Electronic Supplementary Information

Inlay of Bi₂O₂CO₃ nanoparticles onto Bi₂WO₆ nanosheets to build heterostructured photocatalysts

Yang-Sen Xu, Ze-Jun Zhang, Wei-De Zhang*

School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China

Fig. S1 SEM images of $g-C_3N_4$ (A) and $Bi_2O_2CO_3$ (B).

D. Zhang).

^{*} Corresponding author. Tel and Fax: 86-20-8711 4099, E-mail address: <u>zhangwd@scut.edu.cn</u> (W.

Fig. S2 SEM images of the ZnO samples obtained with $g-C_3N_4$ as a source of NH_4^+ via hydrothermal process.

Fig. S3 XRD patterns of the $Bi_2O_2CO_3/Bi_2WO_6$ nanocomposites prepared using g-C₃N₄ or Na₂CO₃ as a source of CO₃²⁻.

Fig. S4 XRD patterns of the samples prepared with different volume of NaOH, (a) 5.0 mL, (b) 6.0 mL, (c) 7.0 mL, and (d) 8.0 mL.

Fig. S5 SEM images of the samples prepared with different volume of NaOH, (A) 5.0 mL, (B) 6.0 mL, (C) 7.0 mL, (D) 8.0 mL, (E) 6.4 mL, (F) 6.5 mL, (G) 6.6 mL, (H) 6.7 mL, and (I) 6.8 mL.

Fig. S6 XRD patterns of the $Bi_2O_2CO_3/Bi_2WO_6$ composites prepared using different amounts of g-C₃N₄.

Fig. S7 SEM images of the $Bi_2O_2CO_3/Bi_2WO_6$ composites prepared using different amounts of g-C₃N₄.

Fig. S8 (A) Plots of degradation rate of RhB over $Bi_2O_2CO_3$, Bi_2WO_6 and $Bi_2O_2CO_3/Bi_2WO_6$ under visible light irradiation (*k* is the apparent rate constant, h⁻¹). (B) Absorption spectra change of the RhB solution during the photocatalytic reaction.

Fig. S9 Plots of degradation of RhB over $Bi_2O_2CO_3/Bi_2WO_6$ obtained using Na_2CO_3 or g-C₃N₄ as the source of CO_3^{2-} under visible light irradiation. In the direct hydrothermal process, the molar ratio of the starting materials is 1:0.5:0.04 (Bi(NO_3)_3 \cdot 5H_2O: Na_2WO_4 \cdot 2H_2O: Na_2CO_3).

Fig. S10 SEM images of the $Bi_2O_2CO_3/Bi_2WO_6$ composites attained after reaction for (A) 8 h, (B) 12 h, (C) 16 h, and (D) 20 h.

Fig. S11 Comparison of photocatalytic activity of the Bi₂O₂CO₃/Bi₂WO₆ composites attained after reaction for (A) 8 h, (B) 12 h, (C) 16 h, and (D) 20 h towards the degradation of RhB under visible light irradiation.

Fig. S12 Schematic diagram for the energy band structure of the $Bi_2O_2CO_3/Bi_2WO_6$ and the possible charge transfer process under visible light irradiation.

Fig. S13 Plots of Photogenerated carries trapping in the system of photocatalytic degradation of RhB over Bi₂O₂CO₃/Bi₂WO₆ under visible light irradiation.