-

Enhanced Photoluminescence in CaMoO₄:Eu³⁺ by Gd³⁺ co-doping B. P. Singh,^a A. K. Parchur,^{b*} R. S. Ningthoujam,^c A. A. Ansari,^d P. Singh^a and S. B. Rai^b

^aDepartment of Physics, Indian Institute of Technology (BHU), Varanasi, India-221005 ^bDepartment of Physics, Banaras Hindu University, Varanasi, India-221005 ^cChemistry Division, Bhabha Atomic Research Centre, Mumbai, India-400085 ^dKing Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia-11451

*Corresponding author: <u>kareemskpa@hotmail.com</u> and <u>ak.parchur@usu.edu</u>

Table S1 (ESI[†]) Peak positions of the magnetic dipole transition ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and electric dipole transition ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ and their respective FWHM of ASP, 600 and 900 °C heated samples of Gd³⁺ (Gd³⁺ = 0, 2, 5, 7 and 10 at.%) co-doped CaMoO₄:Eu. $\lambda_{exc} = 266$ nm.

	ASP			600 °C	9	900 °C		
Gd ³⁺ (at.%)	$ \begin{array}{c} ({}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{1}) \\ /\mathrm{w} \text{ (nm)} \end{array} $	$({}^{5}D_{0} \rightarrow {}^{7}F_{2})$ /w (nm)	$({}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{1}) / \text{w (nm)}$		$({}^{5}D_{0} \rightarrow {}^{7}F_{1})$ /w (nm)			
0	589.42/8.01	613.04/6.29	590.09/6.79	612.99/6.26	590.25/6.81	613.03/6.25		
2	589.07/8.61	612.98/6.38	590.22/6.82	612.98/6.31	590.27/6.83	612.99/6.25		
5	590.25/7.23	612.92/6.36	589.92/6.88	613.02/6.26	590.38/6.54	612.99/6.23		
7	589.94/7.16	612.96/6.35	590.03/7.17	612.98/6.35	590.26/6.67	612.99/6.23		
10	590.03/7.05	612.96/6.33	589.99/7.04	613.01/6.26	590.35/6.66	612.97/6.26		

Sample	${\rm Gd}^{3+}$ (at.%)	I_{I}	τ_{I} (ms)	χ^2
	0	2.1416	0.4766	0.99979
ASP	5	1.9459	0.5139	0.99969
	10	1.9807	0.4985	0.99982
	0	2.0645	0.5064	0.99983
600 °C	5	2.0363	0.5261	0.99987
	10	2.1239	0.4867	0.99991
	0	2.2791	0.46667	0.99996
900 °C	5	2.2793	0.4526	0.99988
	10	2.2999	0.4531	0.99996

Table S2 (ESI[†]) Parameters obtained after mono-exponential fit to the decay data of as-prepared, 600 and 900 °C samples at 395 nm excitation.

Table S3 (ESI^{\dagger}) Radiative rate constants of Gd³⁺ co-doped CaMoO₄:Eu samples after mono-exponential curve fit to the luminescence decay curve under 395 excitation.

Sample	Gd ³⁺ (at.%)	Radiative rate constant $(x10^3 s^{-1})$
	0	2.09
ASP	5	1.95
	10	2.01
	0	1.97
600 °C	5	1.90
	10	2.05
	0	2.14
900 °C	5	2.21
	10	2.21

CIE chromaticity co-ordinates								
	ASP			600 °C			900 °C	
${\rm Gd}^{3+}$ (at.%)	Х	у		х	у		Х	У
0	0.4731	0.3685	0.	4726	0.3679	9	0.6127	0.3714
2	0.5171	0.3704	0.	5171	0.370	3	0.6205	0.3681
5	0.5334	0.3711	0.	5331	0.3708	8	0.6068	0.3614
7	0.5785	0.3713	0.	5785	0.371	3	0.5979	0.3652
10	0.5879	0.3659	0.	5879	0.3659	9	0.5937	0.3663

Table S4 (ESI⁺) Variation of CIE co-ordinates of ASP, 600 and 900 °C annealed Gd³⁺ (0, 2, 5, 7 and 10 at.%) co-doped CaMoO₄:Eu samples

Fig. S1 (ESI[†]) Show the typical fitting of magnetic and electronic dipole transitions of 5 at.% Gd^{3+} co-doped CaMoO₄:Eu heated at 600 °C

Fig. S2(ESI[†]) Luminescence spectra of PVA thin film of 2 at.% Gd³⁺ co-doped CaMoO₄:Eu nanoparticles after incorporation of re-dispersed particles at 266 nm excitation.

Fig. S3 (a) Bi- (b) mono-exponential curve fits to luminescence decay curve (613 nm) of 0 at. % Gd³⁺ co-doped CaMoO₄:Eu annealed at 900 °C (λ_{exc} = 395 nm).

Fig. S4 Typical Bi-exponential fitting with residuals to the luminescence decay curve (613 nm) of 10 at.% Gd³⁺ co-doped CaMoO₄:Eu annealed at 900 °C (λ_{exc} = 395 nm). Bottom portion of figure show the *residual vs. Independent Variable*.