# Electronic supplementary information (ESI)

# Zinc(II) and cadmium(II) metal-organic frameworks with 4-imidazole containing tripodal ligand: sorption and anion exchange properties<sup>†</sup>

Shui-Sheng Chen,<sup>*a,b*</sup> Peng Wang,<sup>*a*</sup> Satoshi Takamizawa,<sup>*c*</sup> Taka-aki Okamura,<sup>*d*</sup> Min Chen<sup>*a*</sup> and Wei-Yin Sun<sup>\**a*</sup>

<sup>a</sup> Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China. E-mail: sunwy@nju.edu.cn; Fax: +86 25 83314502

<sup>b</sup> School of Chemistry and Chemical Engineering, Fuyang Teachers College, Fuyang 236041, China

<sup>c</sup> International Graduate School of Arts and Sciences, Yokohama City University, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan

<sup>d</sup> Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

1

Table S1. Selected bond lengths [Å] and bond angles [9] for complexes 1 and 2

|                     | -          |                     |            |
|---------------------|------------|---------------------|------------|
| Zn(1)-N(1)          | 2.008(2)   | Zn(1)-N(2)#1        | 1.970(2)   |
| Zn(1)-N(6)#2        | 1.979(2)   | Zn(1)-N(4)#3        | 2.015(2)   |
| N(2)#1-Zn(1)-N(6)#2 | 111.57(10) | N(2)#1-Zn(1)-N(1)   | 115.18(10) |
| N(6)#2-Zn(1)-N(1)   | 110.64(10) | N(2)#1-Zn(1)-N(4)#3 | 107.69(10) |
| N(6)#2-Zn(1)-N(4)#3 | 111.62(10) | N(1)-Zn(1)-N(4)#3   | 99.51(10)  |
|                     | 2          |                     |            |
| Cd(1)-N(12)         | 2.337(4)   |                     |            |
| N(12)-Cd(1)-N(12)#4 | 88.86(15)  |                     |            |

Symmetry transformations used to generate equivalent atoms: #1 -y+5/4,x+3/4,z-1/4, #2 -x+1,-y+2,-z+2, #3 -x+1/2,-y+2,z+1/2, #4 -z+1/2,-x+1,y+1/2-1.

#### **Computational Details.**

In the simulations, atomic partial charges for the frameworks are computed from the ChelpG method as Yang et al.<sup>1</sup> DFT calculations using the UB3LYP functional were carried out to compute the charge distributions, and the basis set LANL2DZ was used for the metal atoms Co and Zn, while  $6-31+G^*$  was used for the remaining atoms. All the calculations were performed using the GAUSSIAN 03 programs.<sup>2</sup> ChelpG charge is listed by the atomic label given in Scheme 1 and Table S2.

The adsorption isotherms were simulated with grand canonical Monte Carlo (GCMC) simulations with Towhee Code.<sup>3</sup> Detailed descriptions of the simulation method are given in the references.<sup>4</sup> In the grand canonical ensemble, the chemical potential of each component, temperature, and volume are kept constant as in adsorption experiments. For the sorbate molecules as well as for the frameworks 1', 3' and 4', atomistic models were employed. Interactions beyond 0.75, 0.74 and 0.495 nm were neglected for 1', 3' and 4', respectively. The Lorentz-Berthelot (LJ) mixing rules were used to calculate mixed LJ parameters.<sup>5</sup> For methane, the van der Waals interactions between the sorbate molecules themselves as well as between the sorbate molecules and the frameworks were described with the LJ potential only. Methane was described with a united atom description, with the potential parameters for methane were taken from Goodbody et. al.<sup>6</sup> ( $\sigma_{CH4} = 0.373$  nm,  $\varepsilon_{CH4}/k_B = 148$  K). A combination of the LJ and Coulombic potentials was used to describe the van der Waals interaction for other sorbate molecules except methane. Hydrogen was treated as a diatomic molecule modeled with parameters ( $\sigma_H = 0.2958$  nm,  $\varepsilon_H/k_B = 36.7$  K).<sup>7</sup> CO<sub>2</sub>, N<sub>2</sub> were described by the TraPPE potential ( $\sigma_C = 0.305 \text{ nm}$ ,  $\varepsilon_C/k_B = 79.0 \text{ K}$ ,  $\sigma_O = 0.280 \text{ nm}$ ,  $\varepsilon_N/k_B = 27$ K).<sup>8</sup> All the potential parameters have been successfully employed to describe the adsorption of alkanes in zeolites quantitatively. The LJ parameters for the C, H and N atoms from the frameworks were taken from the DREIDING force field,<sup>9</sup> and Co atom was taken from the all-atom UFF force field,<sup>10</sup> which is missed in DREIDING force field. The atoms of the frameworks were held fixed at their crystallographic coordinates. The excess adsorption values were conversed from absolute adsorption values, the outputs of GCMC simulations, by the method of Myers *et. al.*<sup>11</sup> Isosteric heat of adsorption is another interest in our research, which was obtained from the fluctuation theory.<sup>12</sup> While in the limit of zero converge,  $Q_{st}$ was derived from the (NVT) MC calculations.<sup>13</sup>



Scheme 1. Model systems used in the ChelpG charge calculations. The atom labels used in Table S2 are included in the figure.

|            | 1′     |            | 3'     |            | 4'     |
|------------|--------|------------|--------|------------|--------|
| Atom label | q/e    | Atom label | q/e    | Atom label | q/e    |
| Zn1        | 0.864  | Co1        | 0.864  | Co1        | 0.834  |
| C1         | 0.142  | C1         | 0.119  | C1         | 0.147  |
| C2         | -0.193 | C2         | -0.193 | C2         | -0.171 |
| C3         | 0.119  | C3         | 0.142  | C3         | 0.101  |
| C4         | -0.183 | C4         | -0.187 | C4         | -0.19  |
| C5         | 0.135  | C5         | 0.135  | C5         | 0.115  |
| C6         | -0.187 | C6         | -0.183 | C6         | -0.205 |
| C7         | 0.134  | C7         | 0.145  | C7         | 0.215  |
|            |        | 1          |        |            |        |

Table S2. ChelpG charges calculation for 1', 3' and 4'

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2014

| C8  | -0.023 | C8  | -0.008 | C8  | 0.005  |
|-----|--------|-----|--------|-----|--------|
| C9  | 0.185  | С9  | 0.265  | C9  | 0.308  |
| C10 | 0.205  | C10 | 0.134  | C10 | 0.106  |
| C11 | 0.041  | C11 | -0.023 | C11 | -0.002 |
| C12 | 0.269  | C12 | 0.185  | C12 | 0.165  |
| C13 | 0.145  | C13 | 0.205  | C13 | 0.169  |
| C14 | -0.008 | C14 | 0.041  | C14 | 0.015  |
| C15 | 0.255  | C15 | 0.259  | C15 | 0.252  |
| Н   | 0.349  | Н   | 0.349  | Н   | 0.368  |
| H2  | 0.106  | H2  | 0.106  | H2  | 0.097  |
| H4  | 0.046  | H4  | 0.1    | H4  | 0.143  |
| H6  | 0.1    | H6  | 0.046  | H6  | 0.037  |
| H8  | 0.101  | H8  | 0.098  | H8  | 0.142  |
| H9  | 0.066  | Н9  | 0.095  | H9  | 0.144  |
| H11 | 0.162  | H11 | 0.101  | H11 | 0.116  |
| H12 | 0.149  | H12 | 0.066  | H12 | 0.085  |
| H14 | 0.098  | H14 | 0.162  | H14 | 0.11   |
| H15 | 0.095  | H15 | 0.149  | H15 | 0.091  |
| N1  | -0.471 | N1  | -0.532 | N1  | -0.498 |
| N2  | -0.536 | N2  | -0.545 | N2  | -0.603 |
| N3  | -0.545 | N3  | -0.536 | N3  | -0.529 |
| N4  | -0.532 | N4  | -0.471 | N4  | -0.463 |
| N5  | -0.594 | N5  | -0.494 | N5  | -0.544 |
| N6  | -0.494 | N6  | -0.594 | N6  | -0.56  |

| Adsorbent | adsorbate       | $Q_{\rm st}$ (kJ/mol) (sim/exp) |
|-----------|-----------------|---------------------------------|
| 1′        | Methane         | 17.43                           |
|           | H <sub>2</sub>  | 7.80/ 7.32                      |
|           | $N_2$           | 14.51                           |
|           | CO <sub>2</sub> | 32.69/ 33.63                    |
| 3'        | Methane         | 16.16                           |
|           | $H_2$           | 7.59/ 7.27                      |
|           | $N_2$           | 14.60                           |
|           | $CO_2$          | 32.17/ 33.22                    |
| 4'        | Methane         | 4.31                            |
|           | H <sub>2</sub>  | 3.62                            |
|           | N <sub>2</sub>  | 8.38                            |
|           | $CO_2$          | 22.86                           |

 Table S3.
 Adsorption enthalpies of gases simulated by GCMC calculation



Figure S1. The coordination environment of Zn(II) atom with thermal ellipsoids at 30% probability for **1**. The free water molecules and hydrogen atoms were omitted for clarity.



Figure S2. a) The 1D helical channel formed by the coordination of Zn(II) and two imidazolyl groups. b) The 3D porous framework constructed from the connection of imidazolyl group with adjacent opposite 1D helical channels.



Figure S3. Schematic representations of the (4, 4)-connected **ecl** framework of **1** with (4  $6^3 8^2$ ) topology; turquiose balls represent the Zn(II) atoms, and red balls represent the centers of benzene rings of H<sub>3</sub>L ligands.



Figure S4. The coordination environment of Cd(II) atom with thermal ellipsoids at 30% probability for **2**. The free water molecules, perchlorate ions and hydrogen atoms were omitted for clarity.



Figure S5. Schematic representations of the (3, 6)-connected **pyr** framework of **2** with  $(6^3)_2(6^{12} 8^3)$  topology; green balls represent the Cd(II) atoms, and yellow balls represent the centers of benzene rings of H<sub>3</sub>L ligands.



Figure S6. The TGA curve of complex **1**.



Figure S7. The X-ray powder diffractions of complex 1: a - simulated; b - as-synthesized; c - activated.

## Calculation of CO<sub>2</sub>/N<sub>2</sub> selectivity

The methods are applied to estimate the  $CO_2/N_2$  selectivity according to the literature (*J. Am. Chem. Soc.*, 2010, **132**, 38). The ratios of these initial slopes of the  $CO_2$  and  $N_2$  adsorption isotherms were applied to estimate the adsorption selectivity for  $CO_2$  over  $N_2$ .



Figure S8. The fitting initial slope for  $CO_2$  and  $N_2$  isotherms collected at 273K ( $CO_2$ : red squares;  $N_2$ : green triangles).



Figure S9. Experimental and simulated hydrogen adsorption isotherm at 77 K



Figure S10. Experimental and simulated CO<sub>2</sub> adsorption isotherm at 195 K



Figure S11. Experimental and simulated N2 adsorption isotherm at 195 K.



Figure S12. Experimental and simulated CH<sub>4</sub> adsorption isotherm at 195 K



Figure S13.  $H_2$  isotherm for 1' with fitting by virial method. (inlet. Isosteric heat of adsorption with mount of adsorbed  $H_2$ )



Figure S14.  $H_2$  isotherm for **3'** with fitting by virial method. (inlet. Isosteric heat of adsorption with mount of adsorbed  $H_2$ .)



Figure S15.  $CO_2$  isotherm for 1' with fitting by virial method.(inlet. Isosteric heat of adsorption with mount of adsorbed  $CO_2$ .)



Figure S16.  $CO_2$  isotherm for **3'** with fitting by virial method.(inlet. Isosteric heat of adsorption with mount of adsorbed  $CO_2$ .)



Figure S17. IR spectra of **2**, exchanged product **2A** and **2C** (reversed exchanged product from **2A** to **2C**).



Figure S18. IR spectra of **2**, exchanged product **2B** and **2D** (reversed exchanged product from **2B** to **2D**).



Figure S19. IR spectra of 2 and ligand  $H_3L$ .



Figure S20. The X-ray powder diffractions of complex 2: a - simulated; b - as-synthesized; and exchanged products: c - the exchanged product **2A**; d - the exchanged product **2B**.



Figure S21. IR spectra of **2A**, exchanged product **2B** and **2A** (reversed exchanged product from **2B** to **2A**).



Figure S22. IR spectra of **2B**, exchanged product **2A** and **2B** (reversed exchanged product from **2A** to **2B**).

### References

- 1. Q. Yang, C. Zhong, J. Phys. Chem. B 2008, 110, 1562.
- 2. M. J. Frisch, G. W. Trucks, H. B. Schlegel, *et al. GAUSSIAN 03*, rev B.1; Gaussian, Inc.: Pittsburgh, PA, 2003.
- 3. http://towhee.sourceforge.net
- 4. D. Frenkel, B. Smit, Understanding of Molecular Simulations: from Algorithms to Applications, 2nd ed.; Academic Press: San Diego, CA, 2002.
- 5. D. Marx, P. Nielaba, Phys. Rev. A. 1994, 45, 8968.
- 6. S. J. Goodbody, K. Watanabe, D. Macgowan, J. P. R. B. Walton, N. Quirke, *J. Chem. Soc., Faraday Trans.* 1991, **87**, 1951.
- 7. F. Darkrim, A. Aoufi, P. Malbrunot, D. Levesque, J. Chem. Phys. 2000, 112, 5991.
- 8. J. J. PotQff, J. SiePmann, I. AIChE J. 2001, 47, 1676.
- 9. S. L. Mayo, B. D. Olafson, W. A. Goddard, J. Phys. Chem. 1990, 94, 8897.
- 10. A. K. Rappi, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skid, *J. Am. Chem. Soc.* 1992, **114**, 10024.
- 11. A. L. Myers, P. A. Monson, Langmuir 2002, 18, 10261.
- 12. D. D. Do, H. D. Do, J. Phys. Chem. B 2006, 110, 17531.
- 13. R. Babarao, Z. Hu, J. W. Jiang, S. Chempath, S. I. Sandler, *Langmuir* 2007, 23, 659.