Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information

For

A Series of Ni^{II}-Flavonolate Complexes as Structural and Functional ES (Enzyme-Substrate) Models of the Ni^{II}-Containing Quercetin 2,3-Dioxygenase

Ying-Ji Sun* and Qian-Qian Huang and Jian-Jun Zhang

yingjis@dlut.edu.cn

Table of Contents

Table Caption

Table S1. The solution FT-IR results of the complexes [Ni^{II}L^R(fla)] in ethanol.

Table S2. The reaction products analysis results of the complexes [Ni^{II}L^R(fla)] with O₂.

Table S3. Kinetic results of the complexes [Ni^{II}L^R(fla)].

Figure Caption

Figure S1. The FT-IR spectra of the ethanol solution and solid sample of $[Ni^{II}L^{Me}(fla)]$ (2). (A) solvent ethanol (B) ethanol solution of $[Ni^{II}L^{Me}(fla)]$ (2) (C) solid sample of $[Ni^{II}L^{Me}(fla)]$ (2).

Figure S2. The HPLC-MS spectra of the reaction products of $[Ni^{II}L^{NO2}(fla)]$ (**5**) with O₂ at 70 °C for 8 h. (a) HPLC spectra; MS spectra of (b) salicylic acid m/z (neg.): 137.0 (M – H)⁻; (c) benzoic acid m/z (neg.): 120.9 (M – H)⁻, 180.9 (M + OAc)⁻; (d) 2-hydroxy-*N*,*N*-dimethyl benzamide m/z (pos.): 166.1 (M + H)⁺; (e) *N*,*N*-dimethyl benzamide m/z (pos.): 150.0 (M + H)⁺.

Figure S3. Eyring plot for the dioxygenation of the complexes $[Ni^{II}L^{R}(fla)]$ (1.0 × 10⁻⁴ M) in DMF.

	$[Ni^{II}L^{OMe}(fla)]$ (1)	$[Ni^{II}L^{Me}(fla)] (2)$	$[Ni^{II}L^{Br}(fla)] (4)$	$[Ni^{II}L^{NO2}(fla)] (5)$
$\nu(CO)/cm^{-1}$	1549	1548	1544	1552
$\nu_{as}(CO_2)/cm^{-1}$	1614	1614	1614	1607
$\nu_s(CO_2)/cm^{-1}$	1416	1418	1424	1414
$\Delta v(CO_2) \ /cm^{-1}$	198	196	190	193

Table S1. The solution FT-IR results of the complexes $[Ni^{II}L^{R}(fla)]$ in ethanol.

	Yield (%)					
Complex	Salicylic acid	licylic Benzoic 2-Hydroxy- <i>N</i> , <i>N</i> -dimethyl id acid benzamide		<i>N,N</i> -dimethyl benzamide	Conv. (%)	
$[Ni^{II}L^{OMe}(fla)]$ (1)	93.9	78.1		14.2	93.9	
$[Ni^{II}L^{Me}(fla)]$ (2)	34.6	23.9	57.3	66.5	91.9	
$[Ni^{II}L^{Br}(fla)]$ (4)	14.6	57.2	69.2	26.6	83.8	
$[Ni^{II}L^{NO2}(fla)] (5)$	25.2	45.4	50.4	31.8	77.2	

Table S2. The reaction products analysis results of the complexes $[Ni^{II}L^{R}(fla)]$ with O_{2} .

Table S3. Kinetic results of the model complexes [Ni^{II}L^R(fla)].

	Т	10^4 [Ni ^{II} L ^{OMe} (fla)] ₀	$10^{3}[O_{2}]_{0}$	$10^{8}v$	10k	10k
	(°C)	(M)	(M)	$(M s^{-1})$	$(M^{-1} s^{-1})$	$(M^{-1} s^{-1})$
1	70	0.80	4.02	10.7	3.34 ± 0.08	
2	70	0.94	4.02	13.3	3.51 ± 0.09	3.55 ± 0.16
3	70	1.06	4.02	14.3	3.35 ± 0.10	5.55 ± 0.10
4	70	1.18	4.02	18.2	3.83 ± 0.04	
5	65	0.89	2.79	6.85	2.76 ± 0.07	
6	65	0.89	4.13	9.97	2.71 ± 0.05	$2.80\ \pm 0.10$
7	65	0.89	4.99	12.1	2.72 ± 0.12	
8	65	0.80	5.85	14.0	3.00 ± 0.14	
9	75	0.98	3.90	19.7	5.15 ± 0.03	
10	80	0.99	3.79	30.9	8.24 ± 0.07	

[Ni^{II}L^{OMe}(fla)] (1)

[Ni^{II}L^{Me}(fla)] (2)

	Т	10^4 [Ni ^{II} L ^{Me} (fla)] ₀	$10^{3}[O_{2}]_{0}$	$10^{8}v$	$10^{2}k$	$10^{2}k$
	(°C)	(M)	(M)	$(M s^{-1})$	$(M^{-1} s^{-1})$	$(M^{-1} s^{-1})$
1	70	0.68	4.02	2.42	8.85 ± 0.02	
2	70	0.82	4.02	2.73	8.28 ± 0.08	851 ± 0.06
3	70	0.90	4.02	2.99	8.26 ± 0.09	0.31 ± 0.00
4	70	1.00	4.02	3.49	8.68 ± 0.10	
5	75	0.99	4.68	5.92	12.8 ± 0.05	
6	75	0.93	5.46	6.39	12.6 ± 0.07	12.5 ± 0.10
7	75	0.91	3.90	4.33	12.2 ± 0.06	
9	80	1.01	3.79	7.60	19.9 ± 0.04	
10	85	1.00	3.63	9.57	26.4 ± 0.04	

	Т	10^4 [Ni ^{II} L ^{Br} (fla)] ₀	$10^{3}[O_{2}]_{0}$	$10^{8}v$	$10^{2}k$	$10^{2}k$
	(°C)	(M)	(M)	$(M s^{-1})$	$(M^{-1} s^{-1})$	$(M^{-1} s^{-1})$
1	70	0.79	4.02	1.61	5.07 ± 0.07	
2	70	0.92	4.02	1.87	5.06 ± 0.09	$5.03\ \pm 0.07$
3	70	1.08	4.02	2.18	5.02 ± 0.11	
4	70	1.20	4.02	2.41	5.00 ± 0.09	
5	75	1.00	4.68	3.70	7.91 ± 0.10	
6	75	1.04	5.46	4.41	7.77 ± 0.05	$7.85\ \pm 0.09$
7	75	1.00	3.90	3.06	7.86 ± 0.13	
8	80	1.01	3.79	4.64	12.1 ± 0.11	
9	85	0.98	3.63	6.72	18.9 ± 0.10	

 $[Ni^{II}L^{Br}(fla)]$ (4)

 $[Ni^{II}L^{NO2}(fla)]$ (5)

	Т	10^4 [Ni ^{II} L ^{NO2} (fla)] ₀	$10^{3}[O_{2}]_{0}$	$10^{8}v$	$10^{2}k$	$10^{2}k$
	(°C)	(M)	(M)	$(M s^{-1})$	$(M^{-1} s^{-1})$	$(M^{-1} s^{-1})$
1	70	0.68	4.02	1.17	4.28 ± 0.11	
2	70	0.79	4.02	1.38	4.35 ± 0.08	
3	70	0.92	4.02	1.52	4.11 ± 0.09	4.19 ± 0.07
4	70	1.02	4.02	1.67	$4.07\ \pm 0.10$	
5	70	1.11	4.02	1.85	4.15 ± 0.12	
6	75	0.99	4.68	3.17	6.85 ± 0.09	
7	75	0.93	5.46	3.43	6.75 ± 0.11	6.83 ± 0.07
8	75	0.80	6.24	3.41	6.85 ± 0.07	
9	75	0.98	3.90	2.61	$6.85\ \pm 0.06$	
10	80	1.01	3.79	3.72	9.73 ± 0.07	
11	85	0.99	3.63	5.87	16.3 ± 0.10	

Figure S1. The FT-IR spectra of the ethanol solution and solid sample of $[Ni^{II}L^{Me}(fla)]$ (2). (A) solvent ethanol (B) ethanol solution of $[Ni^{II}L^{Me}(fla)]$ (2) (C) solid sample of $[Ni^{II}L^{Me}(fla)]$ (2).

Figure S2. The HPLC-MS spectra of the reaction products of $[Ni^{II}L^{NO2}(fla)]$ (**5**) with O₂ at 70 °C for 8 h. (a) HPLC spectra; MS spectra of (b) salicylic acid m/z (neg.): 137.0 (M – H)⁻; (c) benzoic acid m/z (neg.): 120.9 (M – H)⁻, 180.9 (M + OAc)⁻; (d) 2-hydroxy-*N*,*N*-dimethyl benzamide m/z (pos.): 166.1 (M + H)⁺; (e) *N*,*N*-dimethyl benzamide m/z (pos.): 150.0 (M + H)⁺.

Figure S3. Eyring plot for the dioxygenation of the complexes $[Ni^{II}L^{R}(fla)]$ (1.0 ×10⁻⁴ M) in DMF.