7.33 ($\mathbf{I} \mathbf{+} \mathbf{I 2}, \mathrm{m}, 1 \mathrm{H}+1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathbf{H 5}$), $7.28(\mathbf{I} \mathbf{2}, \mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathbf{H} 2\right), 7.21\left(\mathbf{I} 1, \mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathbf{H} 2\right), 6.49\left(\mathbf{I} 2, \mathrm{t},{ }^{3} \mathrm{~J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 4\right), 6.45\left(\mathbf{I} 1, \mathrm{t},{ }^{3} \mathrm{~J}=2.5 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 4), 5.73-5.67\left(\mathbf{I} \mathbf{+} \mathbf{I 2}, \mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.56-5.42\left(\mathbf{I} \mathbf{+}+\mathbf{I 2}, \mathrm{m}, 4 \mathrm{H}+4 \mathrm{H}, \mathrm{CH}_{2}\right), 5.0(\mathbf{I} \mathbf{2}$, d, $\left.{ }^{3} J=16.2 \mathrm{~Hz}, \mathrm{Pz}-\mathrm{NCH}_{2}\right), 4.94\left(\mathbf{I}, \mathrm{~d},{ }^{3} J=15.7 \mathrm{~Hz}, \mathrm{Pz}-\mathrm{NCH}_{2}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DCM- $\left.d_{2}, 100 \mathrm{MHz}\right): \delta 162.13\left(\mathbf{I 1}+\mathbf{I 2}, \mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=50.0 \mathrm{~Hz}, i p s o-\mathbf{C}-\mathrm{B}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right)$, 145.44 (I1 , Pz-C3), 145.30 ($\mathbf{I 2}, \mathrm{Pz}-\mathbf{C} 3$), 140.13 ($\mathbf{I 1}+\mathbf{I 2}, \mathrm{Tz}-\mathbf{C} 4$ '), $135.19\left(\mathbf{I 1}+\mathbf{I 2}, o-\mathbf{C H}\right.$ of BAr ${ }_{4}$),
$134.84,134.74,134.46,134.29,130.99,130.91,130.19,130.06,129.25\left(\mathrm{q},{ }^{2} J_{\mathrm{B}-\mathrm{C}}=31.0 \mathrm{~Hz}, \mathbf{C C F}_{3}\right)$, $124.97\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=272.1 \mathrm{~Hz}, \mathbf{C F}_{3}\right), 124.62(\mathbf{I 1}, \mathrm{Tz}-\mathrm{C} 5$ '), $124.50(\mathbf{I 2}, \mathrm{Tz}-\mathrm{C} 5$ '), 117.88 (br s, $p-\mathbf{C H}$ BAr_{4}) ppm.

S4.2 Synthesis of p- $\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{Py}) \mathrm{Rh}\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}^{2}\left[\mathrm{BAr}^{F}{ }_{4}\right]_{2}(4 \mathrm{c})\right.$

Dichloromethane (20 mL) was added to a
 mixture of $p-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2}(\mathbf{1 c}, 0.040 \mathrm{~g}, 0.10 \mathrm{mmol})$ and $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(0.062 \mathrm{~g}, 0.10 \mathrm{mmol})$ in a flask under argon. The bright orange solution obtained was stirred at RT for 30 minutes. $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(0.177$
$\mathrm{g}, 0.20 \mathrm{mmol}$) was added and the reaction mixture was stirred at RT for 3 hours. The reaction mixture was filtered through a pad of Celite and rinsed with dichloromethane ($2 \times 15 \mathrm{~mL}$). The combined dichloromethane solution was reduced to approximately 3 mL and pentane (30 mL) was added with stirring. The solid obtained was collected by filtration and was washed with pentane (3 $x 5 \mathrm{~mL})$ and dried in vacuo. $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{RhCp}^{*} \mathrm{Cl}_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(4 \mathrm{c})\right.$ was obtained as a bright orangish yellow solid. Yield: $0.237 \mathrm{~g}, 89 \%$; m.p. $102-106{ }^{\circ} \mathrm{C}$. The product is a mixture of two diastereoisomers, $\mathbf{I 1}$ and $\mathbf{I 2}(\mathbf{I 1}: \mathbf{I 2}=1.00: 1.00)$.

Elemental analysis; found: C, $47.00 ; \mathrm{H}, 2.75$ and $\mathrm{N}, 5.19$; calculated for: $\mathrm{C}_{104} \mathrm{H}_{74} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{48} \mathrm{~N}_{10} \mathrm{Rh}_{2}$: C, $46.71, \mathrm{H}, 2.93$ and N, 5.24%.

HR-MS (MeOH): m/z (\%, assignment): $1809.4167\left(20,\left[\mathrm{M}+\mathrm{BAr}^{\mathrm{F}}\right]^{+}\right), 673.3333$ (72, $[\mathrm{M}-$ $\left.\mathrm{RhCp}^{*} \mathrm{Cl}^{+}\right), 637.4167\left(100,\left[\mathrm{M}-\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]^{+}, 473.2500\left(43,[\mathrm{M}]^{2+}\right) \mathrm{amu}\right.$.
${ }^{1} \mathrm{H}$ NMR (DCM- $\left.d_{2}, 600 \mathrm{MHz}\right): \delta 7.76$ ($\left.\mathbf{I 1}, \mathrm{d},{ }^{3} J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 3\right), 7.75\left(\mathbf{I} \mathbf{2}, \mathrm{~d},{ }^{3} J=2.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, Pz-H3), 7.65 ($\mathbf{I} \mathbf{1}+\mathbf{I 2}, \mathrm{s}, 2 \mathrm{H}+2 \mathrm{H}, \mathrm{Tz}-\mathbf{H} 5$ '), 7.61 ($\left.\mathbf{I} 1, \mathrm{~d},{ }^{3} J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 5\right), 7.59\left(\mathbf{I 2}, \mathrm{~d},{ }^{3} J=\right.$ $2.5 \mathrm{~Hz}, \mathrm{Pz}-\mathbf{H} 5$), 7.58 (br s, $8 \mathrm{H}, p-\mathrm{CH}$ of $\mathrm{BAr}^{\mathrm{F}}$), 7.312 ($\mathbf{I 1}, \mathrm{s}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathbf{C H}$), 7.310 (I2, s, 4 H , $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathbf{C H}\right), 5.69\left(\mathbf{I} \mathbf{1}+\mathbf{I 2}, \mathrm{d},{ }^{2} J=15.0 \mathrm{~Hz}, 1 \mathrm{H}+1 \mathrm{H}, \mathrm{Tz}-\mathrm{NCHH}\right), 5.55\left(\mathbf{I} \mathbf{1}+\mathbf{I} \mathbf{2}, \mathrm{d},{ }^{2} J=15.0 \mathrm{~Hz}, 1 \mathrm{H}+\right.$ $1 \mathrm{H}, \mathrm{Tz}-\mathrm{NCH}), 5.46\left(\mathbf{I} 1, \mathrm{~d},{ }^{2} J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Pz}-\mathrm{NCH}\right), 5.45\left(\mathbf{I} 2, \mathrm{~d},{ }^{2} J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Pz}-\mathrm{NCH}\right)$,
$5.00\left(\mathbf{I 1}, \mathrm{~d},{ }^{2} J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Pz}-\mathrm{NCH}_{\mathrm{b}}\right), 4.99\left(\mathbf{I 1}, \mathrm{~d},{ }^{2} J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Pz}^{2}-\mathrm{NCH} \mathbf{H}_{\mathrm{b}}\right), 1.641(\mathbf{I 1}, \mathrm{~s}$, $\left.15 \mathrm{H}, \mathrm{CH}_{3}\right), 1.637\left(\mathbf{I 2}, \mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{DCM}-d_{2}, 150 \mathrm{MHz}\right): \delta 162.16\left(\mathbf{I 1}+\mathbf{I 2}, \mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=50.0 \mathrm{~Hz}, i p s o-\mathbf{C B}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right)$, 145.49 ($\mathbf{I} \mathbf{1}+\mathbf{I 2}, \mathrm{Pz}-\mathbf{C} 3$), 140.18 ($\mathbf{I} \mathbf{~ + ~ I 2 , ~ T z - C 4 ') , ~} 135.22\left(o-\mathbf{C H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 134.70(\mathrm{Pz}-\mathbf{C} 5), 134.39$ (I1, ipso-C of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 134.36\left(\mathbf{I 2}\right.$, ipso- \mathbf{C} of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 129.80\left(\mathbf{I 1}+\mathbf{I 2}, \mathbf{C H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 129.29(\mathbf{I 1}+\mathbf{I} \mathbf{2}, \mathrm{q}$, $\left.{ }^{2} J_{\mathrm{F}-\mathrm{C}}=31.7 \mathrm{~Hz}, \mathbf{C C F}_{3}\right), 125.00\left(\mathbf{I} \mathbf{1}+\mathbf{I} \mathbf{2}, \mathrm{q},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=271.7 \mathrm{~Hz}, \mathbf{C F}_{3}\right), 124.10\left(\mathbf{I} \mathbf{1}+\mathbf{I} \mathbf{2}, \mathrm{Tz}-\mathbf{C} 5{ }^{\prime}\right.$ (overlapped with the $\mathbf{C F}_{3}$ quartet), 117.91 ($p \mathbf{- C H}$ of $\mathrm{BAr}^{\mathrm{F}}$), 109.21 ($\mathbf{I 1}$, Pz-C4), 109.20 (I2, Pz$\mathbf{C} 4), 97.65\left(\mathbf{I} \mathbf{+} \mathbf{I 2}, \mathrm{~d},{ }^{1} J_{\mathrm{Rh}-\mathrm{C}}=8.7 \mathrm{~Hz}, \mathbf{C C H}_{3}\right), 55.91\left(\mathbf{I} 1+\mathbf{I} \mathbf{2}, \mathrm{Tz}-\mathrm{NCH}_{2}\right), 45.28(\mathbf{I} 1+\mathbf{I} \mathbf{2}, \mathrm{Pz}-$ $\left.\mathrm{NCH}_{2}\right), 9.46\left(\mathbf{C H}_{3}\right) \mathrm{ppm}$.

S4.3 Synthesis of 1,3,5-C6 $\mathrm{H}_{3}\left[(\mathrm{PyT}) \mathrm{Rh}\left(\mathrm{CP}^{*}\right) \mathrm{Cl}_{3}\left[\mathrm{BAr}^{\mathrm{F}} \mathrm{J}_{3}(4 d)\right.\right.$

was stirred at RT for 1.5 hours. The mixture was filtered through a pad of Celite and rinsed with dichloromethane ($2 \times 15 \mathrm{~mL}$). The yellow solution obtained was reduced to approximately 2 mL and pentane (30 mL) was added with rigorous stirring. The yellow solid and thick solid residue was collected by filtration, washed with pentane ($\left.\begin{array}{llll}3 & \mathrm{x} & 5 \mathrm{~mL}\end{array}\right)$ and dried in vacuo. 1,3,5- $\mathrm{C}_{6} \mathrm{H}_{3}\left[(\mathrm{PyT}) \mathrm{Rh}\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}\right]_{3}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{3}(\mathbf{4 d})$ was obtained as an yellow orange solid. Yield: 0.199 g, 85%. m.p. $103-106^{\circ} \mathrm{C}$. The product is a mixture of three diastereoisomers in ratio: $\mathbf{I 1}: \mathbf{I} \mathbf{2}: \mathbf{I 3}=$ $1.00: 1.79: 1.26$.

Elemental analysis; found: C, 46.78; $\mathrm{H}, 2.68$; $\mathrm{N}, 5.58$; calculated for $\mathrm{C}_{153} \mathrm{H}_{108} \mathrm{~B}_{3} \mathrm{Cl}_{3} \mathrm{~F}_{72} \mathrm{~N}_{15} \mathrm{Rh}_{3}$: 46.27; H, 2.74 and N, 5.58 \%.

HR-MS (MeOH): m/z (\%, assignment): $3108.3592\left(3,\left[\mathrm{M}+2 \mathrm{BAr}^{\mathrm{F}}\right]^{+}\right), 1970.3040$ (4, $[\mathrm{M}-$ $\left.\left.\mathrm{RhCp} * \mathrm{Cl}+\mathrm{BAr}^{\mathrm{F}}\right]^{+}\right), 1122.6465\left(100,\left[\mathrm{M}+\mathrm{BAr}_{4}{ }^{\mathrm{F}}\right]^{2+}\right), 460.0782\left(6,[\mathrm{M}]^{3+}\right) \mathrm{amu}$.
${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, 600 \mathrm{MHz}\right): \delta 8.50(\mathbf{I 1}, \mathrm{~s}, 3 \mathrm{H}), 8.48(\mathbf{I 2}, \mathrm{~s}, 3 \mathrm{H}), 8.33(\mathbf{I 3}, \mathrm{~s}, 3 \mathrm{H}), 8.13\left(\mathbf{I 1}, \mathrm{~d},{ }^{3} J\right.$ $=2.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 5), 8.08$ ($\left.\mathbf{I} 2, \mathrm{~d},{ }^{3} J=2.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 5\right), 8.01\left(\mathbf{I} 3, \mathrm{~d},{ }^{3} J=2.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 5\right)$, 7.95-7.94 ($\mathbf{I} \mathbf{1}+\mathbf{I} \mathbf{2}+\mathbf{I} \mathbf{3}, \mathrm{m}, 3 \mathrm{H}+3 \mathrm{H}+3 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 3), 7.79(\mathbf{I} 1+\mathbf{I} \mathbf{2}+\mathbf{I 3}, \mathrm{br} \mathrm{m}, 24 \mathrm{H}+24 \mathrm{H}+24 \mathrm{H}$, $o-\mathbf{C H}$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.70\left(\mathbf{I 1}, \mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}-\mathbf{C H}\right), 7.67\left(\mathrm{br} \mathrm{s}, p-\mathrm{CH}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.66\left(\mathbf{I} 2, \mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}-\mathrm{CH}\right)$, $7.55\left(\mathbf{I} 3, \mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}-\mathbf{C H}\right), 6.62-6.60(\mathrm{~m}, 3 \mathrm{H}+3 \mathrm{H}+3 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 4), 6.10-5.88(\mathbf{I 1}+\mathbf{I 2}+\mathbf{I 3}, \mathrm{m}, 18 \mathrm{H}+$ 9H, Tz-NCH ${ }_{2}$ and $\mathrm{Pz}-\mathrm{NCH}_{\mathrm{a}}$), $5.39\left(\mathbf{I 1}, \mathrm{~d},{ }^{2} J=16.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathrm{NCH}\right.$ b $), 5.37\left(\mathbf{I 1}, \mathrm{~d},{ }^{2} J=16.2 \mathrm{~Hz}\right.$, $\left.3 \mathrm{H}, \mathrm{Pz}-\mathrm{NCH}_{\mathrm{b}}\right), 5.34\left(\mathbf{I} 3, \mathrm{~d},{ }^{2} J=16.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathrm{NCH}_{\mathrm{b}}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $d_{6}, 150 \mathrm{MHz}$): $\delta 162.60\left(\mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=162.6 \mathrm{~Hz}\right.$, ipso-C of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 145.96$, 145.93, 145.86 (last three resonances $\mathbf{I 1} / \mathbf{I 2} / \mathbf{I 3}, \mathrm{Pz}-\mathbf{C} 3$), 141.45, 141.41, 141.39 (last three resonances I1/I2/I3, Tz-C4’), 137.33, 137.26 (ppso- \mathbf{C} of $\mathrm{C}_{6} \mathrm{H}_{3}$), 136.06, 135.97, 135.91 ((last three resonances $\left.\mathbf{I 1} / \mathbf{I} 2 / \mathbf{I 3}, \mathrm{C}_{6} \mathrm{H}_{3}-\mathbf{C H}\right), 135.55\left(\mathrm{br} \mathrm{s}, o-\mathbf{C H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}\right), 130.40(\mathbf{I 1}+\mathbf{I} \mathbf{2}+\mathbf{I 3}$, s, ipso-C of $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.02\left(\mathbf{I} 1+\mathbf{I} \mathbf{2}+\mathbf{I 3}, \mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=29.7 \mathrm{~Hz}, \mathbf{C C F}_{3}\right), 126.27(\mathbf{I 1}, \mathrm{Tz}-\mathbf{C} 5$ '), $126.18(\mathbf{I} 2, \mathrm{Tz}-\mathbf{C} 5$ '), $126.03\left(\mathbf{I 3}, \mathrm{Tz}-\mathbf{C} 5\right.$ '), $125.39\left(\mathrm{q},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=271.3 \mathrm{~Hz}, \mathbf{C F}_{3}\right), 118.45\left(\mathbf{I} \mathbf{+} \mathbf{I} \mathbf{2}+\mathbf{I 3}, p-\mathbf{C H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right)$, 108.91 (I1/I3, Pz-C4), 108.86 (I2, Pz-C4), 108.73 (I3/I1, Pz-C4), 98.06, 98.02 (three resonances for $\mathbf{I} \mathbf{+} \mathbf{I} \mathbf{2}+\mathbf{I 3}, \mathbf{C C H}_{3}$), $55.46,55.43,55.37$ (last three resonances, $\mathrm{Tz}_{\mathrm{N}}-\mathrm{NCH}_{2}$), $45.77(\mathrm{br}, \mathbf{I} \mathbf{1}+\mathbf{I} \mathbf{2}+$ $\mathbf{I 3}, \mathrm{Pz}-\mathrm{NCH}_{2}$), $9.39,9.34$ (last two resonances $\mathbf{I} / \mathbf{I} \mathbf{2}$ and $\mathbf{I} \mathbf{3}, \mathbf{C H}_{3}$) $\mathbf{p p m}$.

S5. Synthesis of IrCp* Complexes

S5.1 Synthesis of m- $C_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \operatorname{Ir}\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}_{2}\left[\mathrm{BAr}^{F_{4}}\right]_{2}(5 b)\right.$

The yellow reaction mixture was stirred for 45 minutes at room temperature. $\mathrm{NaBAr}_{4}{ }_{4}(0.178 \mathrm{~g}$, 0.20 mmol) was added and the cloudy yellow solution was stirred at RT under argon overnight.

The reaction mixture was filtered through a pad of Celite and rinsed with dichloromethane (2×15 $\mathrm{mL})$. The combined organic layer was reduced to approximately 3 mL and pentane (30 mL) was added to the dichloromethane solution with rigorous stirring. The yellow thick oil and solid residue was collected by filtration, washed with pentane (2 x 5 mL) and dried in vacuo. $m-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \operatorname{Ir}\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{5 b})$ was collected as a bright yellow solid. Yield: $0.159 \mathrm{~g}, 91 \%$; m.p. $99-102^{\circ} \mathrm{C}$. The product is a mixture of two diastereoisomers $\mathbf{I 1}$ and $\mathbf{I 2}(\mathbf{I} \mathbf{:} \mathbf{I} \mathbf{2}=1.00: 1.08)$.

Elemental analysis; found: C, 43.91; H, 2.62 and $\mathrm{N}, 4.90$; calculated for $\mathrm{C}_{104} \mathrm{H}_{74} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{48} \mathrm{Ir}_{2} \mathrm{~N}_{10}$: C, 43.79, H, 2.61 and N, 4.91 \%.

HR-MS (ESI $\left.{ }^{+}, \mathrm{MeOH}\right): m / z\left(\%\right.$, assignment): 1990.3334 (1, $\left[\mathrm{M}+\mathrm{BAr}^{\mathrm{F}}\right]^{+}$), 763.3334 (12, $[\mathrm{M}-$ $\left.\operatorname{IrCp} * \mathrm{Cl}]^{+}\right), 747.2500\left(17,\left[\mathrm{M}-\mathrm{IrCp} * \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}\right]^{+}\right), 657.4167\left(100,\left[\mathrm{M}-\mathrm{IrCl}-2 \mathrm{xCp} *+\mathrm{OMe}^{+}\right) \mathrm{amu}\right.$.
${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 600 \mathrm{MHz}$): $\delta 8.54$ (I1, s, 2H, Tz-H5'), 8.49 (I2, s, 2H, Tz-H5'), 8.12 ($\mathbf{I 1}, \mathrm{d},{ }^{3} J$ $=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 5), 8.08\left(\mathbf{I} 2, \mathrm{~d},{ }^{3} J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 5\right), 7.89(\mathbf{I} \mathbf{1}+\mathbf{I} 2, \mathrm{br} \mathrm{s}, 2 \mathrm{H}+2 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 3)$, $7.80\left(\mathbf{I} \mathbf{1}+\mathbf{I 2}, \mathrm{br} \mathrm{m}, 16 \mathrm{H}+16 \mathrm{H}, o-\mathbf{C H} \text { of } \mathrm{BAr}^{\mathrm{F}}\right)^{4}, 7.68\left(\mathbf{I} \mathbf{1}+\mathbf{I 2}, \mathrm{br} \mathrm{s}, 8 \mathrm{H}+8 \mathrm{H}, p-\mathbf{C H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right)$, $7.64\left(\mathbf{I 1} / \mathbf{I 2}, \mathrm{s}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathbf{H} 2\right), 7.60\left(\mathbf{I} 1 / \mathbf{I 2}, \mathrm{s}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathbf{H} 2\right), 7.51-7.49(\mathbf{I 1}+\mathbf{I 2}, \mathrm{m}, 3 \mathrm{H}+3 \mathrm{H}, \mathbf{H} 4, \mathbf{H} 5$ and $\mathbf{H} 6$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 6.64-6.63\left(\mathbf{I} 1+\mathbf{I 2}\right.$, apparent $\left.\mathrm{t},{ }^{3} J=2.4 \mathrm{~Hz}, 2 \mathrm{H}+2 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 4\right), 6.13-5.88(\mathbf{I 1}+\mathbf{I} \mathbf{2}$, $\mathrm{m}, 6 \mathrm{H}+6 \mathrm{H}, \mathrm{NCH}_{2}(\mathrm{AB}$ systems)$), 5.262\left(\mathbf{I 1}, \mathrm{~d},{ }^{2} J=16.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{NCHb}\right), 5.255\left(\mathbf{I} 2, \mathrm{~d},{ }^{2} J=\right.$ $16.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathrm{NCH}), 1.72\left(\mathbf{I 1}, \mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right), 1.69\left(\mathbf{I} 2, \mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}, 150 \mathrm{MHz}\right): \delta 162.62\left(\mathbf{I} 1+\mathbf{I 2}, \mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=49.5 \mathrm{~Hz}\right.$, ipso-CB of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right)$, 145.80 (I2, Pz-C3), 145.75 (I1, Pz-C3), 140.57 (I2, Tz-C4'), 140.56 (I1, Tz-C4’), 136.38 (I1/I2, Tz-C5'), 136.30 ($\mathbf{I 1} / \mathbf{I 2}$, Tz-C5'), 135.63 ($\mathbf{I 1}$ and/or I2, Pz-C5), 135.57 ($\mathbf{I 1}+\mathbf{I 2}, o-\mathbf{C H}$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $130.81\left(\mathbf{I 1} / \mathbf{I 2}\right.$, ipso-CH of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 130.06\left(\mathrm{q},{ }^{2} J_{\text {F-C }}=31.9 \mathrm{~Hz}, \mathbf{C C F}_{3}\right), 129.96\left(\left(\mathbf{I 1} / \mathbf{I} \mathbf{2}, \mathbf{C H}\right.\right.$ of $\mathrm{C}_{6} \mathrm{H}_{4}$ (overlapped with CCF_{3} resonances)), $129.59\left(\mathbf{I 1}+\mathbf{I} \mathbf{2}\right.$ ipso- \mathbf{C} of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$, 129.44 (ipso- \mathbf{C} of $\mathrm{C}_{6} \mathrm{H}_{4}$),
 $\left(p-\mathbf{C H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 89.80\left(\mathbf{I} \mathbf{2}, \mathbf{C C H}_{3}\right), 89.78\left(\mathbf{I 1}, \mathbf{C C H}_{3}\right), 55.88\left(\mathbf{I 1}+\mathbf{I 2}, \mathrm{Tz}-\mathrm{NCH}_{2}\right), 46.18(\mathbf{I 1}+\mathbf{I} \mathbf{2}$, Pz-NCH2), $9.10\left(\mathbf{I} 1 / \mathbf{I} 2, \mathbf{C H}_{3}\right), 9.07\left(\mathbf{I} 2 / \mathbf{I 1}, \mathbf{C H}_{3}\right) \mathrm{ppm}$.

S5.2 Synthesis of p-C ${ }_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \operatorname{Ir}\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}_{2}\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right]_{2}(5 \mathrm{c})\right.$

$\left[\mathrm{BAr}_{4}\right]_{2}$ Dichloromethane (20 mL) was added to a mixture of $p-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2}(\mathbf{1 c}, 0.040 \mathrm{~g}, 0.10 \mathrm{mmol})$ and $\left[\mathrm{IrCp} * \mathrm{Cl}_{2}\right]_{2}(0.080 \mathrm{~g}, 0.10 \mathrm{mmol})$ in a flask and the yellow reaction mixture was stirred for 30 minutes at RT . $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(0.178 \mathrm{~g}, 0.20 \mathrm{mmol})$ was added and the cloudy yellow solution was stirred at RT under argon for 1 hr . The reaction mixture was filtered through a pad of Celite and rinsed with dichloromethane ($2 \times 15 \mathrm{~mL}$). The combined organic layer was reduced to approximately 3 mL and pentane $(30 \mathrm{~mL})$ was added to the dichloromethane solution with rigorous stirring. The yellow precipitate formed was collected by filtration, washed with pentane ($2 \times 5 \mathrm{~mL}$) and dried in vacuo. $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \operatorname{Ir}\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}\right.$ (5c) was collected as a light yellow solid. Yield: $0.285 \mathrm{~g}, 95 \%$; m.p. $103-108^{\circ} \mathrm{C}$. The product is a mixture of two diastereomers $\mathbf{I 1}$ and $\mathbf{I 2}$ ($\mathbf{I 1}$: $\mathbf{I 2}=1.00: 1.00$).

Elemental analysis; found: C, 44.00; $\mathrm{H}, 2.62$ and $\mathrm{N}, 4.90$; calculated for $\mathrm{C}_{104} \mathrm{H}_{74} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{48} \mathrm{Ir}_{2} \mathrm{~N}_{10}$: C , 43.79, H, 2.61 and N, 4.91 \%.

HR-MS (ESI $\left.{ }^{+}, \mathrm{MeOH}\right): m / z\left(\%\right.$, assignment): 1989.3509 (32, $\left[\mathrm{M}+\mathrm{BAr}_{4}\right]^{+}$), 763.2343 (7, $[\mathrm{M}-$ IrCp* Cl$])$, $563.1402\left(100,[\mathrm{M}]^{2+}\right) \mathrm{amu}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DCM}-d_{2}, 600 \mathrm{MHz}\right): \delta 7.73-7.72\left(\mathbf{I 1}+\mathbf{I 2}, \mathrm{br} \mathrm{m}, 16 \mathrm{H}+16 \mathrm{H}, o-\mathbf{C H}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.70(\mathbf{I} \mathbf{1}+$ I2, apparent $\mathrm{t},{ }^{3} \mathrm{~J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}+2 \mathrm{H}$, Pz-H5), $7.66\left(\mathbf{I 1}+\mathbf{I 2}, \mathrm{s}, 2 \mathrm{H}+2 \mathrm{H}, \mathrm{Tz}-\mathbf{H} 5\right.$ '), $7.61\left(\mathbf{I 1}, \mathrm{~d},{ }^{3} J=\right.$ $2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 3), 7.59\left(\mathbf{I 2}, \mathrm{~d},{ }^{3} J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 3\right), 7.56\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}+8 \mathrm{H}, p-\mathrm{CH}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $7.31\left(\mathbf{I 1}+\mathbf{I 2}, \mathrm{s}, 4 \mathrm{H}+4 \mathrm{H}, \mathbf{C H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 6.53$ (I1, apparent $\left.\mathrm{t},{ }^{3} J=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 4\right), 6.52$ ($\mathbf{I} 2$, apparent $\left.\mathrm{t},{ }^{3} J=2.5 \mathrm{~Hz}, \mathrm{Pz}-\mathbf{H} 4\right), 5.70\left(\mathbf{I} \mathbf{1}+\mathbf{I} \mathbf{2}, \mathrm{d},{ }^{2} J=15.2 \mathrm{~Hz}, 2 \mathrm{H}+2 \mathrm{H}, \mathrm{Tz}-\mathrm{NCH} \mathbf{a}_{\mathrm{a}}\right), 5.57(\mathbf{I} 1+\mathbf{I} \mathbf{2}$, $\left.\mathrm{d},{ }^{2} J=15.2 \mathrm{~Hz}, 2 \mathrm{H}+2 \mathrm{H}, \mathrm{Tz}-\mathrm{NCH} \mathbf{b}\right), 5.425\left(\mathbf{I 1}, \mathrm{~d},{ }^{2} J=15.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Tz}-\mathrm{NCH}_{\mathrm{a}}\right), 5.419\left(\mathbf{I} \mathbf{2}, \mathrm{~d},{ }^{2} J=\right.$ $\left.15.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Tz}-\mathrm{NCH}_{\mathrm{a}}\right), 4.86\left(\mathbf{I 1}+\mathbf{I 2}, \mathrm{d},{ }^{2} J=15.8 \mathrm{~Hz}, 2 \mathrm{H}+2 \mathrm{H}, \mathrm{Tz}-\mathrm{NCH}_{\mathrm{b}}\right), 1.61(\mathbf{I 1}, \mathrm{~s}, 15 \mathrm{H}$, $\left.\mathrm{CCH}_{3}\right), 1.60\left(\mathbf{I} 1, \mathrm{~s}, 15 \mathrm{H}, \mathrm{CCH}_{3}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DCM- $\left.d_{2}, 150 \mathrm{MHz}\right): \delta 162.15\left(\mathbf{I 1}+\mathbf{I 2}, \mathrm{q},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=50.0 \mathrm{~Hz}\right.$, ipso-CB of $\left.\mathrm{BAr}^{\mathrm{F}}\right)$,
 $129.77\left(\mathbf{I} \mathbf{1}+\mathbf{I} \mathbf{2}\right.$, ipso- \mathbf{C} of $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 129.28\left(\mathbf{I} \mathbf{1}+\mathbf{I} \mathbf{2}, \mathrm{d},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=31.7 \mathrm{~Hz}, \mathbf{C C F}_{3}\right), 125.00\left(\mathbf{I} \mathbf{1}+\mathbf{I} \mathbf{2}, \mathrm{q},{ }^{1} J_{\mathrm{F}-}\right.$ $\left.\mathrm{C}=272.5 \mathrm{~Hz}, \mathbf{C F}_{3}\right), 123.98\left(\mathbf{I} \mathbf{1}+\mathbf{I} \mathbf{2}, \mathrm{Tz}-\mathbf{C} 5^{\prime}\right), 117.91\left(\mathbf{I} \mathbf{~}+\mathbf{I} \mathbf{2}, \mathrm{s}, p-\mathbf{C H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 89.63(\mathbf{I} \mathbf{+} \mathbf{I} \mathbf{2}$, $\left.\mathbf{C C H}_{3}\right), 56.04\left(\mathbf{I} \mathbf{+} \mathbf{I 2}, \mathrm{Tz}-\mathrm{NCH}_{2}\right), 45.59\left(\mathbf{I} \mathbf{+} \mathbf{I} \mathbf{2}, \mathrm{Pz}-\mathrm{NCH}_{2}\right), 9.20\left(\mathbf{I} \mathbf{1}+\mathbf{I} \mathbf{2}, \mathbf{C H}_{3}\right) \mathrm{ppm}$.

S5.3 Synthesis of 1,3,5-C6 $\mathrm{H}_{3}\left[(\mathrm{PyT}) \operatorname{Ir}\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}_{3}\left[\mathrm{BAr}^{F_{4}}\right]_{3}(5 d)\right.$
 0.210 mmol) was added and the cloudy yellow solution was stirred at RT under argon for 1 hour. The reaction mixture was filtered through a pad of Celite and rinsed with dichloromethane ($2 \times 15 \mathrm{~mL}$). The combined organic layer was reduced to approximately 3 mL and pentane (30 mL) was added to with rigorous stirring. The yellow precipitate formed was collected by filtration, washed with pentane $(2 \times 5 \mathrm{~mL})$ and dried in vacuo. 1,35- $\mathrm{C}_{6} \mathrm{H}_{3}\left[(\mathrm{PyT}) \operatorname{Ir}\left(\mathrm{Cp}^{*}\right) \mathrm{Cl}\right]_{3}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{3}(\mathbf{5 d})$ was collected as a light yellow solid. Yield: 0.235 g , 93%; m.p. $126-132^{\circ} \mathrm{C}$. The product is a mixture of three diastereoisomers, I1, I2 and I3 (I1: I2: I3 $=1.00: 1.92: 1.29)$.

Elemental analysis; found: C, 43.38; $\mathrm{H}, 2.56$; and $\mathrm{N}, 5.09$. Calculated for $\mathrm{C}_{153} \mathrm{H}_{108} \mathrm{~B}_{3} \mathrm{Cl}_{3} \mathrm{~F}_{72} \mathrm{Ir}_{3} \mathrm{~N}_{15}$: C, 43.34, H, 2.57 and N, 4.98%.

HR-MS (MeOH): $m / z\left(\%\right.$, assignment): $3376.5320\left(4,\left[\mathrm{M}+2 \mathrm{BAr}^{\mathrm{F}}\right]^{+}\right), 2150.4193(3,[\mathrm{M}-\mathrm{IrCp} * \mathrm{Cl}+$ $\left.\left.\mathrm{BAr}^{\mathrm{F}}\right]^{+}\right), 1256.7327\left(100,\left[\mathrm{M}+\mathrm{BAr}^{\mathrm{F}}\right]^{2+}\right), 550.1322\left(8,[\mathrm{M}]^{3+}\right) \mathrm{amu}$.
${ }^{1} \mathrm{H}$ NMR (aceton- $\left.d_{6}, 600 \mathrm{MHz}\right): \delta 8.56$ (I1, s, 3H, Tz-H5'), 8.52 (I2, s, 3H, Tz-H5’), 8.42 (I3, s, 3H, Tz-H5'), 8.15 (I1, d, $\left.{ }^{3} J=2.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 5\right), 8.11$ (I2, d, $\left.{ }^{3} J=2.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 5\right), 8.06$ (I3, d,
$\left.{ }^{3} J=2.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 5\right), 7.91-7.89(\mathbf{I} \mathbf{~}+\mathbf{I} \mathbf{2}+\mathbf{I} \mathbf{3}, \mathrm{m}, 3 \mathrm{H}+3 \mathrm{H}+3 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 3), 7.79(\mathbf{I} \mathbf{+} \mathbf{I} \mathbf{2}+\mathbf{I} \mathbf{3}, \mathrm{br}$ $\mathrm{m}, 16 \mathrm{H}+16 \mathrm{H}+16 \mathrm{H}, o-\mathbf{C H}$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.69\left(\mathbf{I} \mathbf{1}, \mathrm{~s}, \mathbf{3 H}, \mathrm{C}_{6} \mathrm{H}_{3}-\mathbf{H}\right), 7.68\left(\mathbf{I} \mathbf{2}, \mathrm{~s}, \mathbf{3 H}, \mathrm{C}_{6} \mathrm{H}_{3}-\mathbf{H}\right), 7.67(\mathrm{br}$ $\mathrm{s}, 4 \mathrm{H}+4 \mathrm{H}+4 \mathrm{H}, p-\mathbf{C H}$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.60\left(\mathbf{I} \mathbf{3}, \mathrm{~s}, \mathbf{3 H}, \mathrm{C}_{6} \mathrm{H}_{3}-\mathbf{H}\right), 6.66-6.64(\mathbf{I} \mathbf{1}+\mathbf{I 2}+\mathbf{I 3}, \mathrm{m}, 3 \mathrm{H}+3 \mathrm{H}$ $+3 \mathrm{H}, \mathrm{Pz}-\mathbf{H} 4), 6.16-5.84\left(\mathbf{I} \mathbf{+} \mathbf{I} \mathbf{2}+\mathbf{I} \mathbf{3}, \mathrm{m}, 18 \mathrm{H}+9 \mathrm{H}, \mathrm{Tz}_{-}-\mathrm{NCH}_{2}\right.$ and $\left.\mathrm{Pz}_{2}-\mathrm{NCH}_{\mathrm{a}}\right), 5.25-5.19(\mathbf{I} 1+\mathbf{I} \mathbf{2}+$ I3, three doublets, $\left.3 \mathrm{H}+3 \mathrm{H}+3 \mathrm{H}, \mathrm{Pz}-\mathrm{NCH}_{\mathrm{b}}\right), 1.74\left(\mathbf{I} 3,15 \mathrm{H}, \mathbf{C H}_{3}\right), 1.71\left(\mathbf{I 2}, 15 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64(\mathbf{I 1}$, $15 \mathrm{H}, \mathrm{CH}_{3}$) ppm.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}, 150 \mathrm{MHz}\right): \delta 162.61\left(\mathbf{I} \mathbf{~}+\mathbf{I 2}+\mathbf{I 3},{ }^{1} J_{\mathrm{B}-\mathrm{C}}=50.0 \mathrm{~Hz}\right.$, ipso-CB of BAr $\left.{ }^{\mathrm{F}}{ }_{4}\right)$, 145.80 (I1, Pz-C3), 145.75 (I2, Pz-C3), 145.69 (I3, Pz-C3), 140.57 (I1, Tz-C4'), 140.54 (I2, Tz$\mathbf{C 4}$ '), 140.50 ($\mathbf{I 3}, \mathrm{Tz}-\mathbf{C} 4$ '), 137.32 ($\mathbf{I} 1 / \mathbf{I} 2 / \mathbf{I 3}$, ipso-C of $\mathrm{C}_{3} \mathrm{H}_{6}$), 137.29 ($\mathbf{I 1} / \mathbf{I} \mathbf{2} / \mathbf{I} \mathbf{3}$, ipso- \mathbf{C} of $\mathrm{C}_{3} \mathrm{H}_{6}$), 137.23 (I1/I2/I3, ipso-C of $\mathrm{C}_{3} \mathrm{H}_{6}$), 135.78 (I1, Pz-C5), 135.70 (I2, Pz-C5), 135.64 (I2, Pz-C5), $135.55\left(p-\mathbf{C H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 130.46\left(\mathbf{I} \mathbf{1}, \mathbf{C H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.34\left(\mathbf{I} \mathbf{2}, \mathbf{C H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.05(\mathbf{I 3}, \mathbf{C H}$ of $\left.\mathrm{C}_{6} \mathrm{H}_{3}\right), 130.02\left(\mathbf{I 1}+\mathbf{I} \mathbf{2}+\mathbf{I 3}, \mathrm{q},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=31.4 \mathrm{~Hz}, \mathbf{C C F}_{3}\right), 126.27\left(\mathbf{I} 1, \mathrm{Tz}-\mathbf{C} 5\right.$ '), $126.19\left(\mathbf{I} 2, \mathrm{Tz}-\mathbf{C} 5^{\prime}\right)$, $126.04\left(\mathbf{I 3}, \mathrm{Tz}-\mathbf{C} 5\right.$ '), $125.39\left(\mathbf{I} \mathbf{+} \mathbf{I} \mathbf{2}+\mathbf{I} \mathbf{3}, \mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=271.8 \mathrm{~Hz}, \mathbf{C F}_{3}\right), 118.46(\mathbf{I 1}+\mathbf{I} \mathbf{2}+\mathbf{I} \mathbf{3}, p-\mathbf{C H}$ of BAr ${ }^{\mathrm{F}}$), 109.19 (I1, Pz-C4), 109.14 (I2, Pz-C4), 109.03 (I3, Pz-C4), 89.90 (I1, CCH \mathbf{H}_{3}), 89.88 (I2, $\mathbf{C C H}_{3}$), $89.81\left(\mathbf{I} \mathbf{3}, \mathbf{C C H}_{3}\right), 55.58,55.51$ (last two Tz- NCH_{2}, two resonances overlap), 46.21, 46.17 (last two $\mathrm{Pz}-\mathrm{NCH}_{2}$, two resonances overlap), 9.15, 9.10 (last two $\mathbf{C H}_{3}$, two resonances overlap) ppm.

Table S1: $\mathfrak{\imath C O}\left(\mathrm{cm}^{-1}\right)^{\mathrm{a}}$ and $\delta(\mathrm{ppm})$ of the carbonyls co-ligands in complexes 2a-d and 3a-d.

Complex	$\mathrm{vCO}\left(\mathrm{cm}^{-1}\right)$	${ }^{13} \mathrm{CO} \delta(\mathrm{ppm})$
$\left[\mathrm{Rh}(\mathrm{PyT})(\mathrm{CO})_{2}\right]\left[\mathrm{BAr}^{\mathrm{F}}\right]^{\mathrm{d}}$	2108, 2050	$182.8(J=68.9 \mathrm{~Hz}), 182.0(J=71.5 \mathrm{~Hz})^{\text {b }}$
$o-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{Rh}(\mathrm{PyT})(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}$ ($\mathbf{2 a}$)	2109, 2051	$183.76(J=70)^{\text {c }}$
$m-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{Rh}(\mathrm{PyT})(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{2 b})$	2109, 2051	$182.46(J=69.3), 181.90(J=69.9)^{\text {b }}$
$p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{Rh}(\mathrm{PyT})(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(2 \mathrm{c})$	2109, 2051	$182.49(J=69.0), 181.82(J=70.6)^{\text {b }}$
1,3,5-C6 $\mathrm{H}_{3}\left[\mathrm{Rh}(\mathrm{PyT})(\mathrm{CO})_{2}\right]_{3}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{3}(\mathbf{2 d})$	2110, 2052	$183.8(J=69.7)^{\text {c }}$
$\left[\operatorname{Ir}(\mathrm{PyT})(\mathrm{CO})_{2}\right]\left[\mathrm{BAr}^{\mathrm{F}}\right]^{\mathrm{d}}$	2097, 2034	170.7, $169.2{ }^{\text {b }}$
$\left.o-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{Ir}(\mathrm{PyT})(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}\right]^{(3 a)}$	2099, 2034	171.88, 171.20 ${ }^{\text {c }}$
$o-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{Ir}(\mathrm{PyT})(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{3 b})$	2098, 2034	170.31, $169.18^{\text {b }}$
$o-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{Rh}(\mathrm{PyT})(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(3 \mathrm{c})$	2099, 2034	172.14, 171.40 ${ }^{\text {c }}$
1,3,5-C $\mathrm{C}_{6} \mathrm{H}_{3}\left[\mathrm{Rh}(\mathrm{PyT})(\mathrm{CO})_{2}\right]_{3}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{3}(\mathbf{3 d})$	2099, 2035	169.86, $169.41^{\text {b }}$

${ }^{\text {a }}$ Spectra were acquired in dcm solution. ${ }^{\text {b }}$ Spectra were acquired in dcm- d_{2}. ${ }^{\mathrm{c}}$ Spectra were acquired in acetone- d_{6}. ${ }^{\text {d From reference } 1}$

Table S2: Molar ratios of different diastereoisomers in solution of complexes 4a-d and 5a-d as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Complexes	Solvent	Diastereoisomeric Ratios
$o-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}$ (4a)	acetone- d_{6}	1.16:1.00
$m-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{RhCp} * \mathrm{Cl}_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{4 b})\right.$	dcm- d_{2}	1.37: 1.00
$p-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{RhCp} * \mathrm{Cl}_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(4 \mathrm{c})\right.$	dcm- d_{2}	1.00: 1.00
1,3,5- $\mathrm{C}_{6} \mathrm{H}_{3}\left[(\mathrm{PyT}) \mathrm{RhCp} * \mathrm{Cl}_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{4 d})\right.$	acetone- $d 6$	$1.00: 1.79: 1.26$
$o-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{IrCp}{ }^{*} \mathrm{Cl}_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2} \mathbf{2}^{(5 a)}\right.$	acetone- d_{6}	1.00: 1.00
$m-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{IrCp} * \mathrm{Cl}_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}\right.$ (5b)	acetone- d_{6}	0.93: 1.00
$p-\mathrm{C}_{6} \mathrm{H}_{4}[(\mathrm{PyT}) \mathrm{IrCp} * \mathrm{Cl}]_{2}\left[\mathrm{BAr}^{4}\right]_{2}(\mathbf{5 c})$	dcm- d_{2}	1.00: 1.00
1,3,5-C $\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{IrCp}{ }^{*} \mathrm{Cl}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2} \mathbf{(5 d)}$	acetone- d_{6}	$1.00: 1.92: 1.29$

S6. Experimental for X-ray Crystallography

Bruker Diffractometer: Suitable single crystals of 1c, 2b, 4a, $\mathbf{6}$ and $\mathbf{7}$ selected under the polarizing microscope (Leica M165Z), were picked up on a MicroMount (MiTeGen, USA) consisting of a thin polymer tip with a wicking aperture. The X-ray diffraction measurements were carried out on a Bruker kappa-II CCD diffractometer at 150 K by using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.710723 \AA$). The single crystals, mounted on the goniometer using cryo loops for intensity measurements, were coated with paraffin oil and then quickly transferred to the cold stream using an Oxford Cryo stream attachment. Symmetry related absorption corrections using the program SADABS 2 were applied and the data were corrected for Lorentz and polarisation effects using Bruker APEX2 software. ${ }^{3}$ All structures were solved by direct methods and the full-matrix leastsquare refinements were carried out using SHELXL. ${ }^{4}$ The non-hydrogen atoms were refined anisotropically. The molecular graphic was generated using Mercury. ${ }^{5}$ Key crystallographic data and refinement details are presented in the Tables S3 and S4.

Synchrotron: The X-ray diffraction measurement for $\mathbf{1 b}$ and $\mathbf{1 c}$ was carried out at MX1 and MX2 beamlines at the Australian Synchrotron Facility, Melbourne. The procedure for diffraction intensity measurements on both the beam lines was similar. The crystal was mounted on the goniometer using cryo loop for diffraction measurements, was coated with paraffin oil and then quickly transferred to the cold stream using Cryo stream attachment. Data was collected using $\mathrm{Si}<111>$ monochromated synchrotron X-ray radiation $(\lambda=0.71073 \AA)$ at $100(2) \mathrm{K}$ and was corrected for Lorentz and polarization effects using the XDS software. ${ }^{6}$ The structure was solved by Direct methods and the full-matrix least-squares refinements was carried out using SHELXL. ${ }^{4}$

Table S3: Crystallographic data $m-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2}(\mathbf{1 b}), p-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PyT})_{2}(\mathbf{1 c}),\left[\mathrm{Cp} * \mathrm{Rh}(\mu-\mathrm{Cl})_{3} \mathrm{Cp}^{*}\right]\left[\mathrm{BAr}^{\mathrm{F}} 4\right](6)$ and $\left[\mathrm{Cp} * \operatorname{Ir}(\mu-\mathrm{Cl})_{3} \mathrm{Cp}^{*}\right]\left[\mathrm{BAr}^{\mathrm{F}}\right]$ (7)

	$1 \mathrm{~b}^{\text {a }}$	1c	6	7
Chemical formula	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{10}$	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{10}$	$\mathrm{C}_{52} \mathrm{H}_{42} \mathrm{BCl}_{3} \mathrm{~F}_{24} \mathrm{Rh}_{2}$	$\mathrm{C}_{52} \mathrm{H}_{42} \mathrm{BCl}_{3} \mathrm{~F}_{24} \mathrm{Ir}_{2}$
M ($\mathrm{g} \mathrm{mol}^{-1}$)	400.46	400.46	1445.83	3248.83
Crystal system	Orthorhombic	Monoclinic	Triclinic	Triclinic
Space group	Pnma	$P 2{ }_{1} / c$	$P^{-} 1$	$P^{-} 1$
Crystal habit	Colourless needles	Colourless needles	Yellow orange plates	Yellow cubic
Temperature (K)	100	181	150	150
a (Å)	10.140(2)	21.252(4)	10.8624(7)	10.9964(3)
b (\AA)	41.977(8)	4.4589(9)	12.9587(10)	13.0959(4)
c (\AA)	4.4970(9)	10.309(2)	19.9534(15)	20.2446(6)
$\alpha\left({ }^{\circ}\right)$	90	90	89.701(4)	84.849(1)
$\beta\left({ }^{\circ}\right)$	90	100.184(9)	82.578(4)	82.289(1)
$\gamma\left({ }^{\circ}\right)$	90	90	82.676(4)	82.375(1)
$\mathrm{V}\left(\AA^{3}\right)$	1914.1(7)	961.5(3)	2762.3(3)	2863.13(14)
Z	4	2	2	1
Radiation type	Synchrotron, $1=0.71073$ A	$\mathrm{Mo} K_{\alpha}$	MoKa	MoKa
$\mu\left(\mathrm{mm}^{-1}\right)$	0.09	0.09	0.86	4.90
Crystal size (mm)	$0.04 \times 0.02 \times 0.01$	$0.30 \times 0.12 \times 0.05$	$0.30 \times 0.16 \times 0.07$	$0.33 \times 0.28 \times 0.18$
$\mathrm{T}_{\text {min }}, \mathrm{T}_{\text {max }}$	-	0.973, 0.996		$0.299,0.479$
Refl. measured	20945	6785	58653	40446
Unique reflections	1695	1696	9711	9927
Obsd. Reflections $[\mathrm{I}>2 \sigma(\mathrm{I})]$	1630	1398	7917	8868
$\mathrm{R}_{\text {int }}$	0.042	0.027	0.039	0.028
$\mathrm{R}\left[\mathrm{F}^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)\right]$	0.076	0.036	0.039	0.035
$w R\left(F^{2}\right)$	0.179	0.122	0.129	0.076
S	1.21	0.80	0.88	1.05
Reflections used	1695	1696	9711	9927
Parameters	140	137	839	851
Restraints	0	0	0	0
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.43, -0.33	0.18-0.15	0.93,-0.69	1.49, -0.83

${ }^{\text {a }}$ Diffractometer: 3BM1 Australian Synchrotron diffractometer.

Table S4: Crystallographic data for $m-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{Rh}(\mathrm{CO})_{2}\right]\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{2 b}), p-\mathrm{C}_{6} \mathrm{H}_{4}$ $\left[(\mathrm{PyT}) \mathrm{Rh}(\mathrm{CO})_{2}\right]_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(\mathbf{2 c})$ and $o-\mathrm{C}_{6} \mathrm{H}_{4}\left[(\mathrm{PyT}) \mathrm{RhCp}^{*} \mathrm{Cl}_{2}\left[\mathrm{BAr}^{\mathrm{F}}\right]_{2}(4 \mathbf{4})\right.$.

	2b	$2 \mathbf{c}^{\text {a }}$	4a
Chemical formula	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{Rh}_{2} \\ & \mathrm{C}_{64} \mathrm{H}_{24} \mathrm{~F}_{48} \mathrm{~B}_{2} \\ & 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{Rh}_{2} \\ & \mathrm{C}_{64} \mathrm{H}_{24} \mathrm{~F}_{48} \mathrm{~B}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{40} \mathrm{H}_{50} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{Rh}_{2} \\ & \mathrm{C}_{64} \mathrm{H}_{24} \mathrm{~F}_{48} \mathrm{~B}_{2} \end{aligned}$
$\mathrm{M}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	2614.62	2444.77	2674.07
Crystal system	Triclinic	Triclinic	Monoclinic
Space group	P^{-1}	$P^{-} 1$	$P 2_{1} / n$
Crystal habit	Yellow blocks	Yellow thin plates	Yellow orange plates
Temperature (K)	170	100	150
a (Å)	12.5978(9)	13.054(3)	19.4592(9)
b (\AA)	13.8067(10)	13.837(3)	26.2685(12)
c (A)	15.8805(11)	15.174(3)	22.0969(10)
$\alpha\left({ }^{\circ}\right)$	91.334(3)	69.18(3)	90
$\beta\left({ }^{\circ}\right)$	106.014(3)	73.80(3)	94.742(2)
$\gamma\left({ }^{\circ}\right)$	108.407(3)	64.55(3)	90
$\mathrm{V}\left(\AA^{3}\right)$	2500.6(3)	2287.3(8)	11256.5(9)
Z	1	1	4
Radiation type	MoKa	$\begin{aligned} & \text { Synchrotron, } 1= \\ & 0.71073 \AA \end{aligned}$	MoKa
$\mu\left(\mathrm{mm}^{-1}\right)$	0.58	0.52	0.47
Crystal size (mm)	$0.30 \times 0.29 \times 0.10$	$0.03 \times 0.02 \times 0.02$	$0.37 \times 0.26 \times 0.14$
$\mathrm{T}_{\text {min }}, \mathrm{T}_{\text {max }}$	$0.845,0.946$	-	$0.844,0.936$
Refl. measured	33733	28387	123686
Unique reflections	8771	7450	19804
Obsd. Reflections $[\mathrm{I}>2 \sigma(\mathrm{I})]$	7768	7042	16411
$\mathrm{R}_{\text {int }}$	0.36	0.022	0.040
$\mathrm{R}\left[\mathrm{F}^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)\right]$	0.045	0.037	0.056
$w R\left(F^{2}\right)$	0.128	0.094	0.185
S	1.02	1.05	1.27
Reflections used	8771	7450	19804
Parameters	1105	733	1600
Restraints	991	174	12
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.76, -0.74	0.76, -0.89	1.49, -1.01

${ }^{\text {a }}$ Diffractometer: 3BM1 Australian Synchrotron diffractometer.

Figure S1: ORTEP depictions of the cationic fragment of the single crystal solid state structures of $\left[\mathrm{Cp} * \mathrm{Rh}(\mu-\mathrm{Cl})_{3} \mathrm{RhCp}^{*}\right]\left[\mathrm{BAr}_{4}{ }_{4}\right](6)$ and $\left[\mathrm{Cp} * \operatorname{Ir}(\mu-\mathrm{Cl})_{3} \mathrm{IrCp}^{*}\right]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right]$ (7) at 40% thermal ellipsoid for the non-hydrogen atoms.

References

1. C. Hua, K. Q. Vuong, M. Bhadbhade and B. A. Messerle, Organometallics, 2012, 31, 17901800.
2. Bruker, 2001, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
3. Bruker, 2001, APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.
4. G. M. Sheldrick, Acta. Cryst., 2008, A64, 112-122.
5. C. F. B. Macrae, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J. and Wood, P. A., J. Appl. Cryst., 2008, 41, 466-470.
6. W. Kabschi, J. Appl. Cryst., 1993, 26, 795-800.
