Electronic Supplementary Information (ESI) for Dalton Transactions

Neutral Copper(I) Dipyrrin Complexes and their use as Dye Sensitizers in Dye-Sensitized Solar Cells

Tracy E. Hewat, Lesley J. Yellowlees, and Neil Robertson *

School of Chemistry and EaStChem, University of Edinburgh, King's Buildings, Edinburgh, UK. Fax: +44 131 650 4743; Tel: +44 131 650 4755; E-mail: neil.robertson@ed.ac.uk

Experimental

Synthesis of 4,4'-(CO₂Et)-6,6'-dimethyl-2,2'-bipyridine (dmdecbpy)

Dmdcbpy (400 mg, 1.47 mmol) and conc. sulfuric acid (7.8 mL) were added to ethanol (86 mL) and refluxed under nitrogen for 72 h. The solution was cooled down, poured over crushed ice and was kept in the fridge overnight. The solvent was reduced to half the volume under reduced pressure. 1M NaOH was added until a precipitate formed, ensuring the solution was kept at pH 1. The white solid was filtered off and washed with water. Yield: 56 %, 273 mg. ¹H NMR (DMSO, 400 MHz): δ 8.61 (s, 2H, H-bpy), 7.79 (s, 2H, H-bpy), 4.41 (q, 4H, O-**CH**₂, J_{HH} = 7.2 Hz), 2.67 (s, 6H, CH₃), 1.36 (t, 6H, CH₂**CH**₃, J_{HH} = 7.1 Hz). +ESI/MS: *m*/*z* 329.2 (M⁺). Anal. Calc. for C₁₈H₂₀N₂O₄ : C 65.84, H 6.14, N 8.53. Found: C 65.71, H 6.10, N 8.68.

Step 1 of HL3 synthesis (4-(Ethoxy)-1,1,1-trifluoro-3-butene-2-one)

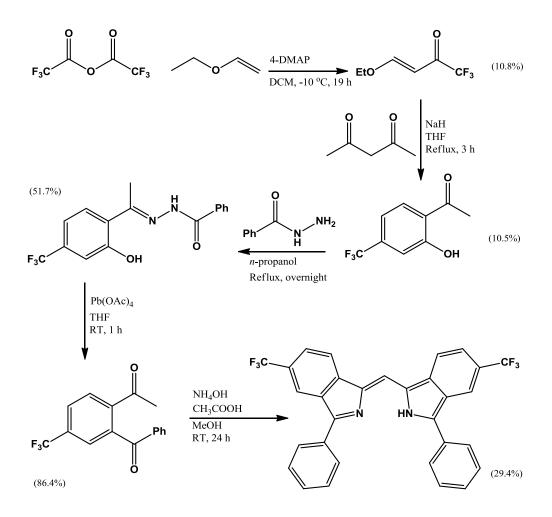
4-dimethylaminopyridine (12 mg, 0.1 mmol), and trifluoroacetic anhydride (328 mg, 15.62 mmol) were added to DCM (20 mL) and cooled to -10 °C. Ethyl vinyl ether (106 mg, 14.7 mmol) was added dropwise to the solution. The reaction mixture was stirred at 0 °C for 19 h. The solution was warmed to room temperature and the solvent was removed under reduced pressure. The purple oil was poured into sodium bicarbonate solution to produce a yellow oil. The phases were extracted and separated and the organic layer was dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to yield a red/orange oil. Yield: 267 mg, 10.8 %. ¹H NMR (CDCl₃, 400 MHz): δ 7.89 (d, 1H, J = 12.1 Hz, CH), 5.85 (d, 1H, J = 12.2 Hz, CH), 4.10 (q, 2H, J = 7, 14.3 Hz, CH₂), 1.40 (t, 3H, J = 6.9, 14.3 Hz, CH₃).

Step 2 of HL3 synthesis (1-[2-hydroxy-4-(trifluoromethyl)phenyl]ethanone)

NaH (240 mg, 10 mmol) was placed under argon and cooled down to 0 °C. Dry THF (10 mL) was added to NaH via cannula. 4-(Ethoxy)-1,1,1-trifluoro-3-butene-2-one (840 mg, 5 mmol) and acetylacetone (500 mg, 5 mmol) were transferred to the reaction mixture slowly. The mixture was warmed to room temperature and then refluxed for 3 h. The solution turned from yellow to red. The mixture was cooled to room temperature. 1M HCl was added until the solution reached pH 3. The mixture was separated and extracted with DCM (3x40 mL) and the organic layer was dried over MgSO₄. The solvent was removed under reduced pressure to yield a yellow/brown oil. The sample was purified on silica (hexane/ethyl acetate 90:10) to yield a yellow oil. Yield: 195 mg, 10.5 %. ¹H NMR (CDCl₃, 400 MHz): δ 12.28 (s, 1H, OH), 7.86 (d, 1H, J = 8.3 Hz, ar), 7.25 (d, 1H, J = 1.8 Hz, ar), 7.15 (dd, 1H, J = 1.8, 8.2 Hz, ar), 2.68 (s, 3H, CH₃).

Step 3 of HL3 synthesis

Benzhydrazide (130 mg, 9.5 mmol) and 1-[2-hydroxy-4-(trifluoromethyl)phenyl]ethanone (195 mg, 9.5 mmol) were added to *n*-propanol and refluxed overnight. The reaction mixture was cooled to room temperature and filtered. The crude product was recrystallised from boiling *n*-propanol to yield a white crystalline product. Yield: 159 mg, 51.7 %. ¹H NMR (DMSO, 500 MHz): δ 13.77 (s, 1H, NH), 11.50 (s, 1H, OH), 7.95 (d, 2H, J = 7.6 Hz, Ph), 7.86 (d, 1H, J = 7.6 Hz, ar), 7.64 (t, 1H, J = 7.6 Hz, Ph), 7.56 (t, 2H, J = 7.6 Hz, Ph), 7.22 (d, 1H, J = 7.6 Hz, ar), 7.22 (s, 1H, ar), 2.53 (s, 3H, CH₃). ¹³C NMR (DMSO, 128.1 MHz): δ 164.7, 158.8, 156.4, 132.7, 132.1, 129.7, 128.4, 128.2, 122.9, 122.7, 114.6, 113.9, 14.2. +ESI/MS: 323.11 [M+H]. C₁₆H₁₃F₃N₂O₂: C 59.63 H 4.07 N 8.69. Found C 59.76 H 3.85 N 8.78.


Step 4 of HL3 synthesis

The product from step 3 was added to THF at 25 °C. Lead(IV) acetate was added slowly to the solution. The reaction mixture was stirred for 1 h then filtered. The filtrate was separated and extracted with DCM, water, and then brine. The organic extracts were dried over MgSO₄. The solvent was removed under reduced pressure. The crude product was purified on alumina Act(IV) (DCM/cyclohexane 40:60) to yield a white solid. Yield: 859 mg, 86.4 %. ¹H NMR (CDCl₃, 500 MHz): δ 7.97 (d, 1H, J = 8.3 Hz, ar), 7.86 (dd, 1H, J = 8.3 Hz, ar), 7.74 (dd, 2H, J = 7.8 Hz, Ph), 7.67 (s, 1H, ar), 7.59 (tt, 1H, J = 7.8 Hz, Ph), 7.46 (t, 2H, J = Hz, 7.8 Ph), 2.56 (s, 3H, CH₃). ¹⁹F NMR (DMSO, 376 MHz): δ -63.10. +ESI/MS: 293.08 [M+H]. C₁₆H₁₁F₃O₂: C 65.76 H 3.79 N 0. Found C 65.83 H 3.84 N 0.

Step 5 of HL3 synthesis

The product from step 4 was added to acetic acid (12.4 mL) and methanol (24.6 mL). Ammonium hydroxide (conc. 6.2 mL) was added dropwise to the solution. The mixture was stirred at room temperature for 24 h. The mixture was filtered and the solid was dissolved in chloroform, and separated and extracted with water (2x30 mL). The organic extracts were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified on silica (CHCl₃) to yield a purple solid. Yield: 210 mg, 29.4 %. ¹H NMR (DMSO, 500 MHz): δ 13.86 (s), 12.53 (s), 11.52 (s), 8.60 (d), 8.57 (d), 8.31 (s), 8.16 (d), 8.15 (d), 8.09 (d), 8.07 (s), 7.98 (d), 7.94 (d), 7.83 (s), 7.77 (s), 7.69 (d), 7.67 (t), 7.58 (t), 7.52 (t), 7.50 (s), 7.45 (t), 7.34 (d), 7.29 (t), 6.73 (dd). ¹⁹F NMR (DMSO, 376 MHz): δ -60.07 (2), -60.17 (2), -60.19 (1), -60.26 (1), -60.28 (1), -60.40 (2). +ESI/MS: 532.41 [M⁺]. C₃₁H₁₈F₆N₂: C 69.92 H 3.41 N 5.26. Found C 70.05 H 3.51 N 5.36.

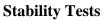
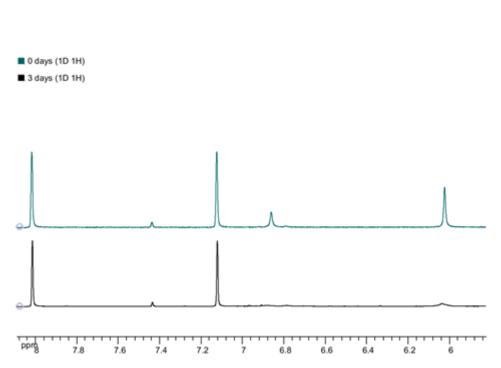
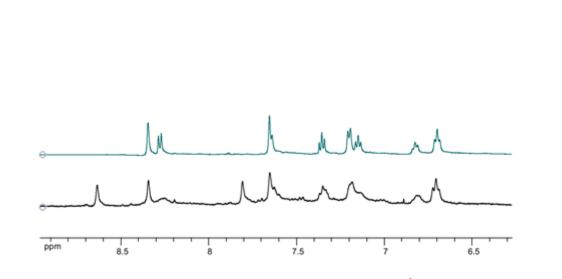
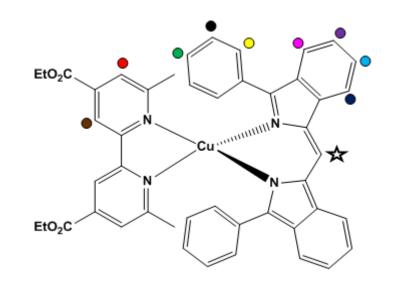

Reaction Scheme of HL3 ligand

Figure S1 Reaction scheme for the synthesis of HL3.

0 days (1D 1H)
4 days (1D 1H)

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013


Figure S2Stability tests of complex 1 in d_6 -DMSO. The blue curve represents the initial 1 H NMR and the black curve is the NMR after 3 days in solution.

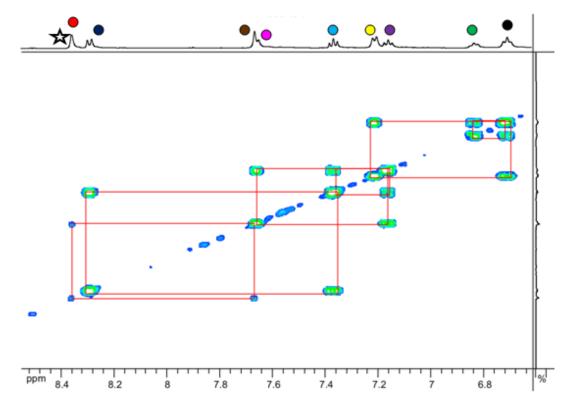


Figure S3 Stability tests of **3** in d_6 -DMSO via ¹H NMR.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

NMR Studies

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

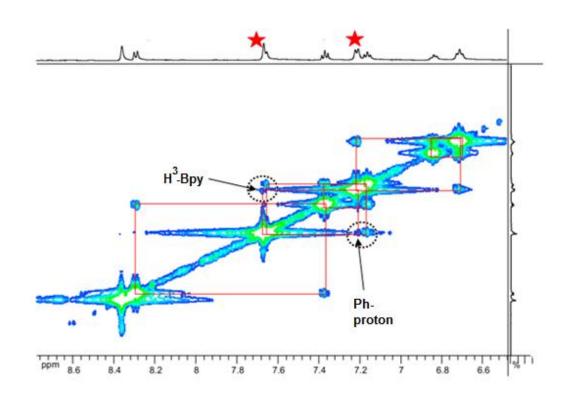
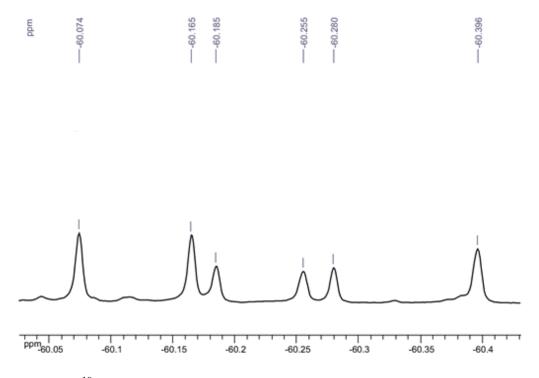
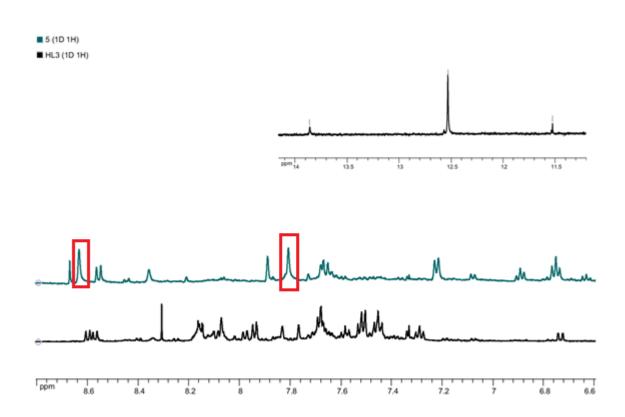




Figure S4 2D COSY (top spectrum) and 2D NOESY (bottom spectrum) of **3**. Each peak can be assigned to the protons featured in the structure of the molecule. It is shown that the Ph-proton from the dipyrrin ligand correlates through space with H³-bpy, suggesting a tetrahedral geometry.

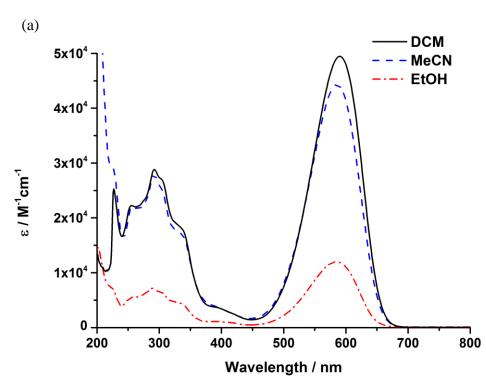


Figure S5 ¹⁹F NMR of HL3. Multiple peaks suggest presence of geometrical isomers.

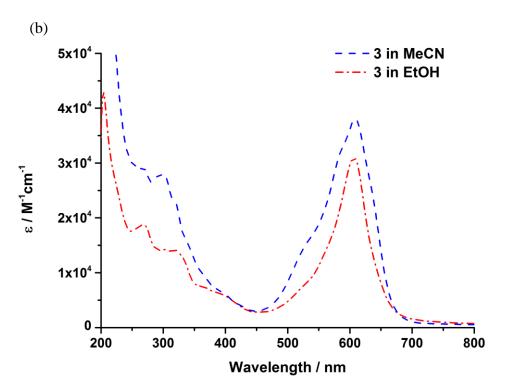
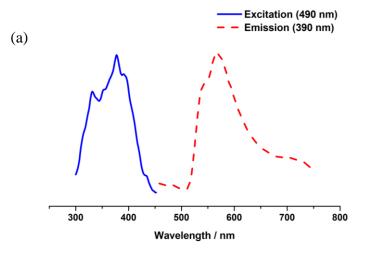

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2013

Figure S6 ¹H NMR of **HL3** (black line) and **5** (green line). The top spectrum shows the three NH peaks (1:5:1) from **HL3** representing the three isomers. The red box shows the presence of free dmdecbpy ligand.



Absorption Spectroscopy

Figure S7 (a) Absorption spectrum of **HL2** in varying solvents (dichloromethane, acetonitrile, and ethanol, and (b) Absorption spectrum of **3** in acetonitrile and ethanol.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2014

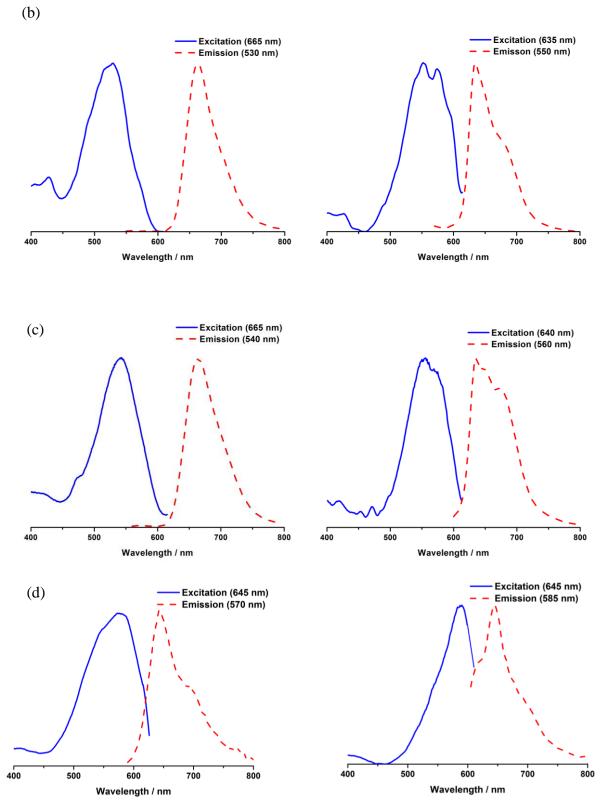
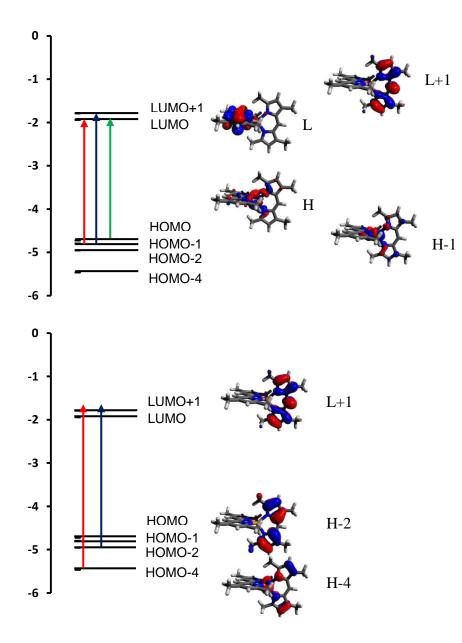


Figure S8Represents the excitation and emission spectra at room temperature (left) and77 K (right) for (a) 1, (b) 2, and (c) 3, all were carried out in ethanol and (d) 4 was carried out
in acetonitrile.

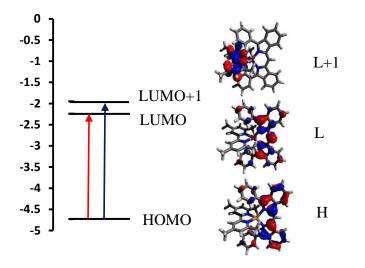

Computational

Complex	МО	MO energy /	% Contribution from			
		eV	Cu-based orbitals	Dipyrrin- based orbitals	Me-Bpy based orbitals	
1	HOMO-10	-7.74	2.74	0.54	96.72	
	HOMO-9	-7.30	0.27	99.19	0.54	
	HOMO-8	-6.75	2.18	2.18	95.64	
	HOMO-4	-5.46	68.14	29.68	2.18	
	HOMO-3	-5.40	81.52	9.62	8.86	
	HOMO-2	-4.95	0.14	99.86	0	
	HOMO-1	-4.80	66.58	13.32	20.1	
	HOMO	-4.72	68.18	20.82	11	
	LUMO	-1.94	3.26	2.19	94.55	
	LUMO+1	-1.79	1.49	97.52	0.99	
	LUMO+2	-1.01	1.76	1.36	96.88	
	LUMO+3	-0.73	0.49	0.32	99.19	
	LUMO+4	-0.28	0.04	0.12	99.84	
	LUMO+8	-1.52	0.54	98.89	0.57	

Table S1Percentage contributions from component parts of 1 to selected molecular
orbitals, and the calculated energies for these molecular orbitals.

Complex	Main Visible	Main Charg	Main Charge Transitions	
	Absorbance / nm	MO from	MO to	Contribution
1	581	HOMO-1	LUMO	23 %
		HOMO-1	LUMO+1	36 %
		HOMO	LUMO	41 %
	399	HOMO-4	LUMO+1	12 %
		HOMO-2	LUMO+1	88 %
	287	HOMO-10	LUMO	10 %
	207	HOMO-8	LUMO	64 %
		HOMO-8	LUMO+2	11 %
		HOMO-1	LUMO+4	15 %
	237	HOMO-9	LUMO+2	75 %
	237	HOMO-2	LUMO+8	25 %

Table S2Percentage contributions from component parts of 1 to selected molecular
orbitals, and the calculated energies for these molecular orbitals.


Figure S9 Molecular orbital diagrams for **1**, showing the main components of the transition for the calculated absorption at 581 nm (top) and 399 nm (bottom).

Complex	МО	MO energy /	% Contribution from			
		eV	Cu-based orbitals	Dipyrrin- based orbitals	Me-Bpy based orbitals	
2	HOMO-10	-6.98	0.08	98.28	1.64	
	HOMO-6	-6.50	2.08	96.40	1.52	
	HOMO-4	-5.80	77.13	19.69	3.18	
	HOMO-2	-5.19	72.11	14.63	13.26	
	HOMO-1	-4.89	66.34	16.76	16.90	
	HOMO	-4.73	0.16	99.64	0.20	
	LUMO	-2.24	2.30	96.00	1.70	
	LUMO+1	-1.95	2.49	3.41	94.10	
	LUMO+2	-1.09	1.34	6.14	92.52	
	LUMO+3	-0.93	0.59	97.13	2.28	
	LUMO+4	-0.81	0.73	4.33	94.94	
	LUMO+7	-0.40	0.64	97.18	2.18	
	LUMO+9	-0.34	6.10	88.92	4.98	

Table S3Percentage contributions from component parts of 2 to selected molecular
orbitals, and the calculated energies for these molecular orbitals.

Complex	Main Visible	Main Charg	Main Charge Transitions	
	Absorbance /	MO from	MO to	Contribution
	nm			
2	671	HOMO-2	LUMO	24 %
		HOMO-1	LUMO	62 %
		HOMO-1	LUMO+1	14 %
	541	HOMO	LUMO	66 %
		HOMO	LUMO+1	34 %
	375	HOMO-6	LUMO	12 %
		HOMO-2	LUMO+2	16 %
		HOMO	LUMO+3	72 %
	291	HOMO-10	LUMO	39 %
		HOMO-4	LUMO+3	11 %
		HOMO-4	LUMO+4	11 %
		HOMO-2	LUMO+7	13 %
		HOMO-2	LUMO+9	26 %

Table S4TD-DFT calculated visible absorption wavelengths for 2, indicating themolecular orbitals involved and their relative contribution to the absorption.

Figure S10 Molecular orbital diagram for **2**, showing the main charge transitions for the calculated absorption at 541 nm.

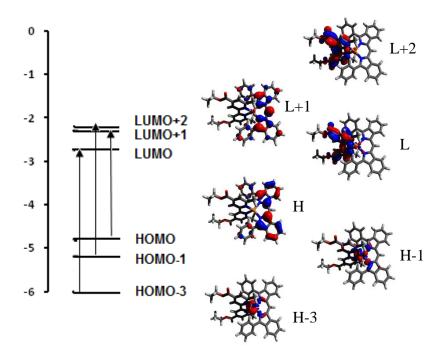

Complex	МО	MO energy /	% Contribution from			
		eV	Cu-based orbitals	Dipyrrin- based orbitals	CO ₂ Et-Bpy based orbitals	
3	HOMO-13	-7.16	1.73	33.39	64.88	
	HOMO-9	-7.02	0.14	98.84	1.02	
	HOMO-8	-6.85	34.17	58.75	7.08	
	HOMO-7	-6.78	6.86	89.82	3.32	
	HOMO-6	-6.56	2.43	96.19	1.38	
	HOMO-3	-5.98	76.61	13.95	9.44	
	HOMO-2	-5.56	69.26	16.82	13.92	
	HOMO-1	-5.19	63.58	19.17	17.25	
	HOMO	-4.78	0.12	99.70	0.18	
	LUMO	-2.74	4.99	5.73	89.28	
	LUMO+1	-2.31	2.06	95.82	2.12	
	LUMO+2	-2.29	0.53	3.60	95.87	
	LUMO+4	-0.97	0.67	98.75	0.58	
	LUMO+5	-0.63	1.79	96.63	1.58	
	LUMO+6	-0.46	0.32	97.56	2.12	
	LUMO+9	-0.40	3.68	92.26	4.06	

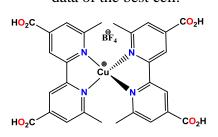
Table S5Percentage contributions from component parts of 3 to selected molecular
orbitals, and the calculated energies for these molecular orbitals.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2013

Complex	Main Visible	Main Charg	ge Transitions	Relative
_	Absorbance /	MO from	MO to	Contribution
	nm			
3	744	HOMO-2	LUMO	42 %
		HOMO-1	LUMO	58 %
	546	HOMO-3	LUMO	13 %
		HOMO-1	LUMO+2	60 %
		HOMO	LUMO+1	27 %
	538	HOMO-3	LUMO	28 %
		HOMO-1	LUMO+2	18 %
		HOMO	LUMO+1	54 %
	318	HOMO-13	LUMO	27 %
		HOMO-8	LUMO+1	24 %
		HOMO-6	LUMO+2	8 %
		HOMO-2	LUMO+4	20 %
		HOMO	LUMO+9	21 %
	316	HOMO-9	LUMO+1	9 %
		HOMO-7	LUMO+1	32 %
		HOMO-6	LUMO+1	30 %
		HOMO-1	LUMO+5	13 %
		HOMO	LUMO+4	9 %
		HOMO	LUMO+6	7 %

Table S6TD-DFT calculated visible absorption wavelengths for 3, indicating themolecular orbitals involved and their relative contribution to the absorption.

Figure S11 Molecular orbital diagram for **3**, showing the main charge transitions for the calculated absorption at 546 nm.


Sample	Bipy used	Copper source	Solvent	Reducing agent or base
1	Dmdcbpy	[Cu(CH ₃ CN) ₄][BF ₄]	DCM	-
2	Dmdcbpy	$[Cu(CH_3CN)_4][BF_4]$	MeCN	-
3	Tcbpy	$[Cu(CH_3CN)_4][BF_4]$	MeCN	-
4	Dmdcbpy	$Cu(L1)_2$	MeOH	Methanol
5	Dmdcbpy	$Cu(L1)_2$	MeOH	Zn/Hg
6	Dmdcbpy	$Cu(L1)_2$	DCM	$NaBH_4$
7	Dmdcbpy	[Cu(CH ₃ CN) ₄][BF ₄]	DCM	NaOH
8	Dmdcbpy	[Cu(CH ₃ CN) ₄][BF ₄]	DCM	-
9	Dmdcbpy	[Cu(CH ₃ CN) ₄][BF ₄]	MeCN	-
10	Dmdcbpy	$Cu(L2)_2$	MeOH	-
11	Dmdcbpy	$[Cu(CH_3CN)_4][BF_4]$	MeCN	-

Solar Studies

Table S7	Reagents and solvents used in each test. Bipy is adsorbed first followed by Cu
	and dipyrrin.

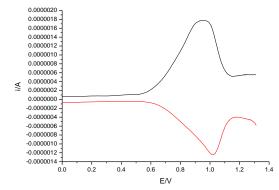
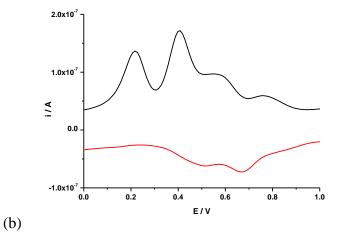
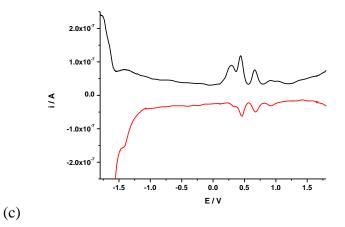

Sample	V _{oc} /	J _{sc} /	V_{MP} /	J_{MP} /	FF	η / %	Average η /
	mV	mAcm ⁻²	mV	mAcm ⁻²			%
REF	530	2.33	400	2.06	0.68	0.83	0.80 ± 0.03
1	520	0.40	420	0.30	0.62	0.13	0.10 ± 0.03
2	410	0.50	300	0.36	0.52	0.11	0.10 ± 0.01
3	410	0.26	300	0.19	0.56	0.06	0.05 ± 0.01
4	210	0.12	120	0.08	0.36	0.009	0.007 ± 0.02
8	280	0.03	170	0.02	0.39	0.003	0.002 ± 0.001
9	510	0.91	400	0.77	0.68	0.31	0.28 ± 0.03
10	420	0.46	320	0.35	0.56	0.11	0.09 ± 0.02
11	520	1.21	420	0.98	0.64	0.41	0.39 ± 0.02

Table S8JV data collected at AM1.5. The unmasked area was 0.16 cm². Two cells persample were tested and the average efficiency was recorded. The reported efficiency is the
data of the best cell.




Cu(dmdcbpy)₂BF₄ (REF)

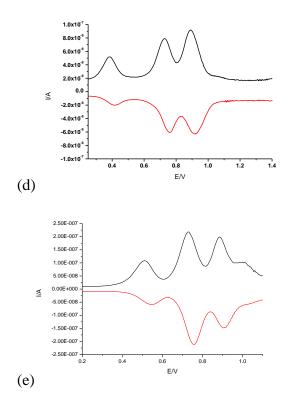

Cyclic Voltammetry

Figure S12 Oxidative differential pulse voltammetry of Cu(I) complexes against Ag/AgCl. Upper black scan is forward to more positive potential and the lower red line is the return scan. (a) 1 (b) 2 (c) 3 (d) 4 (e) 5