ELECTRONIC SUPPORTING INFORMATION

Effective catalytic heterogeneous zinc-substituted polyoxometalate

for oxidation reactions and desulfurization processes

Lucie Nogueira,^a Susana Ribeiro,^a Carlos M. Granadeiro^a, Eulália Pereira^a, Gabriel Feio^b,

Luís Cunha-Silva^a, Salete S. Balula^{a*}

^a REQUIMTE & Department of Chemistry and Biochemistry , Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal ^bCENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal.

*Corresponding authors: Dr. Salete S. Balula E-mail: sbalula@fc.up.pt phone.: +351 220402576;

Figure S1. Schematic representation for the preparation of the PW₁₁Zn-APTES@SiO₂ composite.

Figure S2. Comparison of kinetic profile for cyclooctene oxidation, catalyzed by the homogeneous $PW_{11}Zn$ catalyst (open symbols) and heterogeneous composite catalyst (solid symbols), using H_2O_2 as oxidant and MeCN as solvent.

Figure S3. ³¹P NMR spectra of (a) TBA salt of $PW_{11}Zn$ in CD₃CN, (b) liquid phase homogeneous catalysis using TBA salt of $PW_{11}Zn$ for cyclooctene oxidation in the presence of H_2O_2 , and (c) reaction medium of the ODS heterogeneous catalysis with $PW_{11}Zn$ -APTES@SiO₂ upon filtering.