Electronic Supplementary Information (ESI)

Highly Efficient and Stable DSSCs of Wet-chemically Synthesized MoS_2

Counter Electrode[†]

Supriya A. Patil,^a Pranav Y. Kalode,^a Rajaram S. Mane,^{a,b} Dipak

V.Shinde,^aAn Doyoung, ^aCho Keumnam, ^aM. M. Sung,^a Swapnil B. Ambade,^c

Sung-Hwan Han^a*

^aInorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Seongdong -gu, 133791Seoul, Republic of Korea Email: <u>shhan@hanyang.ac.kr</u>,

^bCentre for Nanomaterials & Energy Devices, School of Physical Sciences, SRTM University, 431606, Nanded, India, Email: <u>rsmane_2000@yahoo.com</u>,

^cChonbuk National University, Jeonju, Korea.

S1.Experimental details

A) Synthesis of MoS₂ thin films

For preparation of MoS_2 thin films, cleaned glass and FTO substrates were used. These substrates were placed tilted against the wall in falcon tube containing 0.1M molybdenum (V) chloride and 0.1M thioacetamide in 50 ml ethanol solution. Falcon tube was kept into a hot water bath maintained at 70°C for 7 h. After completion of the reaction, the films were taken out and washed with ethanol, double-distilled water and dried with flow of argon stream. Synthesized MoS_2 thin films (100 nm thick, see cross sectional view in Fig.S2d for more details) were annealed at 300 °C for 30 min under organ environment. After natural cooling, films were taken off from the oven and explored for various characterization and DSSCs application. Detail experimental setup shown in fig.S1.

S1. Experimental setup

Figure S1. Synthesis protocol for synthesis of MoS₂ CE

Reaction mechanism for MoS₂CE

Based on wet chemical synthesis process, mechanism of MoS_2 thin film formation can be proposed. The kinetic analysis at the initial stage is presented by considering the total concentrations of molybdenum(V) tetrachloride and thioacetamide in the overall deposition reaction as;

$$2 \operatorname{MoCl}_{5} + \operatorname{C}_{2}\operatorname{H}_{5}\operatorname{OH} \rightarrow 2 \operatorname{MoCl}_{4} + 2 \operatorname{HCl} + \operatorname{CH}_{3}\operatorname{CHO}$$
(1)

$$MoCl_4 + 2 CH_3CSNH_2 \rightarrow MoS_2 + 2 CH_3CN + 4 HCl$$
(2)

Depending on the specific process and reaction parameters, the growth of thin film in a wet chemical deposition method occurs in four possible ways; a) ion-by-ion, b) cluster (hydroxide), c) complex-decomposition, and d) complex-decomposition cluster. Out of these, we presumed that the complex-decomposition cluster dominancy because, in the present study Ethanol as solvent medium was used which is based on the formation of solid phase instead of reacting directly with a free anion; it forms an intermediate complex (1) with the anion-forming reagent, continuing with MoS_2 thin film deposition from thioacetamide bath.

The S–C bond of the thioacetamide breaks, leaving the S bond to Mo. It was presumed that Mo $(OH)_4$ forms initially on the substrate and further catalyzes the thioacetamide decomposition. The catalytic effect of the solid surface might decompose thioacetamide to sulphide ion and not necessarily to catalyse the complex-decomposition mechanism.^{1,2}

B) Synthesis of Pt CE

To compare DSSCs performance of MoS₂ CE with Pt CE, we also synthesized Pt CE onto the fluorine-doped tin oxide transparent (FTO) glass substrate (8 $\Omega \cdot \text{cm}^{-2}$, Hartford Glass Co., USA) was cut into 1 × 2 cm²carefully. After that, the FTO was ultrasonically cleaned sequentially in detergent, acetone, and distilled water for 10 min in sequence, and the FTO was stored in isopropyl alcohol (IPA). The CE was prepared by drop-cast method; spreading a drop of 2 mM H₂PtCl₆ in isopropanol solvent onto FTO substrate, annealed at 450^oC for 10 min, thus, the CEs were obtained.

C) Characterization details

Crystal structure of MoS₂ thin film was confirmed using X-ray diffractometer (Rigaku D/MAX 2600V, Cu kx = 0.15418 nm). Raman analysis was carried out using a confocal Raman microscopic system (NT-MDT). The surface topography was examined with a field-emission scanning electron microscopy (FESEM, HITACHI, S-4800) and normal and high-resolution transmission electron microscopy (TEM and HRTEM, Omega EM 912 operated at 200 kV) images. The chemical composition was examined using an energy dispersive X-ray analyzer (EDX) connected to FE-SEM unit. Chemical configuration was determined by X-ray photoelectron (XPS, VG ESCALB) spectrometer equipped with Mg Ka x-ray source, operating at 300 W. The XPS measurements were performed on the sample with Al \propto X-ray source. The energy calibration was made against the C 1s peak. The specific surface area of MoS₂ powder, scratched from the CE, was obtained by Brunauer-Emmett-Teller (BET) measurement. Nitrogen gas adsorption-desorption method maintained at 77 K using on a (Belsorp II, BET, Korea Inc.) was used for surface area and pore volume analysis. Cyclic voltammetry (CV) curves were obtained from a three-electrode one-compartment cell having Ag/AgCl as reference electrode in the acetonitrile solution consisting of 10.0 mM LiI, 1 mM I₂, and 0.1 M LiClO₄ and as-prepared MoS₂ and Pt were used as working electrode. The electrochemical impedance spectroscopy (EIS, COMPACTSTATE: 40 IVIUM Technologies in a frequency range of 0.01 Hz to 1.5 MHz with 50 mV amplitude) measurement was carried out with two identical electrodes having an area of 0.36 cm² sealed with a thermoplastic hot-melt Surlyn tape. The EIS tests were carried out simulating open-circuit conditions at ambient atmosphere using a Model-100B, series-1488 (obtained from a computer controlled electrochemical analyzer Model-100B, series-1488 BAS-Zahner IM6 Impedance Analyzer was used) electrochemical measurement system at a constant temperature of 20 °C with AC signal amplitude of 10 mV in the frequency range of 0.1 to 10⁵ Hz at 0V DC bias in the light (same condition used for J-V measurement). Tafel measurement was carried out with same BAS-ZahnerIM6 Impedance Analyzer (discussed previously). Incident photon-to-current emission (IPCE) measurements of MoS2 and Pt CEs were measured using a solar simulator (Keithley 2400) under 100 mW cm⁻² from a 400 W and 150 W Xe short arc lamp filtered by an AM 1.5%G filter, respectively. All photocurrent density-voltage tests were

conducted with a Keithley Model 2400 digital source meter under a light intensity of 100 mW cm⁻² (AM, 1.5) using a solar simulator (PEC-L12, Peccell Technologies). Light intensity was calibrated using a reference Si solar cell. A black mask with aperture area of 0.36cm² was applied on the surface of DSSCs to avoid stray light completely. Contact-mode atomic force microscopy was used to obtain two-dimensional images for both MoS₂ and Pt CEs. The scan rate used was 0.95 Hz, and the contact area was $1 \times 1 \mu m^2$.

S2. Surface analysis

Figure S2. (a-c and d) FESEM surface and cross-sectional views, e-f) TEM and HRTEM images and, g) and h) present SAED and EDX analysis of MoS₂ CE.

S3. Surface area and pore -size distribution measurements

Figure S3. N_2 adsorption and desorption and inset; Barrett-Joyner-Halenda pore size distribution determined from the N_2 adsorption branch isotherm.

S4. Hall effect measurement

HALL EFFECT MEASUREMENT SYSTEM								
- INPUT VAI DATE 10-25-201 SAMFLE NAM mos2 1- 35:00 0 - 0:300		NAME 52 TEMP 300K ▼ 0.100 [S] 000 [T]	AD (mV) DC (m) AD (mV) DC (m) 7037.410 -6948 5627.640 0086 CD (mV) DA (m) 2369.790 -7469 -927.367 5658	DATA MI AC [mV] 080 -885.423 130 2074.460 MI -2095.730 640 -2895.430 920 3388.430	MAC (WV) 5046.720 4223.130 MSD (MV) 5239.030 4016.740	-MAC (HVV) 0325-250 4504-570 		
RESULT Built concentration = 7.748E+14 [/Cm ³] Sheet Concentration = 2.324E+10 [/Cm ²] Motility = 2.100E+0 [Cm ² /Vs] Conductivity = 2.007E+4 [3/C] Cml Resistivity = 3.037E+3 [D Cm] Average Hall Coefficient = 8.057E+3 [m ² /C] A-C Cross Hall Coefficient = 6.235E+3 [m ² /C] D-D Cross Hall Coefficient = 9.879E+3 [m ² /C] Megneto-Resistance = 1.270E+8 [Ω] Ratio of Vertical / Horizontal # -1.725E+1								
CONLIEST MEASURE STOP CLEAR CACUE LOAD SAVE PROT CLOSE HEP								
Name	Conductivity 1/ohm-cm	Surface concentration /cm ²	Mobility cm²/Vs	Hall coefficient m²/C	Туре	Reference Type		
MoS ₂	2.607X10 ⁻⁴	2.32X10 ¹⁰	2.1	8.057X10 ³	p-Type	p-Type		

Figure S4. Digital photoimages of computer display after Hall effect measurement with interested electronic parameters (table at bottom) affiliated to $MoS_2 CE$.

S5. Circuit and electronic parameter obtain from electrochemical impedance spectroscopy measurement

An equivalent circuit used for fitting the Nyquist plots

Table S1. Estimated electronic parameters obtained by fitting the Nyquist plots.

Name	Series resistance (Ωcm²)	R1 (Ωcm- ²)	R2 (Ωcm ²)	CPE1-T(F)*10 ⁻³	CPE1-P(F)	CPE2-T(F)*10 ⁻³	CPE2-P(F)	W1-R	W1-T	W1-P
Pt	26.73	4.87	18.01	1.288	0.98	0.39	0.68	2.348	0.1418	0.1649
MoS ₂	23.51	3.25	15.25	1.011	0.94	0.26	0.62	1.801	0.1253	0.1276

S6. Atomic force microscopy

Figure S6. Atomic force microscopy images with 18.73 and 6 nm average roughness values for (a) MoS_2 and, (b) Pt CEs, respectively, are measured under a contact mode.

S7. Summarized table

Table S2. Summary of works involving MoS₂ as a counter electrode in DSSCs.

Authors name	Journal name/ (Year)	volume	Page no.	Composition mixed with MoS ₂ for counter electrode	Method used for synthesis	Temp ⁰ C/Time for synthesis hour(h)	Obtained efficiency(η%)with dye cell	Pristine MoS ₂
Gentian Yue	J. Mater. Chem (2013)	1	1495- 1501	MoS ₂ +Carbon	Hydrothermal method	200/48	7.6	5.3
Gentian Yue	Electrochemica acta (2012)	85	162- 168	MoS ₂ +Graphene	Slurry coating method	150/24	5.9	
Mingxing Wu	Phy. Chem. Chem. Phys. (2011)	13	19298- 19301	MoS ₂ Syntheisized	Hydrothermal method	200/48	7.5	7.5
Chia-Jui Liu	J. Mater. Chem (2012)	22 (39)	21057- 21064	MoS ₂ +Graphene	Coating method	120/12	6.0	5.09
Sheng- Yen Tai	J. Mater. Chem. (2012)	22(47)	24753- 24759	MoS ₂ +MWCNT	Hydrothermal method	120/24	6.4	4.99
	Present study (2013)	-	-	MoS ₂	Wet chemical method	70/7	7.0	7.01

.....Represents results are not mentioned.

References

1. G. Hodes, Chemical solution depositon of semiconductor, 2003, 91.

2.H. Zeng, J. Dai, W. Yao, D.Xiao, X. Cui, Nat. Nanotechnology., 2012, 7, 490-493.