Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

Assembly and Core Transformation Properties of two Tetrahedral Clusters: [Fe^{III}₁₃P₈W₆₀O₂₂₇(OH)₁₅(H₂O)₂]³⁰⁻ and [Fe^{III}₁₃P₈W₆₀O₂₂₄(OH)₁₂(PO₄)₄]³³⁻

Pedro I. Molina, Haralampos N. Miras, De-Liang Long and Leroy Cronin*a

^aWestCHEM, School of Chemistry, University of Glasgow, G12 8QQ, UK. E-mail: Lee.Cronin@glasgow.ac.uk; Web: www.croninlab.com

Index	Page
General experimental remarks	2
Synthesis and characterization	4
Crystal structures	6
Electrochemistry	7
Fourier-Transform Infrared spectroscopy (FTIR)	9
Thermogravimetric Analysis (TGA)	10
UV-Vis Spectroscopy (UV-vis)	11
Electrospray-ionisation Mass Spectroscopy (ESI-MS)	12
Bond Valence Summation (BVS) analysis	20
References	29

General experimental remarks

Electrochemical experiments. Voltammograms were recorded using a Versastat 4 electro analysis system from Princeton Applied Research. A standard three-electrode cell was used including a Pt mesh counter electrode, a 3 mm glassy carbon working electrode and a Ag/AgCl/KCl (3.0 M) reference electrode operating at room temperature ($19 \pm 1 \text{ °C}$). All potentials are quoted relative to the reference electrode. Before performing the experiments, the working electrode (glassy-carbon) was polished with diamond suspensions of decreasing grain size ($15 \mu m$, $6 \mu m$ and $1 \mu m$) on nylon polishing pads and sonicated first in water and then in methanol after each polishing step. The cell was purged with Ar for at least 15 min before each experiment.

Electro-spray ionisation Mass Spectrometry (ESI-MS). All MS data was collected using a Q-trap, time-of-flight MS (Maxis Impact MS) instrument supplied by Bruker Daltonics Ltd. The detector was a time-of-flight, micro-channel plate detector and all data was processed using the Bruker Daltonics Data Analysis 4.1 software, whilst simulated isotope patterns were investigated using Bruker Isotope Pattern software and Molecular Weight Calculator 6.45. The calibration solution used was Agilent ES tuning mix solution, Recorder No. G2421A, enabling calibration between approximately 100 *m/z* and 3000 *m/z*. This solution was diluted 60:1 with MeCN. Samples were introduced into the MS *via* direct injection at 180 μ L h⁻¹. The ion polarity for all MS scans recorded was negative, at 180 °C, with the voltage of the capillary tip set at 4000 V, end plate offset at –500 V, funnel 1 RF at 300 Vpp and funnel 2 RF at 400 Vpp.

Flame Atomic Absorption Spectrometry (FAAS) and Flame Photometry (FP): W and Fe content (%) was determined by FAAS on a Perkin-Elmer Analyst 400 Atomic Absorption spectrometer. Na content (%) was determined by FP on a Sherwood Scientific M410 INDUSTRIAL Flame Photometer.

Fourier-Transform Infrared (FTIR) Spectroscopy. For FTIR measurements, a few mg of compound was dispersed in a KBr pellet and its spectrum recorded in transmission mode on a JASCO FT-IR 410 spectrometer. Wavenumbers are given in cm⁻¹ and intensities are

described as vw = very weak, w = weak, m = medium, s = strong, vs = very strong, sh = sharp or vsh = very sharp.

Nuclear Magnetic Resonance spectroscopy (NMR): ³¹P NMR spectroscopy was performed on a Bruker Avance III 400 spectrometer on solutions of 50-100 mg of compound in 1 mL of deuterated solvent inside a 5 mm NMR tube. Chemical shifts are referenced to an internal standard (85% H₃PO₄ at 0.00 ppm).

Thermogravimetric Analysis (TGA). Thermogravimetric analysis was performed on a TA Q500 instrument from room temperature to 1000 °C at heating rate of 5 °C min⁻¹.

UV-vis spectroscopy (UV-Vis). UV-vis spectra were collected using a Jasco V-670 spectrophotometer in transmission mode using quartz cuvettes with an optical path length of 1.0 cm.

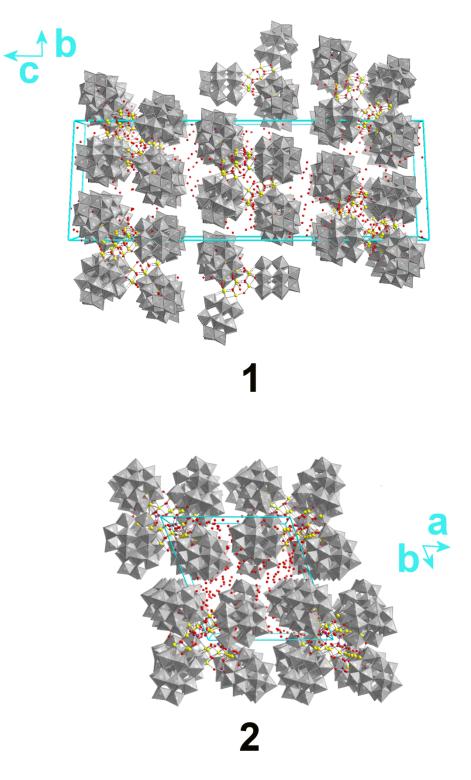
X-Ray Crystallography. X-ray diffraction data for single crystal structure determination was collected on an Oxford Diffraction Gemini Ultra [λ (Mo K_{α}) = 0.71073 Å] equipped with an ATLAS CCD detector. Corrections for incident and diffracted beam absorption effects were applied *via* analytical numeric absorption correction with a multifaceted crystal model^[1] or empirical absorption correction.^[2] Structure solution and refinement were performed by using SHELXS-97^[3] and SHELXL-97^[3] integrated in the WINGX^[4] system.

Synthesis and characterization

All reagents were used as purchased without further purification while $Na_{12}[\alpha-P_2W_{15}O_{56}] \cdot 18H_2O$ was synthesized according to the published procedure.^[5]

Synthesis of Na₃₀[Fe^{III}₁₃P₈W₆₀O₂₂₇(OH)₁₅(H₂O)₂]·56H₂O (Na₃₀-1):

FeCl₃·6H₂O (1.0 g, 3.7 mmol) was dissolved in 30 mL of 2 M aqueous NaCl. Na₁₂[P₂W₁₅O₅₆]·18H₂O (6.0 g, 1.4 mmol) was added to the turbid dark yellow solution in small portions under vigorous stirring over a period of 15 min. This reaction mixture was allowed to stir for a further 5 min before adjusting the pH to 5.00 by dropwise addition of 5 M aqueous NaOH. The dark red limpid solution was heated at 85 °C for 5 min, filtered hot into a wide-neck 100 mL conical flask and finally placed in a temperature-controlled crystallisation room (18 ± 1 °C). Hexagonal dark red plates formed overnight and were isolated from the mother liquor after 3 d. Yield: 1.771 g, 0.10 mmol, 30 % based on W. Na₃₀[Fe^{III}₁₃P₈W₆₀O₂₂₇(OH)₁₅(H₂O)₂]·56H₂O, Fe₁₃H₁₃₁Na₃₀O₃₀₀P₈W₆₀, MW = 17626.55 g mol⁻¹. Characteristic IR bands (cm⁻¹): 694 (vs), 795(s), 871 (vs), 900 (s), 938 (sh); 1080 (vs). ³¹P-NMR (D₂O), δ = -15.5 ppm (85% H₃PO₄, 0.00 ppm). UV absorption: λ (O→M) = 278 nm, ε = 22.14 x 10⁴ mol⁻¹ L cm⁻¹. Elemental analysis (%) for the dehydrated material Fe₁₃H₁₉Na₃₀O₂₄₄P₈W₆₀, calculated (found): Na, 4.15 (4.22); Fe, 4.37 (4.44); W, 66.38 (66.81). Water content (%), crystallographic (TGA, 25-200 °C, N₂ atmosphere): 5.74 (5.73).


Synthesis of Na₃₃[Fe^{III}₁₃P₈W₆₀O₂₂₄(OH)₁₂ (PO₄)₄]·67H₂O (Na₃₃-2):

H₃PO₄ (50 μL, 0.73 mmol, 85% wt. in H₂O) was added to 15 mL of 2 M aqueous NaCl followed by FeCl₃·6H₂O (0.50 g, 1.9 mmol). Na₁₂[P₂W₁₅O₅₆]·18H₂O (3.0 g, 0.7 mmol) was slowly added over 10 min to the cloudy dark yellow solution under vigorous stirring. The resultant light brown turbid solution was allowed to stir for a further 5 min before carefully adjusting the pH to 5.00 by adding small volumes of first 5 M and then 2.5 M aqueous NaOH. The pH of the brown suspension was maintained between 4.95 and 5.05 for 10 min through dropwise addition of 1 M aqueous NaOH. Thereafter, the reaction mixture was heated at 85 °C for 5 min and the resulting clear dark brown solution was filtered hot and finally placed in a temperature-controlled crystallisation room (18 ± 1 °C). Brown block crystals were isolated from the light brown mother liquor on the following day. Yield: 0.851 g, 0.047 mmol, 28 % based on W. Na₃₃[Fe^{III}₁₃P₈W₆₀O₂₂₄(OH)₁₂(PO₄)₄]·67H₂O, Fe₁₃H₁₄₆ Na₃₃O₃₁₉P₁₂W₆₀, MW = 18138.53 g mol⁻¹. Characteristic IR bands (cm⁻¹): 696 (vs); 777 (vs), 870 (m), 905 (s), 943 (sh); 956 (s); 1082 (s) . ³¹P-NMR (D₂O), δ = -16.6 ppm (85% H₃PO₄,

0.0 ppm). UV absorption: $\lambda(O \rightarrow M) = 280 \text{ nm}, \varepsilon = 21.8 \text{ x } 10^4 \text{ mol}^{-1} \text{ L cm}^{-1}$. Elemental analysis (%) for the dehydrated material Fe₁₃H₁₂Na₃₃O₂₅₂P₁₂W₆₀, calculated (found): Na, 4.48 (4.48); Fe, 4.28 (4.25); W, 65.15 (65.24). Water content (%), crystallographic (TGA, 25-200 °C, N₂ atmosphere): 6.64 (5.84).

Synthesis of $K_{21}Na_8[KFe_{12}(OH)_{18}(\alpha-1,2,3-P_2W_{15}O_{56})_4]$. The pH of 10 mL 0.1 M aqueous KCl was adjusted to 3.0 *via* the addition of a few drops of 0.1 M aqueous HCl. Crystals of Na₃₀-1 (0.2 g, 0.011 mmol) were added to the stirring solution and the resulting suspension was quickly heated until complete dissolution. The hot yellow solution was filtered at once into a narrow-neck 25 mL conical flask and placed in a temperature-controlled crystallisation room (18 ± 1 °C). Yellow block crystals formed overnight and their identity was confirmed as $K_{21}Na_8$ -3 by several unit cell checks. Yield: 0.035 g, 1.9 µmol, 18 % based on W.

Crystal structures

Figure S1. Representations of the crystal structures of Na_{30} -1 (top) and Na_{33} -2 (bottom) viewed along the crystallographic *a* and *c* axes respectively. Colour code: WO₆, grey polyhedra; O, red; Fe^{III}, yellow; P, plum. All countercations and some crystallisation waters of crystallisation have been omitted for clarity.

Electrochemistry

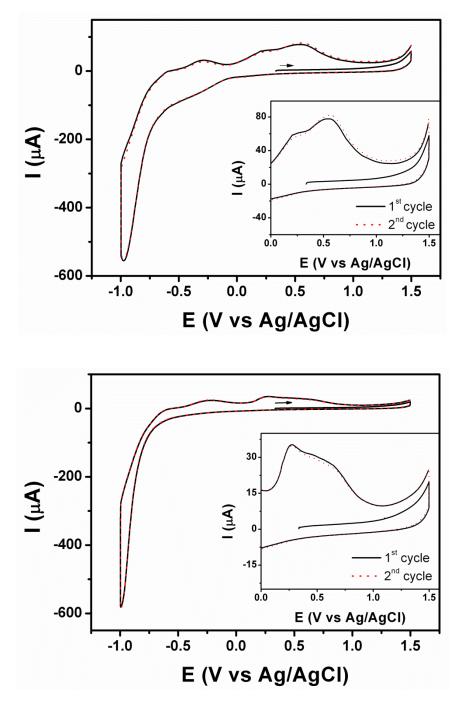
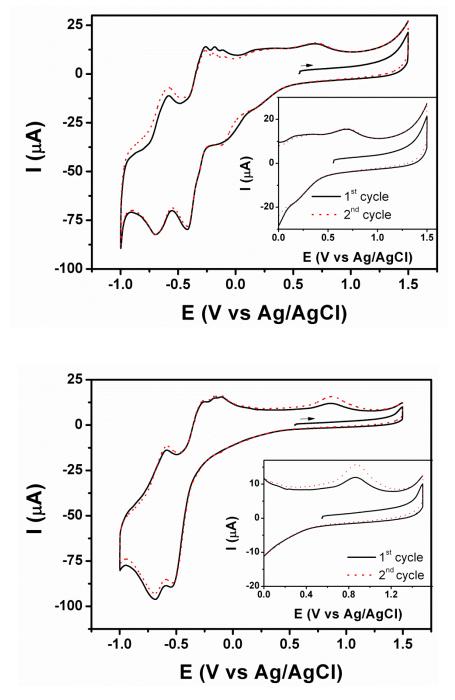
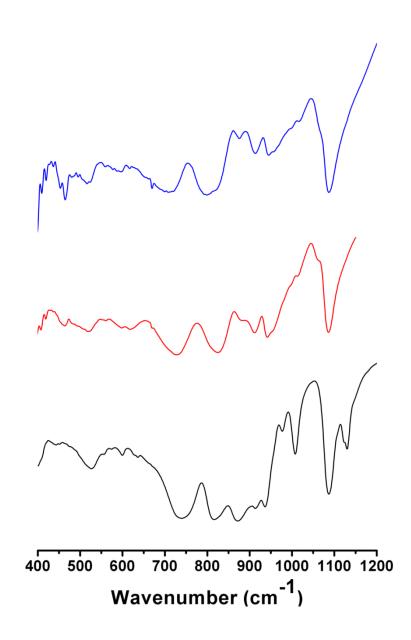
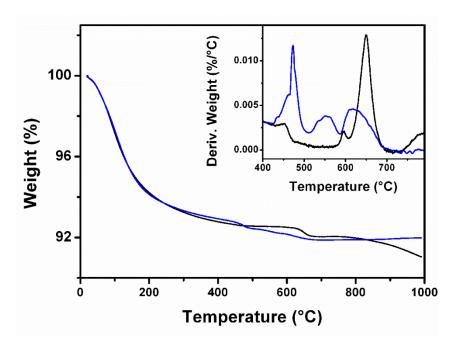
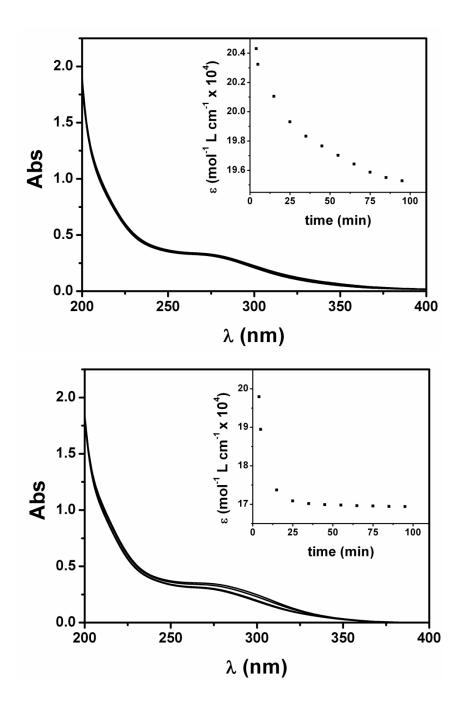


Figure S2. Cyclic voltammograms of 1 (top) and 2 (bottom) solutions at pH = 4.4 (Na[CH₃COO]/H⁺, 0.1 M; Na₂SO₄, 0.2 M). First (solid black line) and second (dotted red line) cycles obtained at a scan speed of 800 mV s⁻¹ are shown. The insets show a magnification of the plot in the anodic region of the voltammogram.

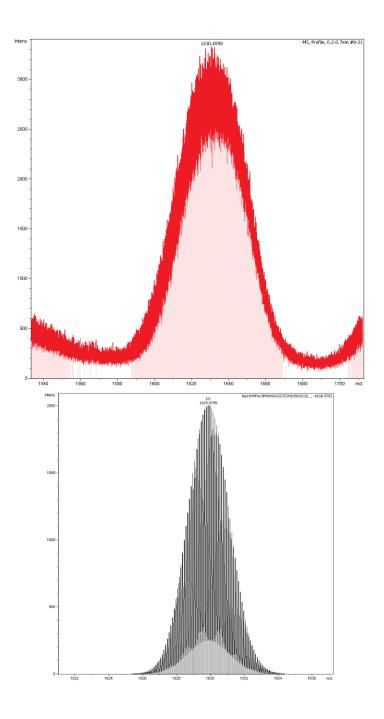




Figure S3. Cyclic voltammograms of 1 (top) and 2 (bottom) solutions at pH = 2.2 (Na₂SO₄/H⁺, 0.2 M). First (solid black line) and second (dotted red line) cycles obtained at a scan speed of 800 mV s⁻¹ are shown. Insets show a magnification of the plot in the anodic region of the voltammogram.

FTIR


Figure S4. FTIR spectra of Na₃₃-2 (blue line), Na₃₀-1 (red line) and Na₁₂[α -P₂W₁₅O₅₆] (black line). The bands associated to the stretching vibrations of the terminal P-O bond in {P₂W₁₅} (1005 and 1131 cm⁻¹)^[6] are absent in the spectra of Na₃₀-1 and Na₃₃-2.

TGA


Figure S5. Thermogravimetric analysis (TGA) of Na₃₀-1 (black line) and Na₃₃-2 (blue line). Both samples were heated at rate of 5 °C min⁻¹ in a N₂ atmosphere. Inset shows a plot of the ratio of weight change over temperature vs. temperature. The collapse of the cluster framework seems to occur at a lower temperature in Na₃₃-2 compared to Na₃₀-1.

UV-vis

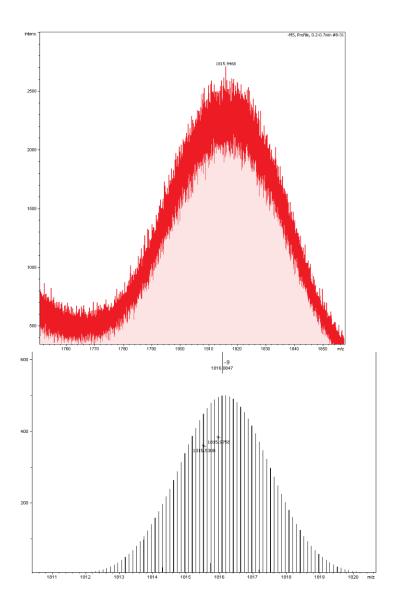
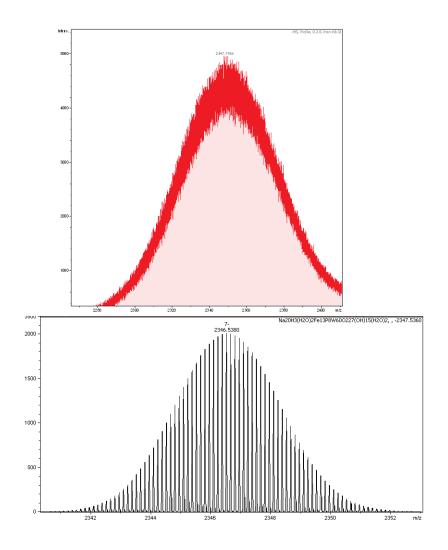
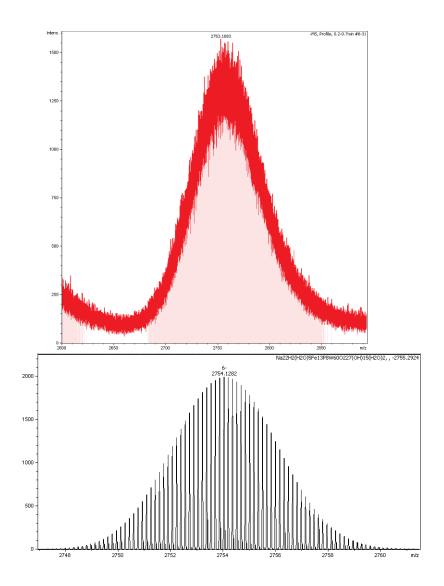
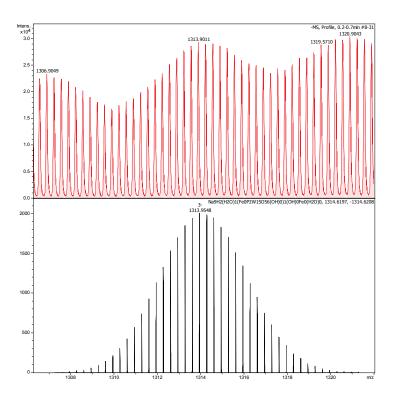
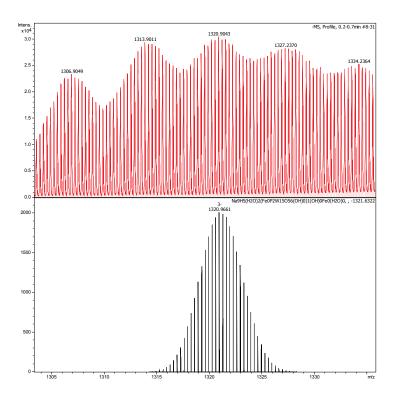


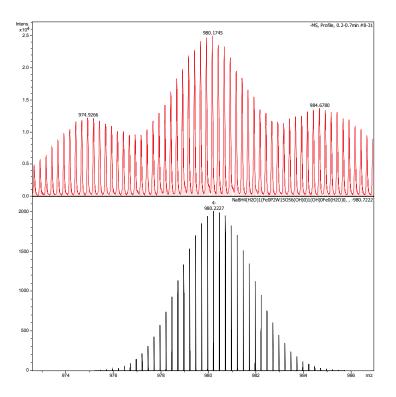
Figure S6. Time profile of UV spectra obtained from solutions of Na₃₀-1 (top) and Na₃₃-2 (bottom) in Na₂SO₄/H⁺ (0.2 M, pH = 2.2). The insets plot the evolution of the molar absorption coefficient of each cluster at 275 nm with time. According to these measurements, 1 seems to be slightly more stable than 2 in solution.

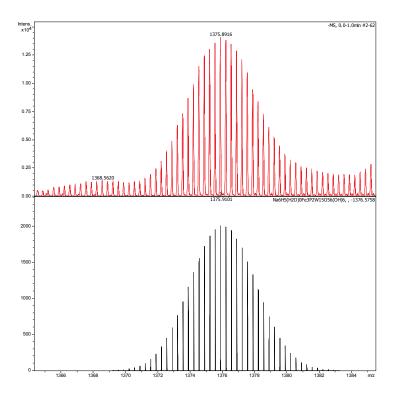

ESI-MS

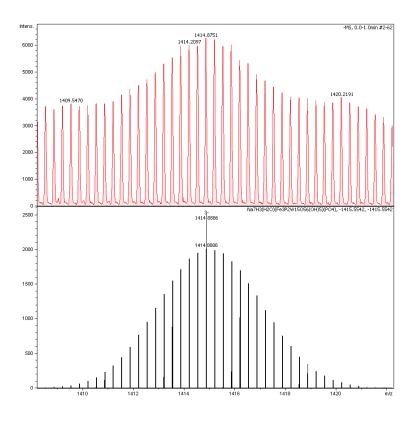

Figure S7. Top, magnification of the mass spectrum shown in Figure 10. Bottom, simulated spectrum for envelope 1 (Table 4).


Figure S8. Top, magnification of the mass spectrum shown in Figure 10. Bottom, simulated spectrum for envelope 2 (Table 4).


Figure S9. Top, magnification of the mass spectrum shown in Figure 10. Bottom, simulated spectrum for envelope 3 (Table 4).


Figure S10. Top, magnification of the mass spectrum shown in Figure 10. Bottom, simulated spectrum for envelope 4 (Table 4).


Figure S11. Top, magnification of the mass spectrum shown in Figure 10. Bottom, simulated spectrum for envelope 5 (Table 4).


Figure S12. Top, magnification of the mass spectrum shown in Figure 10. Bottom, simulated spectrum for envelope 6 (Table 4).

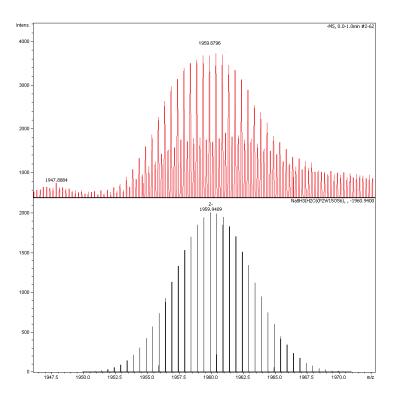

Figure S13. Top, magnification of the mass spectrum shown in Figure 10. Bottom, simulated spectrum for envelope 7 (Table 4).

Figure S14. Top, magnification of the mass spectrum shown in Figure 11. Bottom, simulated spectrum for envelope 5 (Table 5).

Figure S15. Top, magnification of the mass spectrum shown in Figure 11. Bottom, simulated spectrum for envelope 6 (Table 5).

Figure S16. Top, magnification of the mass spectrum shown in Figure 11. Bottom, simulated spectrum for envelope 7 (Table 5).

Bond Valence Summation Analysis (BVS)

Atom 1	Atom 2	Distance (Å)	BVS (Fe ^{III} /O ²⁻)	Assignment
Fe1	O22	1.8779(136)	3.1	Fe ^{III}
	O21	1.9640(122)		
	O21	1.9685(105)		
	O19	2.0113(116)		
	O18	2.0157(100)		
	O20	2.2586(91)		
Fe2	O22	1.8775(113)	3.1	Fe ^{III}
rez	O22 O24	、 <i>, , ,</i>	5.1	rem
		1.9676(126)		
	O25	1.9844(108)		
	O28	2.0087(133)		
	O29	2.0248(113)		
	O34	2.2541(112)		
Fe3	O27	1.8933(130)	3.0	Fe ^{III}
	O24	1.9682(117)		
	O26	1.9727(100)		
	O30	2.0109(114)		
	O31	2.0148(115)		
	O34	2.2597(128)		
				- W
Fe4	O27	1.8748(111)	3.1	Fe ^{III}
	O25	1.9722(119)		
	O26	1.9855(120)		
	O33	2.0023(134)		
	O32	2.0067(115)		
	O34	2.2638(109)		

Table T1. $BVS^{[7]}$ analysis of the Fe centres in the $\{Fe_3P_2W_{15}\}$ units in 1.

Atom 1	Atom 2	Distance (Å)	BVS (Fe ^{III} /O ²⁻)	BVS (Fe ^{II} /O ²⁻)	Assignment
Fe5	O25 O24 O21 O23 O99	1.9101(193) 1.9233(208) 1.9273(147) 2.1502(138) 2.4256(284)	2.5	2.3	Fe ^{III1}

 Table T2. BVS analysis of the exolacunary Fe centre in 1.

Table T3. BVS analysis of the oxo ligands bridging the $\{Fe_3P_2W_{15}\}$ in 1.

Atom 1	Atom 2	Distance (Å)	BVS (O ²⁻ /Fe ^{III})	BVS (OH-/Fe ^{III})	Assignment
022	Fe2 Fe1	1.8775(113) 1.8779(136)	1.5	1.4	OH-
027	Fe4 Fe3	1.8748(147) 1.8933(130)	1.4	1.4	OH-

¹ The absence of a reducing agent in the reaction mixture and the disorder of this crystallographic position supports the assignment of this Fe centre as Fe^{III}.

Atom 1	Atom 2	Distance (Å)	BVS (O ²⁻ /Fe ^{III} /Fe ^{II})	BVS (OH-/Fe ^{III} /Fe ^{II})	Assignment
O21	Fe5	1.9273(147)	1.7	1.7	O ²⁻
	Fe1	1.9640(139)			
	Fe1	1.9685(105)			
O24	Fe5	1.9233(208)	1.7	1.7	O ²⁻
	Fe2	1.9676(126)			
	Fe3	1.9682(117)			
O25	Fe5	1.9101(211)	1.7	1.7	O ²⁻
	Fe4	1.9722(119)			
	Fe2	1.9844(108)			
O26	Fe3	1.9727(100)	1.1	1.1	OH-
	Fe4	1.9855(120)			

Table T4. BVS analysis of the oxo ligands coordinated solely to the Fe centres in the $\{Fe_3P_2W_{15}\}$ units of 1.

Table T5. BVS analysis of the axial oxo ligands coordinated to the exolacunary Fe centre in1.

Atom 1	Atom 2	Distance (Å)	BVS (H ₂ O/Fe ^{II})	BVS (OH ⁻ /Fe ^{II})	Assignment
O23	Fe5	2.1502(136)	0.3	0.3	H ₂ O
O99	Fe5	2.4256(284)	0.2	0.2	H ₂ O

Atom 1	Atom 2	Distance (Å)	BVS (Fe ^{III} /O ²⁻)	Assignment
Fe1	O189	1.9396(156)	3.1	Fe ^{III}
	O163	1.9615(145)		
	O168	1.9760(125)		
	O171	1.9865(134)		
	O172	2.0091(154)		
	O173	2.2446(152)		
Fe2	O247	1.9438(133)	3.1	Fe ^{III}
	O165	1.9518(155)		
	O172	1.9624(183)		
	O164	1.9849(142)		
	O170	1.9873(123)		
	O173	2.2683(124)		
Fe3	O242	1.9282(122)	3.1	Fe ^{III}
	O167	1.9586(137)		
	O170	1.9684(131)		
	O166	1.9716(176)		
	O171	1.9989(173)		
	O173	2.2410(117)		
Fe4	O169	1.9277(130)	3.1	Fe ^{III}
	O104	1.9577(130)		
	O103	1.9624(177)		
	O109	1.9795(172)		
	O110	1.9834(147)		
	0112	2.2640(116)		
Fe5	O241	1.9126(186)	3.1	Fe ^{III}
	O240	1.9553(129)		
	O106	1.9651(139)		
	O111	1.9945(147)		
	O109	2.0016(115)		
	O112	2.2639(152)		
Fe6	O251	1.9302(141)	3.1	Fe ^{III}
	O108	1.9532(127)		
	O105	1.9810(176)		
	O111	2.0014(179)		
	O110	2.0062(138)		
	O112	2.2154(122)		

Table T6. BVS analysis of the Fe centres in the $\{Fe_3P_2W_{15}\}$ units in 2.

	1	I I I I I I I I I I I I I I I I I I I		[
Fe7	O249	1.9214(119)	3.2	Fe ^{III}
	O44	1.9449(123)		
	O45	1.9639(149)		
	O50	1.9822(187)		
	O49	1.9996(141)		
	052	2.2623(120)		
Fe8	O96	1.9237(125)	3.1	Fe ^{III}
	O46	1.9677(149)		
	O51	1.9789(183)		
	O49	1.9837(141)		
	O47	1.9926(119)		
	052	2.2632(122)		
Fe9	O248	1.9205(147)	3.2	Fe ^{III}
- • •	O48	1.9590(119)		
	O43	1.9681(123)		
	O50	1.9716(139)		
	O51	1.9888(150)		
	052	2.2480(153)		
Fe10	O243	1.9171(140)	3.2	Fe ^{III}
	O227	1.9495(115)		
	0237	1.9685(177)		
	O228	1.9696(152)		
	O238	1.9776(128)		
	O229	2.2520(123)		
Fe11	O246	1.9370(117)	3.1	Fe ^{III}
	O223	1.9466(152)		
	O224	1.9490(133)		
	O239	1.9955(189)		
	O238	2.0056(138)		
	O229	2.2223(121)		
	0223	2.2223(121)		
Fe12	0252	1.9092(148)	3.2	Fe ^{III}
1 012	O232	1.9499(122)	<i></i>	
	O225 O226	1.9608(115)		
	O239	1.9656(158)		
	O237	1.9732(147)		
	O229	2.2798(153)		
		2.2790(133)		

Atom 1	Atom 2	Distance (Å)	BVS (Fe ^{III} /O ²⁻)	BVS (Fe ^{II} /O ²⁻)	Assignment
Fe16	O250 O109 O244 O107 O111 O110	2.0356(184) 2.0433(187) 2.0489(225) 2.0675(160) 2.2210(194) 2.2620(256)	2.2	2.2	Fe ^{III2}

Table T7. BVS analysis of the exolacunary Fe centre in 2.

 $^{^{2}}$ The absence of a reducing agent in the reaction mixture and the disorder of this crystallographic position supports the assignment of this Fe centre as Fe^{III}.

Atom 1	Atom 2	Distance (Å)	BVS (O ²⁻ /Fe ^{III})	BVS (OH ⁻ /Fe ^{III})	Assignment
O49	Fe8 Fe7	1.9837(141) 1.9996(141)	1.1	1.0	OH-
O50	Fe9 Fe7	1.9716(139) 1.9822(187)	1.1	1.1	OH-
O51	Fe8 Fe9	1.9789(183) 1.9888(150)	1.1	1.0	OH-
O170	Fe3 Fe2	1.9684(131) 1.9873(123)	1.1	1.1	OH-
0171	Fe1 Fe3	1.9865(134) 1.9989(173)	1.1	1.0	OH-
0172	Fe2 Fe1	1.9624(183) 2.0091(154)	1.1	1.0	OH-
0237	Fe10 Fe12	1.9685(177) 1.9732(147)	1.1	1.1	OH-
O238	Fe10 Fe11	1.9776(128) 2.0056(138)	1.1	1.0	OH-
O239	Fe12 Fe11	1.9656(158) 1.9955(189)	1.1	1.1	OH-
		, ,			

Table T8. BVS analysis of the oxo ligands coordinated solely to the Fe centres in the $\{Fe_3P_2W_{15}\}$ units of 2.

Fe4 Fe5 Fe16 Fe4	1.9795(172) 2.0016(115) 2.0433(187)	1.5	1.5	OH-
Fe5 Fe16	2.0016(115)	1.5	1.5	OH-
Fe16	、 <i>、 、</i>			
	2.0433(187)			
Fe4				
Fe4				
-	1.9834(147)	1.3	1.3	OH-
Fe6	2.0062(138)			
Fe16	2.2620(256)			
Fe5	1.9945(147)	1.3	1.3	OH-
Fe6	2.0014(179)			
Fe16	2.2210(194)			
P12	1.5542(120)	1.6	1.9	O ²⁻
Fe16	, ,			
	、 <i>,</i> ,			
P9	1.5418(134)	1.7	2.0	O ²⁻
Fe16	, ,			
	、			
P11	1.5505(167)	1.6	1.9	O ²⁻
Fe16	、 <i>、 、</i>			-
	Fe6 e16 Fe5 Fe6 e16 P12 e16 P9 e16 P11	Fe6 $2.0062(138)$ e16 $2.2620(256)$ Fe5 $1.9945(147)$ Fe6 $2.0014(179)$ e16 $2.2210(194)$ P12 $1.5542(120)$ e16 $2.0675(160)$ P9 $1.5418(134)$ e16 $2.0489(225)$ P11 $1.5505(167)$	Fe6 $2.0062(138)$ $2.2620(256)$ Fe5 $1.9945(147)$ $2.0014(179)$ e16 1.3 Fe6 $2.0014(179)$ $2.2210(194)$ 1.6 P12 $1.5542(120)$ $2.0675(160)$ 1.6 P9 $1.5418(134)$ $2.0489(225)$ 1.7 P11 $1.5505(167)$ 1.6	Fe6 $2.0062(138)$ $2.2620(256)$ 1.3 1.3 Fe5 $1.9945(147)$ $2.0014(179)$ $e16$ 1.3 1.3 Fe6 $2.0014(179)$ $2.2210(194)$ 1.6 1.9 P12 $1.5542(120)$ $2.0675(160)$ 1.6 1.9 P9 $1.5418(134)$ $2.0489(225)$ 1.7 2.0 P11 $1.5505(167)$ 1.6 1.9

Table T9. BVS analysis of the oxo ligands coordinated to the exolacunary Fe centre in 2.

Atom 1	Atom 2	Distance (Å)	BVS (O ²⁻ /Fe ^{III})	BVS (OH-/Fe ^{III})	Assignment
O96	P12	1.5314(128)	1.9	2.2	O ²⁻
	Fe8	1.9237(125)			
O169	P12	1.5452(187)	1.8	2.1	O ²⁻
	Fe4	1.9277(130)			
O189	P12	1.5335(138)	1.9	2.1	O ²⁻
	Fe1	1.9396(156)			
O241	Р9	1.5385(182)	1.9	2.2	O ²⁻
	Fe5	1.9126(186)			
O242	Р9	1.5213(143)	1.8	2.2	O ²⁻
	Fe3	1.9282(122)			
O243	Р9	1.5417(120)	1.9	2.1	O ²⁻
	Fe10	1.9171(140)			
O246	P10	1.5428(121)	1.8	2.1	O ²⁻
	Fe11	1.9370(117)			
O247	P10	1.5293(145)	1.9	2.2	O ²⁻
	Fe2	1.9438(133)			
O248	P10	1.5512(126)	1.8	2.1	O ²⁻
	Fe9	1.9205(147)			
O249	P11	1.5339(135)	1.9	2.2	O ²⁻
	Fe7	1.9214(119)			
O251	P11 Fac	1.5417(181)	1.9	2.1	O ²⁻
	Fe6	1.9302(141)			
O252	P11 Ea12	1.5542(118)	1.9	2.1	O ²⁻
	Fe12	1.9092(148)			

Table T10. BVS analysis of the bridging oxo centres forming part of the phosphato ligandsin 2.

References

- R. C. Clark and J. S. Reid, Acta Crystallogr., Sect. A: Found. Crystallogr., 1995, 51, 887-897.
- [2] R. H. Blessing, Acta Crystallogr., Sect. A: Found. Crystallogr., 1995, 51, 33-38.
- [3] G. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122.
- [4] L. Farrugia, J Appl Crystallogr, 1999, 32, 837-838.
- [5] R. Contant, W.G. Klemperer and O. Yagi, *Inorganic Syntheses*, John Wiley & Sons, Inc., 2007, pp. 104-111.
- [6] P. J. Domaille, G. Hervé and A. Tézé, in *Inorganic Syntheses*, John Wiley & Sons, Inc., 2007, pp. 96-104.
- [7] I. D. Brown, J. Appl. Cryst., 1996, 29, 479.