Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Anion Exchange in [Ni(η⁵-C₅H₄R)(Cl)(NHC)]. Counterion Effect on the Structure and Catalytic Activity

W. Buchowicz,¹ Ł. Banach, J. Conder, P. A. Guńka, D. Kubicki, and P. Buchalski Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland

Supporting Information

VT ¹H measurements of complex **3c**

In order to estimate the thermodynamic parameters of complex **3c** a series of variable-temperature ¹H NMR experiments was performed in the temperature range from -55 to 100 °C (Table S1). The function δ =f(1/T) used to fit the experimental data has the following form:

$$\delta = \delta_{\rm ls} + \frac{C}{T[1 + e^{(\Delta H^{\circ} - T\Delta S^{\circ})/RT}]}$$

where δ is the observed chemical shift, δ_{ls} is the chemical shift fitted for diamagnetic species, ΔH° and ΔS° are the enthalpy and entropy, respectively, of the transition between low-spin and high-spin states, T is the absolute temperature in Kelvin, and *C* is a constant related to the molar susceptibility of the high-spin species. The experimental data and the fitting curve are shown in Figure S1. Final set of parameters with asymptotic standard errors is as follows:

RMSD of residuals: 0.0226991

δ_{ls}	$= 4.72 \pm 0.038$	(0.81 %)
С	$=48000 \pm 30600$	(63.51 %)
ΔH°	$= 15151 \pm 430$	(2.82 %)
ΔS^{o}	$= 16.7 \pm 3.9$	(23.14 %)

Table S1. Set of	parameters used	for fitting	chemical	shifts ir	1 3c
------------------	-----------------	-------------	----------	-----------	-------------

t [°C]	T [K]	1/T [1/K]	Chemical shift of Cp [ppm]
-55	218.15	0.00458	4.30
-50	223.15	0.00448	4.26
-40	233.15	0.00429	4.10
-30	243.15	0.00411	3.90
-10	263.15	0.00380	3.39
10	283.15	0.00353	2.70
25	298.15	0.00335	2.00
30	303.15	0.00330	1.74
40	313.15	0.00319	1.22
50	323.15	0.00309	0.64
60	333.15	0.00300	0.00
70	343.15	0.00291	-0.68
80	353.15	0.00283	-1.42
90	363.15	0.00275	-2.20
100	373.15	0.00268	-3.00

¹ Corresponding autor:

Figure S1. Experimental data and fitted curve for 3c.

Table S2. Angles around nickel atoms and their sum in complexes 2c, 3a, 2] and	, 2j and 3	, 3a , 2j and	plexes 2c,	complex	sum in c	their s	and	atoms	nickel	around	Angles	le S2.	Tab
---	------------	----------------------	------------	---------	----------	---------	-----	-------	--------	--------	--------	--------	-----

angle / °	2c	3 a	2j	3c
X(N3,O1)-Ni1-C6	102.23(8)	91.75(6)	94.61(7)	93.72(19)
C6-Ni1-Cg	132.57(6)	133.15(5)	132.50(5)	133.60(14)
Cg-Ni1-X(N3,O1) ^a	125.13(6)	135.03(4)	132.85(6)	131.95(15)
Σ	359.93(12)	359.93(9)	359.96(10)	359.3(3)
N13-Ni2-C56	102.83(8)		O31-Ni2-C36	94.2(2)
C56-Ni2-Cg	131.09(6)		C36-Ni2-Cg	133.81(19)
Cg-Ni1-N13	126.05(6)		Cg-Ni1-O31	131.31(15)
Σ	359.97(12)			359.3(3)

^{*a*} N3 denotes the nitrogen atom of the coordinated acetonitrile for **2c** and **2j**; O1 denotes the oxygen atom of the trifluoroacetate or nitrate anions for complexes **3a** and **3c**, respectively. (See Figure 2 for the atom numbering scheme).

Figure S3. The molecular structure of complexes **2c** and **3c** (second molecules from the asymmetric unit). Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at 50% probability level.

 Table S3. Selected bond lengths involving nickel in complexes 2c and 3c (the second molecules from the asymmetric unit)

d /Å	2c	d /Å	3c
Ni2-C51	2.023(2)	Ni2-C31	2.033(8)
Ni2-C52	2.135(2)	Ni2-C32	2.150(7)
Ni2-C53	2.125(2)	Ni2-C33	2.178(7)
Ni2-C54	2.149(3)	Ni2-C34	2.136(7)
Ni2-C55	2.123(3)	Ni2-C35	2.133(7)
Ni2-C56	1.907(2)	Ni2-C36	1.893(6)
Ni2-N13	1.8719(18)	Ni2-031	1.905(4)

Figure S3. MALDI-TOF MS of polystyrene obtained with complex 2f (DCTB matrix with added CF₃COOAg): (a) full spectrum; (b) expanded.