Electronic Supplementary Information

(36 pages)

Molecular and Electronic Structure of Nonradical Homoleptic Pyridylazo-oxime Complexes of Cobalt(III) and the Azo-oxime Anion Radical Congener: An Experimental and Theoretical Investigation

Shuvam Pramanik,^a Sima Roy,^a Tapas Ghorui,^a Sanjib Ganguly^{*b} and Kausikisankar Pramanik^{*a}

^aDepartment of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata – 700032, India. E-mail: kpramanik@hotmail.com, Tel: +9133 2457 2781

^bDepartment of Chemistry, St. Xavier's College, Kolkata – 700016, India.

Contents

Table S1	Selected optimized geometrical parameters of $2a$, $3a^+$ and $3a$ in the ground and lower	Page 3
	lying triplet excited states at B3LYP level	
Fig. S1	Optimized molecular structures of $2a$ and $3a^+$	Page 4
Fig. S2	Optimized molecular structures of 3a	Page 5
Table S2	Frontier Molecular Orbital Composition (%) in the Ground State for 3a	Page 6
Fig. S3	¹ H NMR spectrum of 1a	Page 7
Fig. S4	¹ H NMR spectrum of 2a	Page 7
Fig. S5	¹ H NMR spectrum of $3a^+$	Page 8
Fig. S6	Experimental absorption spectra of 1b	Page 8
Fig. S7	Experimental and theoretical absorption spectra of 3a	Page 9
Table S3	Main optical transition at the TD-DFT/B3LYP/6-31G Level for the complex 2a with	Page 10
	composition in terms of molecular orbital contribution of the transition, Computed	
	Vertical excitation energies, and oscillator strength in acetonitrile	
Table S4	Main optical transition at the TD-DFT/B3LYP/6-31G Level for the complex 3a with	Page 11
	composition in terms of molecular orbital contribution of the transition, Computed	
	Vertical excitation energies, and oscillator strength in acetonitrile	
Fig. S8	Partial molecular orbital diagram related to the absorption of complex 3a with some	Page 12
TI 00	selected isodensity frontier MO mainly involved in the electronic transitions	D 10
Fig. S9	Luminescence spectra of ligand 1b	Page 13
Fig. S10	Changes in the time-resolved photoluminescence decay of ligand Ib	Page 13
Fig. S11	Changes in the time-resolved photoluminescence decay of 2a and 3a	Page 14
Table S5	Comparison of selected optimized geometrical parameters of 2a and 3a in the ground	Page 15
	and lower lying triplet excited states at B3LYP levels with experimental	
Table SC	Crystanographic data Eventstanographic data $(0')$ in the Ground State for 2a and $3a^+$ in	Daga 16
Table 50	acetonitrile solvent by means of CPCM model	rage 10
Table \$7	Erontier Molecular Orbital Composition (%) in the Excited State for 2 a	Page 17
Table S8	Frontier Molecular Orbital Composition (%) in the Excited State for 3a ⁺	1 age 17 Page 18
Table S9	Crystal data and structure refinement parameters for complexes $2a$ and $3a^+ClO$	Page 19
Fig S12	ORTEP plot of 2a	Page 20
Fig. S12	ORTEP plot of $3a^+$	Page 20
Table S10	Frontier Molecular Orbital Composition (%) in the Ground State for $2\mathbf{h}$ and $3\mathbf{h}^+$	Page 22
Table S11	Main optical transition at the TD-DFT/B3LYP/6-31G Level for the complex 2b with	Page 22
Tuble 511	composition in terms of molecular orbital contribution of the transition. Computed	1 uge 20
	Vertical excitation energies, and oscillator strength in acetonitrile	
Table S12	Main optical transition at the TD-DFT/B3LYP/6-31G Level for the complex $3b^+$ with	Page 24
	composition in terms of molecular orbital contribution of the transition, Computed	8
	Vertical excitation energies, and oscillator strength in acetonitrile	
Fig. S14	Isodensity surface plots of some selected frontier molecular orbitals for the complexes	Page 25
C	2b at their optimized S_0 geometry in gas phase	0
Fig. S15	Isodensity surface plots of some selected frontier molecular orbitals for the complexes	Page 26
	$\mathbf{3b}^+$ at their optimized S_0 geometry in gas phase	
Table S13	Coordinates of optimized geometry ¹ 2a	Page 27
Table S14	Coordinates of optimized geometry ¹ 2b	Page 29
Table S15	Coordinates of optimized geometry ${}^{1}3a^{+}$	Page 31
Table S16	Coordinates of optimized geometry ${}^{1}\mathbf{3b}^{+}$	Page 33
Table S17	Coordinates of optimized geometry $^{2}3a$	Page 35

Bond Lengths (Å)										
	2a			3a ⁺			3a			
	S_0	T_1		S_0	T_1		S_0	T_1		
Co1–N6	1.966	1.962	Co53-N43	1.970	1.950	Co53-N43	1.960	1.957		
Co1-N8	1.941	1.924	Co53-N45	1.877	1.871	Co53-N45	1.872	1.872		
N6-N7	1.298	1.370	Co53–O51	1.909	1.908	Co53-O51	1.914	1.900		
N8-O2	1.275	1.311	N45-N46	1.296	1.359	N45-N46	1.329	1.359		
Co1-N10	1.960	1.961	N44-O51	1.336	1.355	N44-O51	1.355	1.372		
Co1-N12	1.950	1.956	Co53-N47	1.970	1.975	Co53-N47	1.959	1.957		
N10-N11	1.294	1.295	Co53-N49	1.877	1.881	Co53-N49	1.873	1.872		
N12-O3	1.279	1.280	Co53–O52	1.909	1.912	Co53–O52	1.915	1.900		
Co1-N14	1.942	1.938	N49-N50	1.296	1.298	N49-N50	1.327	1.359		
Co1-N16	1.944	1.939	N48-O52	1.336	1.336	N48-O52	1.352	1.372		
N14-N15	1.298	1.299								
N16-O4	1.274	1.273								
			Bone	d Angles (°)						
	2a			3a ⁺			3a			
	S_0	T_1		S_0	T_1		S_0	T_1		
N6-Co1-N8	80.675	79.988	N43-Co53-N45	81.723	82.004	N43-Co53-N45	81.740	81.755		
N6-Co1-N10	99.472	98.735	N43-Co53-N47	94.370	94.153	N43-Co53-N47	93.740	91.850		
N6-Co1-N12	85.824	85.106	N43-Co53-N49	102.501	101.682	N43-Co53-N49	100.475	101.675		
N6-Co1-N14	168.301	168.580	N43-Co53-O51	164.566	164.392	N43-Co53-O51	164.831	164.904		
N6-Co1-N16	91.600	92.531	N43-Co53-O52	89.340	89.628	N43-Co53-O52	88.936	90.226		
N8-Co1-N10	171.037	170.347	N45-Co53-N47	102.501	102.277	N45-Co53-N47	100.464	101.675		
N8-Co1-N12	91.060	90.413	N45-Co53-N49	173.884	174.594	N45-Co53-N49	176.809	175.142		
N8-Co1-N14	90.103	90.489	N45-Co53-O51	82.847	82.408	N45-Co53-O51	83.091	83.181		
N8-Co1-N16	86.896	87.501	N45-Co53-O52	92.852	93.273	N45-Co53-O52	94.759	93.421		
N10-Co1-N1	80.028	79.939	N47-Co53-N49	81.724	81.514	N47-Co53-N49	81.742	81.755		
N10-Co1-N1	90.762	91.700	N47-Co53-O51	89.343	89.904	N47-Co53-O51	88.903	90.227		
N10-Co1-N1	102.046	102.131	N47-Co53-O52	164.566	164.358	N47-Co53-O52	164.768	164.904		
N12-Co1-N1	101.634	101.375	N49-Co53-O51	92.853	93.817	N49-Co53-O51	94.685	93.420		
N12-Co1-N1	176.945	177.091	N49-Co53-O52	82.847	82.858	N49-Co53-O52	83.026	83.181		
N14-Co1-N1	80.654	80.681	O51–Co53–O52	91.033	90.492	O51-Co53-O52	92.425	91.652		

Table S1 Selected optimized geometrical parameters of 2a, $3a^+$ and 3a in the ground and lower lying triplet excited states at B3LYP level

Fig. S1 Optimized molecular structures of **2a** (top) and **3a**⁺ (bottom) (Co: cyan, N: blue, O: red, C: grey. Hydrogen atoms of are omitted for clarity).

Fig. S2 Optimized molecular structures of **3a** (Co: cyan, N: blue, O: red, C: grey. Hydrogen atoms are omitted for clarity).

Orbital	α - MO	Energy		С	ontribution	(%)		Main Bond Type
oronu		(EV)	Co	Ру	Azo	NO	Bz	intani Dona Type
132	L+5	-0.96	0	25	3	16	56	π*(L)
131	L+4	-1.41	1	91	2	4	2	π*(L)
130	L+3	-1.47	54	15	20	7	4	$d_z^{2}(Co) + \pi^{*}(L)$
129	L+2	-1.55	7	77	4	5	7	π*(L)
128	L+1	-1.91	61	17	1	20	1	$d_{x -y}^{2}(Co) + \pi^{*}(L)$
127	L	-3.69	4	25	36	35	1	π*(L)
126	Н	-4.54	3	27	39	31	0	π*(L)
125	H-1	-5.88	1	12	11	28	48	π(L)
124	H-2	-5.92	5	13	13	24	46	π(L)
123	H-3	-6.68	0	0	0	0	100	π(L)
122	H–4	-6.71	0	0	0	2	98	π(L)
121	H–5	-6.72	6	8	4	66	16	π(L)
				HOMC	–LUMO ga	ap = 0.85 eV	1	
01:11	0.140	Energy		С	ontribution	(%)		
Orbital	β - MO	(EV)	Co	Ру	Azo	NO	Bz	Main Bond Type
131	L+5	-1.32	1	94	2	94	0	π*(L)
130	L+4	-1.44	3	85	3	85	4	π*(L)
129	L+3	-1.48	57	10	22	10	3	$d_z^2(Co) + \pi^*(L)$
128	L+2	-1.92	60	16	1	22	1	$d_{x -y}^{2}(Co) + \pi^{*}(L)$
127	L+1	-3.03	3	30	35	31	1	π*(L)
126	L	-3.11	3	30	35	31	1	π*(L)
125	Н	-5.64	1	14	14	23	48	π(L)
124	H-1	-5.72	4	12	13	22	49	π(L)
123	Н–2	-6.59	7	7	4	73	10	π(L)
122	Н-3	-6.69	0	0	0	0	99	π(L)
121	H–4	-6.72	0	0	0	0	100	π(L)
120	H–5	-6.75	12	11	3	61	12	π(L)
				HOMC	–LUMO ga	ap = 2.53 eV	1	

Table S2 Frontier Molecular Orbital Composition (%) in the Ground State for 3a

Fig. S3 ¹H NMR spectrum of 1a.

Fig. S4 ¹H NMR spectrum of 2a.

Fig. S5 ¹H NMR spectrum of $3a^+$.

Fig. S6 Experimental absorption spectra of 1b in acetonitrile.

Fig. S7 Experimental (Black bold line) and theoretical (Blue dotted line) absorption spectra of 3a in acetonitrile

Table S3 Main optical transition at the TD-DFT/B3LYP/6-31G Level for the complex **2a** with composition in terms of molecular orbital contribution of the transition, Computed Vertical excitation energies, and oscillator strength in acetonitrile

	Composition	Е	Oscillator strength	$\lambda_{ ext{theo}}$	Assignment	$\lambda_{ ext{exp}}$
		(eV)	strength	(nm)		(nm)
1.	$H - 3 \rightarrow L + 2 (36\%)$ $H - 2 \rightarrow L (14\%)$ $H \rightarrow L + 2 (11\%)$	2.2988	0.0268	539.34	ILCT/LLCT	544
2.	$H - 1 \rightarrow L + 2 (27\%)$ $H \rightarrow L + 2 (21\%)$ $H - 1 \rightarrow L + 1 (18\%)$	2.4376	0.1194	508.64	ILCT/LLCT	
3.	$H - 4 \rightarrow L (20\%)$ $H - 1 \rightarrow L + 2 (17\%)$ $H - 3 \rightarrow L (12\%)$	2.4485	0.0371	506.36	ILCT/LLCT	
4.	$H - 10 \rightarrow L (57\%)$	3.2786	0.0278	378.16	ILCT/LLCT	
5.	$\mathrm{H-8} \rightarrow \mathrm{L+2}~(27\%)$	3.3310	0.0662	372.21	ILCT/LLCT	
6.	$H - 9 \rightarrow L + 1 (25\%)$ $H - 8 \rightarrow L + 1 (21\%)$	3.3664	0.0357	368.30	ILCT/LLCT	
7.	$H-3 \rightarrow L + 4 (31\%)$	3.8140	0.1607	325.07	LMCT/ILCT	319
8.	$H \rightarrow L + 6 (31\%)$	4.2075	0.4497	294.67	ILCT/LLCT	
9.	$\mathrm{H} \rightarrow \mathrm{L} + 6~(37\%)$	4.2262	0.3248	293.37	ILCT/LLCT	
10.	$H - 2 \rightarrow L + 5 (21\%)$ $H \rightarrow L + 7 (14\%)$	4.2686	0.2640	290.46	ILCT/LLCT	

Table S4 Main optical transition at the TD-DFT/B3LYP/6-31G Level for the complex **3a** with composition in terms of molecular orbital contribution of the transition, Computed Vertical excitation energies, and oscillator strength in acetonitrile

	Composition	Е	Oscillator	$\lambda_{ m theo}$	Assignment	$\lambda_{ ext{exp}}$
		(eV)	Strength	(nm)		(nm)
1.	$H - 1 \rightarrow L (\alpha) (30\%)$ $H \rightarrow L + 1 (\beta) (54\%)$	1.9669	0.0629	630.36	ILCT/LLCT	~600
2.	$H - 2 \rightarrow L (\alpha) (36\%)$ $H - 1 \rightarrow L (\beta) (49\%)$	2.0038	0.0711	618.75	ILCT/LLCT	
3.	$H \rightarrow L + 3 (\alpha) (50\%)$ $H - 2 \rightarrow L (\beta) (14\%)$ $H - 6 \rightarrow L (\alpha) (10\%)$	2.4040	0.0219	515.73	ILCT/LLCT/ MLCT	~535
4.	$\begin{split} H &\rightarrow L + 3 (\alpha) (27\%) \\ H &- 5 \rightarrow L (\beta) (24\%) \\ H &- 2 \rightarrow L (\beta) (10\%) \end{split}$	2.4219	0.0102	511.93	LMCT/ILCT/LLCT	
5.	$H - 1 \rightarrow L + 3 (\alpha) (51\%)$	4.0398	0.0943	306.91	LMCT	
6.	H - 2 → L + 3 (α) (38%) H - 1 → L + 4 (β) (22%)	4.0818	0.1003	303.75	LMCT/ILCT/LLCT	
7.	$H \rightarrow L + 9 (\alpha) (18\%)$ $H - 1 \rightarrow L + 4 (\alpha) (10\%)$	4.1503	0.0379	298.73	ILCT/LLCT	
8.	$H - 1 \rightarrow L + 4 (\alpha) (15\%)$ $H \rightarrow L + 9 (\alpha) (11\%)$	4.1694	0.0255	297.37	ILCT/LLCT	292

Fig. S8 Partial molecular orbital diagram related to the absorption of complex 3a with some selected isodensity frontier molecular orbital mainly involved in the electronic transitions.

Fig. S9 Luminescence spectra of ligand 1b in acetonitrile at room temperature.

Fig. S10 Changes in the time-resolved photoluminescence decay of ligand **1b** in acetonitrile at room temperature obtained with 330 nm excitation. The emission at 398 nm was monitored for ligand **1b**.

Fig. S11 Changes in the time-resolved photoluminescence decay of complexes **2a** (top) and **3a**⁺ (bottom) in acetonitrile at room temperature obtained with 330 nm excitation. The emission at 396 and 393 nm was monitored for complexes **2a** and **3a**⁺ respectively.

			Bone	d Lengths (Å) ^a			
	2a				3a ⁺		
	Expt.	S_0	T_1		Expt.	S_0	T_1
Co-N _{oxime}	1.918(2)	1.945	1.940	Co-O _{oxime}	1.891(4)	1.909	1.910
Co-N _{azo}	1.922(2)	1.956	1.954	Co-N _{azo}	1.838(5)	1.877	1.876
Nazo-Nazo	1.285(3)	1.297	1.321	Co-N _{py}	1.943(5)	1.970	1.963
N _{oxime} -O _{oxime}	1.253(3)	1.276	1.288	N _{azo} -N _{azo}	1.272(6)	1.296	1.329
Coxime-Noxime	1.351(3)	1.366	1.376	N _{oxime} -O _{oxime}	1.342(6)	1.336	1.346
				Coxime-Noxime	1.308(8)	1.344	1.368
			Bor	nd Angles (⁰) ^a			
	2a				$3a^+$		
	Expt.	S_0	T_1		Expt.	S_0	T_1
N _{oxime} -Co-N _{azo}	80.08(9)	80.45	80.203	Nazo-Co-Npy	79.7(2)	81.724	81.759
				Nazo-Co-Ooxime	83.0(2)	82.847	82.633
				N _{py} -Co-O _{oxime}	162.6(2)	164.566	164.375

Table S5 Comparison of selected optimized geometrical parameters of 2a and $3a^+$ in the ground and lower lying triplet excited states at B3LYP levels with experimental crystallographic data

^{*a*} average value

	Orbital	MO	Energy		Cor	ntribution	(%)		Main Bond Type
			(EV)	Co	Ру	Azo	NO	Bz	
	190	L+5	-0.95	1	77	2	4	16	π*(L)
	189	L+4	-1.55	55	2	7	31	5	$d_{x2-y2} + \pi^*(L)$
	188	L+3	-1.69	57	8	24	9	2	$d_{z2}(Co) + \pi^*(L)$
	187	L+2	-2.67	1	15	42	41	1	π*(L)
2a	186	L+1	-2.89	3	15	40	42	1	π*(L)
	185	L	-3.02	3	13	41	41	1	π*(L)
	184	Н	-5.52	1	11	14	27	47	π(L)
	183	H-1	-5.57	2	13	14	24	47	π(L)
	182	H-2	-5.73	2	10	12	28	49	π(L)
	181	H-3	-6.05	1	1	8	77	12	π(L)
	180	H–4	-6.54	4	4	10	69	14	π(L)
	179	H–5	-6.61	0	0	0	1	98	π(L)
				HOMO	-LUMO	gap = 2.50	eV		
	0.1.1.1	140	Energy		a		(0))		
	Orbital	мо	(EV)		Cor	itribution	(%)		Main Bond Type
				Co	Ру	Azo	NO	Bz	
	131	L+5	-4.86	0	95	2	2	0	π*(L)
	130	L+4	-4.92	2	90	3	3	2	π*(L)
	129	L+3	-5.22	58	7	22	9	3	$d_{z2}(Co) + \pi^*(L)$
	128	L+2	-5.60	60	15	1	24	1	$d_{x2-y2} + \pi^*(L)$
	127	L+1	-6.82	3	28	41	27	1	π*(L)
$3a^+$	126	L	-6.86	3	28	41	28	1	π*(L)
	125	Н	-8.89	0	5	7	19	68	π(L)
	124	H-1	-8.92	2	5	7	17	69	π(L)
	123	H-2	-9.24	0	0	0	0	99	π(L)
	122	H-3	-9.24	0	0	0	0	99	π(L)
	121	H–4	-10.12	7	11	6	59	17	π(L)
	120	H–5	-10.20	6	18	9	37	31	π(L)
				HOMO	-LUMO	gap = 2.03	eV		

Table S6 Frontier Molecular Orbital Composition (%) in the Ground State for 2a and $3a^+$ in acetonitrile solvent by means of CPCM model

01:01	NO	Energy		Co	ntribution	n (%)		
Orbital	<i>α</i> - MO		Co	Ру	Azo	NO	Phenyl	Main Bond Type
		(EV)						
191	L + 5	-0.82	1	88	1	2	8	π*(L)
190	L + 4	-1.16	24	9	14	12	41	$d_{x-y}^{2}(Co) + \pi^{*}(L)$
189	L + 3	-1.32	50	3	8	28	11	$d_z^2(Co) + \pi^*(L)$
188	L + 2	-1.51	41	8	20	9	23	$d_z^2/d_x^2_{-y}^2(Co) + \pi^*(L)$
187	L + 1	-2.58	2	14	41	43	1	π*(L)
186	L	-2.73	3	15	39	43	0	π*(L)
185	Н	-4.92	4	12	38	43	3	π(L)
184	H – 1	-5.42	1	13	15	24	47	π(L)
183	H-2	-5.50	2	13	14	26	44	π(L)
182	H – 3	-5.97	2	2	6	79	11	π(L)
181	H-4	-6.22	4	18	16	30	33	π(L)
180	H – 5	-6.54	0	0	0	2	97	π(L)
Orbital	β - MO	Energy		Co	ntributior	n (%)		Main Bond Type
Orbital	β - ΜΟ	Energy	Co	Cor Py	ntributior Azo	n (%) NO	Phenyl	Main Bond Type
Orbital	β - ΜΟ	Energy (EV)	Co	Cor Py	ntributior Azo	n (%) NO	Phenyl	Main Bond Type
Orbital	β - MO L + 5	Energy (EV) -1.25	Co 53	Con Py 2	ntribution Azo 8	n (%) NO 31	Phenyl 6	Main Bond Type $d_{x -y}^{2}(Co) + \pi^{*}(L)$
Orbital 189 188	β - MO L + 5 L + 4	Energy (EV) -1.25 -1.42	Co 53 53	Con Py 2 7	Azo 8 22	NO 31 13	Phenyl 6 3	Main Bond Type $d_{x^{-y}}^{2}(Co) + \pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$
Orbital 189 188 187	β - MO L + 5 L + 4 L + 3	Energy (EV) -1.25 -1.42 -1.90	Co 53 53 3	Con Py 2 7 18	ntribution Azo 8 22 31	NO 31 13 42	Phenyl 6 3 6	Main Bond Type $d_{x^{2}-y^{2}}(Co) + \pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$
Orbital 189 188 187 186	β - MO L + 5 L + 4 L + 3 L + 2	Energy (EV) -1.25 -1.42 -1.90 -2.59	Co 53 53 3 3	Con Py 2 7 18 14	Azo 8 22 31 40	NO NO 31 13 42 42	Phenyl 6 3 6 1	Main Bond Type $d_{x^{2}-y^{2}}(Co) + \pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$
Orbital 189 188 187 186 185	β - MO L + 5 L + 4 L + 3 L + 2 L + 1	Energy (EV) -1.25 -1.42 -1.90 -2.59 -2.73	Co 53 53 3 3 3 3	Con Py 2 7 18 14 16	ntribution Azo 8 22 31 40 39	1 (%) NO 31 13 42 42 41	Phenyl 6 3 6 1 1	Main Bond Type $d_{x^{2}-y^{2}}(Co) + \pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$
Orbital 189 188 187 186 185 184	β - MO L + 5 L + 4 L + 3 L + 2 L + 1 L	Energy (EV) -1.25 -1.42 -1.90 -2.59 -2.73 -3.95	Co 53 53 3 3 3 2	Con Py 2 7 18 14 16 21	8 22 31 40 39 27	n (%) NO 31 13 42 42 41 15	Phenyl 6 3 6 1 1 34	Main Bond Type $d_{x -y}^{2}(Co) + \pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$
Orbital 189 188 187 186 185 184 183	$\beta - MO$ L + 5 L + 4 L + 3 L + 2 L + 1 L H	Energy (EV) -1.25 -1.42 -1.90 -2.59 -2.73 -3.95 -5.41	Co 53 53 3 3 3 2 1	Con Py 2 7 18 14 16 21 14	ntribution Azo 8 22 31 40 39 27 15	1 (%) NO 31 13 42 42 41 15 23	Phenyl 6 3 6 1 1 34 47	Main Bond Type $d_{x^{2}-y^{2}}(Co) + \pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$
Orbital 189 188 187 186 185 184 183 182	β - MO L + 5 L + 4 L + 3 L + 2 L + 1 L H H - 1	Energy (EV) -1.25 -1.42 -1.90 -2.59 -2.73 -3.95 -5.41 -5.49	Co 53 53 3 3 3 2 1 2	Con Py 2 7 18 14 16 21 14 14	ntribution Azo 8 22 31 40 39 27 15 13	1 (%) NO 31 13 42 42 41 15 23 26	Phenyl 6 3 6 1 1 34 47 45	Main Bond Type $d_{x^{2}-y^{2}}(Co) + \pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi(L)$ $\pi(L)$
Orbital 189 188 187 186 185 184 183 182 181	β - MO L + 5 L + 4 L + 3 L + 2 L + 1 L H H - 1 H - 2	Energy (EV) -1.25 -1.42 -1.90 -2.59 -2.73 -3.95 -5.41 -5.49 -5.90	Co 53 53 3 3 3 2 1 2 2	Con Py 2 7 18 14 16 21 14 14 14 1	ntribution Azo 8 22 31 40 39 27 15 13 10	1 (%) NO 31 13 42 42 41 15 23 26 76	Phenyl 6 3 6 1 1 34 47 45 11	Main Bond Type $d_{x \to y}^{2}(Co) + \pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$
Orbital 189 188 187 186 185 184 183 182 181 180	β - MO L + 5 L + 4 L + 3 L + 2 L + 1 L H H - 1 H - 2 H - 3	Energy (EV) -1.25 -1.42 -1.90 -2.59 -2.73 -3.95 -5.41 -5.49 -5.90 -6.28	Co 53 3 3 3 2 1 2 2 5	Con Py 2 7 18 14 16 21 14 14 14 1 3	ntribution Azo 8 22 31 40 39 27 15 13 10 7	1 (%) NO 31 13 42 42 41 15 23 26 76 74	Phenyl 6 3 6 1 1 34 47 45 11 11	Main Bond Type $d_{x \to y}^{2}(Co) + \pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$
Orbital 189 188 187 186 185 184 183 182 181 180 179 	β - MO L + 5 L + 4 L + 3 L + 2 L + 1 L H H - 1 H - 2 H - 3 H - 4	Energy (EV) -1.25 -1.42 -1.90 -2.59 -2.73 -3.95 -5.41 -5.49 -5.90 -6.28 -6.54	Co 53 53 3 3 3 2 1 2 2 5 0	Con Py 2 7 18 14 16 21 14 14 14 1 3 0	ntribution Azo 8 22 31 40 39 27 15 13 10 7 0	1 (%) NO 31 13 42 42 41 15 23 26 76 74 0	Phenyl 6 3 6 1 1 34 47 45 11 11 100	Main Bond Type $d_{x^{2}-y}^{2}(Co) + \pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$
Orbital 189 188 187 186 185 184 183 182 181 180 179 178 	β - MO L + 5 L + 4 L + 3 L + 2 L + 1 L H H - 1 H - 2 H - 3 H - 4 H - 5	Energy (EV) -1.25 -1.42 -1.90 -2.59 -2.73 -3.95 -5.41 -5.49 -5.90 -6.28 -6.54 -6.63	Co 53 53 3 3 3 2 1 2 2 5 0 0 0	Py 2 7 18 14 16 21 14 14 1 3 0 0 0	ntribution Azo 8 22 31 40 39 27 15 13 10 7 0 0 0	1 (%) NO 31 13 42 42 41 15 23 26 76 74 0 1	Phenyl 6 3 6 1 1 34 47 45 11 11 100 99	Main Bond Type $d_{x^{2}-y^{2}}(Co) + \pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$

Table S7 Frontier Molecular Orbital Composition (%) in the Excited State for 2a

Orbital	MO	Energy		Cor	tribution ((%)		Main Dand True
Orbital	<i>α</i> - MO		Co	Ру	Azo	NO	Bz	Main Bond Type
		(EV)						
132	L+5	-4.44	1	68	5	3	22	π*(L)
131	L+4	-4.57	1	89	2	4	4	π*(L)
130	L+3	-4.8	10	39	6	11	33	π*(L)
129	L+2	-4.91	50	9	19	9	13	$d_z^2(Co) + \pi^*(L)$
128	L+1	-5.31	62	16	1	20	1	$d_{x -y}^{2}(Co) + \pi^{*}(L)$
127	L	-6.6	3	27	39	30	1	π*(L)
126	Н	-8.42	3	21	39	36	0	π(L)
125	H-1	-8.66	1	6	9	18	66	π(L)
124	H–2	-9.1	0	0	0	0	100	π(L)
123	Н–3	-9.57	2	12	8	23	55	π(L)
122	H–4	-10.01	6	10	5	64	14	π(L)
121	H–5	-10.05	0	0	0	0	99	π(L)
Orbital	β - MO	Energy		Cor	tribution ((%)		Main Bond Type
oronai	po		Co	Ру	Azo	NO	Bz	intain Dono Type
		(EV)						
130	L+5	-4.6	1	90	2	4	3	π*(L)
129	L+4	-4.89	58	7	23	8	4	$d_z^{2}(Co) + \pi^{*}(L)$
128	L+3	-5.35	60	16	1	23	1	$d_{x - y}^{2 - 2}(Co) + \pi^{*}(L)$
127	L+2	-5.85	3	34	28	30	5	π*(L)
126	L+1	-6.59	3	25	38	33	1	π*(L)
125	L	-7.53	2	18	18	18	44	π*(L)
124	Н	-8.64	1	7	10	16	65	π(L)
123	H_1	0.1	0	0	0	0	100	π(L)
	11-1	-9.1	0	0	0	0		(=)
122	H–1 H–2	-9.1 -9.81	6	9	5	63	16	π(L)
122 121	H-2 H-3	-9.1 -9.81 -9.96	6 9	0 9 17	5 8	63 40	16 26	π(L) π(L)
122 121 120	H-1 H-2 H-3 H-4	-9.1 -9.81 -9.96 -9.97	6 9 0	9 17 0	5 8 0	63 40 0	16 26 99	π(L) π(L) π(L)

Table S8 Frontier Molecular Orbital Composition (%) in the Excited State for $3a^+$

Compound	2a	3a ⁺ ClO ₄ ⁻
Formula	$C_{36}H_{27}N_{12}CoO_3$	$C_{24}H_{18}N_8CoClO_6$
Molecular weight	734.63	608.84
Crystal system	Triclinic	Monoclinic
Space group	РĪ	<i>C</i> 2/c
Crystal size mm ³	0.32x0.21x0.16	0.33x0.19x0.13
A [Å]	11.2383(7)	35.6180(12)
<i>B</i> [Å]	11.5516(7)	8.8888(3)
<i>c</i> [Å]	13.2395(8)	17.5969(6)
<i>α</i> [°]	82.504(3)	90.00
β[°]	85.045(3)	111.657(4)
γ[°]	83.943(3)	90.00
<i>V</i> [Å]	1689.95(18)	5177.9(3)
Z	2	8
$\rho_{\rm calc} [{\rm g/cm}^3]$	1.444	1.562
<i>T</i> (K)	296(2)	293(2)
μ [mm ⁻¹]	0.565	0.823
$F(0\ 0\ 0)$	756	2480
θ Range (°)	1.56 - 27.54	2.34 - 25.00
Reflections collected	26943	38325
Independent reflections	7680	4569
R_1^{a} , w R_2^{b} (all data)	0.0805, 0.1908	0.1164, 0.2186
$R_1, wR_2 [I > 2\sigma(I)]$	0.0605, 0.1719	0.0701, 0.1903
GOF	1.005	1.050
CCDC	964213	964214

Table S9 Crystal data and structure refinement parameters for complexes 2a and 3a⁺ClO₄⁻

^{*a*} $R1 = \sum |Fo| - |Fc| / \sum |Fo|$. *b* $wR2 = [\sum w(Fo2 - Fc2)2 / \sum w(Fo2)2]1/2$.

Fig. S12 OPTEP plot of 2a (Hydrogen atoms are omitted for clarity).

Fig. S13 OPTEP plot of $3a^+$ cation (Hydrogen atoms and counter anion have omitted for clarity).

			Energy		Con	tribution	(%)		
Complex	Orbital	МО	(FV)	Co	Pv	A 70	NO	B7	Main Bond Type
				0	I y	1120	110	DZ	
	202	L+5	-0.82	1	75	2	9	14	π*(L)
	201	L+4	-1.45	55	2	7	34	2	$d_{x -y}^{2}(Co) + \pi^{*}(L)$
	200	L+3	-1.57	58	6	25	10	1	$d_z^2(Co) + \pi^*(L)$
	199	L+2	-2.6	1	15	41	42	0	π*(L)
	198	L+1	-2.79	3	14	39	43	0	π*(L)
2b	197	L	-2.99	3	14	39	42	1	π*(L)
	196	Н	-5.37	1	11	13	41	35	π(L)
	195	H-1	-5.41	2	13	14	35	36	π(L)
	194	Н-2	-5.55	2	10	12	36	40	π(L)
	193	Н-3	-5.97	1	1	8	83	6	π(L)
	192	H–4	-6.49	4	5	10	66	16	π(L)
	191	Н–5	-6.56	0	0	0	1	99	π(L)
				HOM	O–LUM	O gap =	2.38 eV		
Complex	Orbital	МО	Energy		Con	tribution	(%)		Main Bond Type
Complex	Orbital	МО	Energy (EV)		Con	tribution	(%)		Main Bond Type
Complex	Orbital	МО	Energy (EV)	Со	Con Py	tribution Azo	(%) NO	Bz	Main Bond Type
Complex	Orbital 139	MO L+5	Energy (EV) -4.7	Co 0	Con Py 95	tribution Azo 2	(%) NO 3	Bz 0	Main Bond Type π*(L)
Complex	Orbital 139 138	MO L+5 L+4	Energy (EV) -4.7 -4.79	Co 0 2	Con Py 95 89	tribution Azo 2 3	(%) NO 3 5	Bz 0 1	Main Bond Type $\pi^*(L)$ $\pi^*(L)$
Complex	Orbital 139 138 137	MO L+5 L+4 L+3	Energy (EV) -4.7 -4.79 -5.16	Co 0 2 59	Con Py 95 89 7	tribution Azo 2 3 22	(%) NO 3 5 10	Bz 0 1 2	Main Bond Type $\pi^*(L)$ $\pi^*(L)$ $d_z^2(Co) + \pi^*(L)$
Complex	Orbital 139 138 137 136	MO L+5 L+4 L+3 L+2	Energy (EV) -4.7 -4.79 -5.16 -5.54	Co 0 2 59 60	Con Py 95 89 7 16	tribution Azo 2 3 22 1	(%) NO 3 5 10 23	Bz 0 1 2 0	Main Bond Type $\pi^{*}(L)$ $\pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $d_{x}^{2} - y^{2}(Co) + \pi^{*}(L)$
Complex	Orbital 139 138 137 136 135	MO L+5 L+4 L+3 L+2 L+1	Energy (EV) -4.7 -4.79 -5.16 -5.54 -6.75	Co 0 2 59 60 3	Con Py 95 89 7 16 26	tribution Azo 2 3 22 1 38	(%) NO 3 5 10 23 32	Bz 0 1 2 0 1	Main Bond Type $\pi^{*}(L)$ $\pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $d_{x^{-y}}^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$
Complex 3b ⁺	Orbital 139 138 137 136 135 134	MO L+5 L+4 L+3 L+2 L+1 L	Energy (EV) -4.7 -4.79 -5.16 -5.54 -6.75 -6.76	Co 0 2 59 60 3 3	Con Py 95 89 7 16 26 27	tribution Azo 2 3 22 1 38 39	(%) NO 3 5 10 23 32 31	Bz 0 1 2 0 1 1	Main Bond Type $\pi^{*}(L)$ $\pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $d_{x^{-y}}^{2^{-2}(Co)} + \pi^{*}(L)$ $\pi^{*}(L)$
Complex 3b ⁺	Orbital 139 138 137 136 135 134 133	MO L+5 L+4 L+3 L+2 L+1 L H	Energy (EV) -4.7 -4.79 -5.16 -5.54 -6.75 -6.76 -8.56	Co 0 2 59 60 3 3 0	Con Py 95 89 7 16 26 27 5	tribution Azo 2 3 22 1 38 39 8	(%) NO 3 5 10 23 32 31 18	Bz 0 1 2 0 1 1 68	Main Bond Type $\pi^{*}(L)$ $\pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $d_{x^{-y^{2}}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi(L)$
Complex 3b ⁺	Orbital 139 138 137 136 135 134 133 132	MO L+5 L+4 L+3 L+2 L+1 L H H H–1	Energy (EV) -4.7 -4.79 -5.16 -5.54 -6.75 -6.76 -8.56 -8.58	Co 0 2 59 60 3 3 0 1	Con Py 95 89 7 16 26 27 5 5	tribution Azo 2 3 22 1 38 39 8 8 8	(%) NO 3 5 10 23 32 31 18 16	Bz 0 1 2 0 1 1 68 69	Main Bond Type $\pi^{*}(L)$ $\pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $d_{x}^{2} -y^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi(L)$ $\pi(L)$
Complex 3b ⁺	Orbital 139 138 137 136 135 134 133 132 131	MO L+5 L+4 L+3 L+2 L+1 L H H-1 H-2	Energy (EV) -4.7 -4.79 -5.16 -5.54 -6.75 -6.76 -8.56 -8.58 -9.15	Co 0 2 59 60 3 3 0 1 0	Con Py 95 89 7 16 26 27 5 5 0	tribution Azo 2 3 22 1 38 39 8 8 8 0	(%) NO 3 5 10 23 32 31 18 16 0	Bz 0 1 2 0 1 1 68 69 100	Main Bond Type $\pi^{*}(L)$ $\pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $d_{x^{-y}}^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$
Complex 3b ⁺	Orbital 139 138 137 136 135 134 133 132 131 130	MO L+5 L+4 L+3 L+2 L+1 L H H-1 H-2 H-3	Energy (EV) -4.7 -4.79 -5.16 -5.54 -6.75 -6.76 -8.56 -8.58 -9.15 -9.15	Co 0 2 59 60 3 3 0 1 0 0	Con Py 95 89 7 16 26 27 5 5 0 0	ttribution Azo 2 3 22 1 38 39 8 8 8 0 0	(%) NO 3 5 10 23 32 31 18 16 0 0	Bz 0 1 2 0 1 1 68 69 100 100	Main Bond Type $\pi^{*}(L)$ $\pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $d_{x^{-y^{2}}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$
Complex 3b ⁺	Orbital 139 138 137 136 135 134 133 132 131 130 129	MO L+5 L+4 L+3 L+2 L+1 L H H-1 H-2 H-3 H-4	Energy (EV) -4.7 -4.79 -5.16 -5.54 -6.75 -6.76 -8.56 -8.58 -9.15 -9.15 -10.01	Co 0 2 59 60 3 3 0 1 0 0 7	Con Py 95 89 7 16 26 27 5 5 0 0 14	tribution Azo 2 3 22 1 38 39 8 8 8 0 0 8 8	 (%) NO 3 5 10 23 32 31 18 16 0 0 58 	Bz 0 1 2 0 1 1 68 69 100 100 14	Main Bond Type $\pi^{*}(L)$ $\pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $d_{x}^{2} - y^{2}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$
Complex 3b ⁺	Orbital 139 138 137 136 135 134 133 132 131 130 129 128	MO L+5 L+4 L+3 L+2 L+1 L H H-1 H-2 H-3 H-4 H-5	Energy (EV) -4.7 -4.79 -5.16 -5.54 -6.75 -6.76 -8.56 -8.58 -9.15 -9.15 -9.15 -10.01 -10.08	Co 0 2 59 60 3 0 1 0 0 7 3	Con Py 95 89 7 16 26 27 5 5 0 0 14 22	tribution Azo 2 3 22 1 38 39 8 8 8 0 0 8 8 10	(%) NO 3 5 10 23 32 31 18 16 0 0 58 41	Bz 0 1 2 0 1 1 68 69 100 100 14 2	Main Bond Type $\pi^{*}(L)$ $\pi^{*}(L)$ $d_{z}^{2}(Co) + \pi^{*}(L)$ $d_{x^{2}-y^{2}}(Co) + \pi^{*}(L)$ $\pi^{*}(L)$ $\pi^{*}(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$ $\pi(L)$

Table S10 Frontier Molecular Orbital Composition (%) in the Ground State for 2b and $3b^+$

Table S11 Main optical transition at the TD-DFT/B3LYP/6-31G Level for the complex **2b** with composition in terms of molecular orbital contribution of the transition, Computed Vertical excitation energies, and oscillator strength in acetonitrile

	Composition	Ε	Oscillator strength	$\lambda_{ m theo}$	Assignment	$\lambda_{ m exp}$
	composition	(eV)	۰۰ي (۴)	(nm)	issignment	(nm)
			0)			
1.	$H - 2 \rightarrow L (22\%)$	2.3292	0.0237	532.29	ILCT/LLCT	541
	$H - 2 \rightarrow L + 2 (16\%)$					
	$H - 1 \rightarrow L + 2 (17\%)$					
	$H \rightarrow L + 2 (28\%)$					
2.	$H - 1 \rightarrow L + 1 (23\%)$	2.3590	0.1074	525.58	ILCT/LLCT	
	$H - 1 \rightarrow L + 2 (46\%)$					
	$H \rightarrow L + 2 (12\%)$					
3.	$\mathrm{H-6} \rightarrow \mathrm{L}(10\%)$	2.4191	0.0498	512.51	ILCT/LLCT	
	$H-4 \rightarrow L (14\%)$					
	$H - 2 \rightarrow L + 2 (24\%)$					
	$H \rightarrow L + 2 (11\%)$					
4	$H_{2} \rightarrow L_{1} 2 (160/)$	2 4707	0.0363	501.81	И СТ/ПСТ	
ч.	$H = 3 \rightarrow L + 2 (10\%)$	2.4707	0.0505	501.01	ILC1/LLC1	
	$H \rightarrow L + 2 (13\%)$					
	$\Pi \rightarrow L + 2(1370)$					
5.	$H - 13 \rightarrow L + 1 (10\%)$	3.2333	0.0413	383.46	ILCT/LLCT	
	$H - 11 \rightarrow L (16\%)$					
	$H - 10 \rightarrow L (15\%)$					
	$H - 8 \rightarrow L + 1 (24\%)$					
6.	$\mathrm{H-10} \rightarrow \mathrm{L+1} \; (27\%)$	3.3245	0.0719	372.94	ILCT/LLCT	
	$\mathrm{H}-9 \rightarrow \mathrm{L}+1~(28\%)$					
_		a (0 5 0	0.0400			
7.	$H - 8 \rightarrow L + 2 (64\%)$	3.4850	0.0429	355.77	ILC1/LLC1	
8	$H_{2} > I + I (220\%)$	3 8095	0 1934	325.46	ІМСТ	321
0.	$\Pi = 3 \rightarrow L + 4 (3270)$	5.0075	0.1954	525.40	Line1	521
9.	$H - 1 \rightarrow L + 5 (18\%)$	4.1442	0.0746	299.18	ILCT/LLCT	
10.	$\mathrm{H}-1 \rightarrow \mathrm{L}+5~(46\%)$	4.1481	0.4411	298.89	ILCT/LLCT	
11.	$\mathrm{H-1} \rightarrow \mathrm{L+5}\;(26\%)$	4.1641	0.1658	297.75	ILCT/LLCT	
12.	$H \rightarrow L + 6 (20\%)$	4.1826	0.3426	296.43	ILCT/LLCT	

Table S12 Main optical transition at the TD-DFT/B3LYP/6-31G Level for the complex $3b^+$ with composition in terms of molecular orbital contribution of the transition, Computed Vertical excitation energies, and oscillator strength in acetonitrile

	Composition	Ε	Oscillator strength	$\lambda_{ ext{theo}}$	Assignment	$\lambda_{ ext{exp}}$
	Composition	(eV)	(f)	(nm)		(nm)
1.	$H - 1 \rightarrow L + 1 (51\%)$ $H \rightarrow L (43\%)$	1.7509	0.0622	708.12	ILCT/LLCT	~650 (sh)
2.	$H - 1 \rightarrow L (52\%)$ $H \rightarrow L+1 (42\%)$	1.7540	0.0532	706.88	ILCT/LLCT	
3.	$H - 5 \rightarrow L (49\%)$ $H - 4 \rightarrow L+1 (37\%)$	2.7789	0.1105	446.17	ILCT/LLCT	~450 (sh)
4.	$H - 6 \rightarrow L (60\%)$ $H - 4 \rightarrow L (16\%)$	2.9289	0.0119	423.31	ILCT/LLCT	
5.	$H - 7 \rightarrow L+3 (10\%)$ $H - 5 \rightarrow L+3 (16\%)$ $H - 4 \rightarrow L+2 (25\%)$ $H - 2 \rightarrow L+2 (11\%)$	3.5609	0.0733	348.18	LMCT	
6.	$\mathrm{H} \rightarrow \mathrm{L}{+4} \; (92\%)$	3.8367	0.1912	323.15	ILCT/LLCT	
7.	H - 13 → L (22%) H - 7 → L+3 (13%) H - 1 → L+6 (17%), H → L+7 (14%)	4.2751	0.7883	290.01	ILCT/LLCT	294

Fig. S14 Isodensity surface plots of some selected frontier molecular orbitals for the complexes 2b at their optimized S_0 geometry in gas phase. Isodensity value 0.05 e Bohr⁻³.

Fig. S15 Isodensity surface plots of some selected frontier molecular orbitals for the complexes $3b^+$ at their optimized S_0 geometry in gas phase. Isodensity value 0.05 e Bohr⁻³.

Table S13 Coordinates of optimized geometry ¹2a

Tag	Symbol	Х	Y	Z
1	Со	0.068585	0.059971	0.044721
2	0	1.255334	1.994877	1.769336
3	0	-2.06858	1.580118	1.172771
4	0	2.265959	0.042261	-1.77173
5	Ν	-0.95972	-0.58601	-3.04347
6	Ν	-0.37173	1.121523	-1.55035
7	Ν	-0.11315	2.386211	-1.41718
8	Ν	0.690962	1.798826	0.642466
9	Ν	1.044079	-2.92329	-0.93549
10	Ν	-0.82596	-1.61893	-0.42808
11	Ν	-2.10192	-1.62672	-0.21081
12	Ν	-1.7442	0.464191	0.639142
13	Ν	-1.09436	-1.12264	2.915213
14	Ν	0.827557	-0.76152	1.632852
15	Ν	2.103808	-0.98599	1.556163
16	Ν	1.878022	-0.25044	-0.59446
17	С	-0.88489	0.736341	-2.82159
18	С	-1.27719	1.68944	-3.78218
19	Н	-1.20634	2.743377	-3.55529
20	С	-1.74945	1.230844	-5.00928
21	Н	-2.06027	1.940227	-5.76874
22	С	-1.82045	-0.14854	-5.25197
23	Н	-2.18134	-0.53645	-6.1974
24	С	-1.41586	-1.0172	-4.23655
25	Н	-1.45088	-2.09341	-4.36575
26	С	0.44235	2.803268	-0.24912
27	С	0.722027	4.236045	-0.06896
28	С	0.522815	5.108484	-1.16359
29	Н	0.180503	4.701087	-2.10618
30	С	0.764717	6.475162	-1.04
31	Н	0.607239	7.125672	-1.89469
32	С	1.209037	7.008362	0.177052
33	Н	1.397221	8.073157	0.272083
34	С	1.408597	6.155221	1.265839
35	Н	1.751707	6.555517	2.214632
36	С	1.172463	4.781652	1.152281
37	Н	1.333781	4.132915	1.99981
38	С	-0.29063	-2.80318	-1.00194
39	С	-1.11216	-3.78371	-1.59006
40	Н	-2.18306	-3.64097	-1.61778
41	С	-0.50265	-4.91724	-2.1232
42	Н	-1.10684	-5.69059	-2.58605
43	С	0.892766	-5.0478	-2.06089
44	Н	1.396134	-5.91624	-2.46957
45	С	1.624541	-4.02367	-1.45652
46	Н	2.704906	-4.06934	-1.37783
47	С	-2.64861	-0.51374	0.345999

48	С	-4.09064	-0.50152	0.63269
49	С	-4.75555	0.614445	1.186814
50	Н	-4.19348	1.505914	1.421486
51	С	-6.13156	0.565506	1.433167
52	Н	-6.62291	1.434985	1.858788
53	С	-6.87203	-0.58281	1.139197
54	Н	-7.93959	-0.61314	1.333549
55	С	-6.22074	-1.69613	0.591454
56	Н	-6.78214	-2.59633	0.360523
57	С	-4.85042	-1.65864	0.340944
58	Н	-4.35029	-2.52266	-0.07749
59	С	0.239379	-0.96039	2.909924
60	С	1.01332	-0.97164	4.084991
61	Н	2.080948	-0.81405	4.027581
62	С	0.358646	-1.17184	5.298581
63	Н	0.924061	-1.17856	6.224348
64	С	-1.03242	-1.34712	5.31342
65	Н	-1.57079	-1.49743	6.241933
66	С	-1.71709	-1.31092	4.096286
67	Н	-2.79344	-1.43173	4.048564
68	С	2.715843	-0.73527	0.373037
69	С	4.145273	-1.04869	0.231994
70	С	4.876351	-0.79342	-0.94865
71	Н	4.378861	-0.34981	-1.79798
72	С	6.236637	-1.11159	-1.01882
73	Н	6.780781	-0.9048	-1.93519
74	С	6.895205	-1.68638	0.071626
75	Н	7.951268	-1.92987	0.009774
76	С	6.177397	-1.94491	1.247034
77	Н	6.675253	-2.39191	2.102038
78	С	4.821919	-1.63224	1.328546
79	Н	4.269895	-1.83627	2.237124

Table S14 Coordinates of optimized geometry ¹2b

Tag	Symbol	Х	Y	Z
1	Со	0.066358	0.057681	0.044656
2	0	1.253961	1.991309	1.771416
3	0	-2.07245	1.576408	1.174779
4	0	2.264118	0.04203	-1.773
5	Ν	-0.96594	-0.58376	-3.04363
6	Ν	-0.37426	1.121321	-1.54895
7	N	-0.11569	2.386351	-1.41388
8	N	0.688768	1.795248	0.644528
9	N	1 040694	-2.92493	-0.94166
10	N	-0.8284	-1 62099	-0 4294
11	N	-2 10473	-1 62909	-0.21119
12	N	-1 74609	0.460968	0.640522
12	N	-1 09418	-1 12598	2 916215
14	N	0.826339	-0.76602	1 6313/8
15	N	2 103102	-0.9905	1 553/1
16	N	1 875084	0.25209	0 59601
17	C I	0.88560	0.738303	-0.39001
17	C C	-0.88303	1 602022	-2.0211
10		-1.27130	2.74659	-5.76505
19	п	-1.19399	2.74038	-5.55591
20	C U	-1./4207	1.250028	-3.01125
21	н	-2.04817	0.14244	-5.//15
22	C U	-1.81948	-0.14244	-5.25427
23	Н	-2.1797	-0.52873	-6.20064
24	C	-1.42122	-1.01273	-4.23781
25	H	-1.46068	-2.08882	-4.36/1
26	C	0.439858	2.80145	-0.24538
27	C	0.720242	4.23229	-0.06205
28	C	0.518148	5.112131	-1.15003
29	Н	0.170118	4.712012	-2.09384
30	C	0.759119	6.476385	-1.02121
31	Н	0.5939	7.12819	-1.87495
32	С	1.210964	7.026869	0.19245
33	С	1.406247	6.152439	1.271027
34	Н	1.747955	6.548921	2.223043
35	С	1.172207	4.779623	1.156424
36	Н	1.3344	4.133064	2.005589
37	С	-0.29422	-2.80415	-1.00552
38	С	-1.1168	-3.78396	-1.59383
39	Н	-2.18771	-3.64091	-1.61926
40	С	-0.50849	-4.91671	-2.12978
41	Н	-1.11371	-5.68924	-2.59277
42	С	0.887066	-5.04769	-2.07026
43	Н	1.389556	-5.91559	-2.48124
44	С	1.619901	-4.02456	-1.46553
45	Н	2.700429	-4.07037	-1.38876
46	С	-2.65079	-0.51703	0.347437
47	С	-4.09144	-0.50406	0.635076

48	С	-4.75789	0.602849	1.201351
49	Н	-4.19819	1.49279	1.447627
50	С	-6.13292	0.550698	1.449151
51	Н	-6.62025	1.417283	1.887528
52	С	-6.89494	-0.58706	1.149119
53	С	-6.22532	-1.69139	0.589049
54	Н	-6.78564	-2.59205	0.351654
55	С	-4.85781	-1.65501	0.335801
56	Н	-4.36306	-2.51885	-0.08975
57	С	0.239896	-0.96553	2.908656
58	С	1.015494	-0.97927	4.082825
59	Н	2.083277	-0.82341	4.023706
60	С	0.362478	-1.17958	5.297189
61	Н	0.929414	-1.18812	6.222059
62	С	-1.02891	-1.35255	5.314212
63	Н	-1.56607	-1.5028	6.24347
64	С	-1.71524	-1.31417	4.098117
65	Н	-2.79189	-1.43313	4.05181
66	С	2.713856	-0.7385	0.370115
67	С	4.142184	-1.05018	0.226488
68	С	4.874897	-0.79777	-0.95168
69	Н	4.37995	-0.35676	-1.80398
70	С	6.234749	-1.11567	-1.02129
71	Н	6.775413	-0.9096	-1.94095
72	С	6.915198	-1.68965	0.061357
73	С	6.178837	-1.94439	1.233926
74	Н	6.675425	-2.39363	2.09008
75	С	4.825558	-1.6338	1.319124
76	Н	4.27816	-1.84175	2.229816
77	С	8.389949	-2.01446	-0.01557
78	С	1.495141	8.50643	0.317362
79	С	-8.38509	-0.62827	1.401849
80	Н	-8.70439	0.201127	2.040966
81	Н	-8.95195	-0.55849	0.46335
82	Н	-8.68443	-1.56425	1.888752
83	Н	2.469454	8.763645	-0.12075
84	Н	0.739262	9.105689	-0.20327
85	Н	1.514136	8.822223	1.365458
86	Н	8.980923	-1.34234	0.621186
87	Н	8.594372	-3.03805	0.321816
88	Н	8.766942	-1.91557	-1.03843

Table S15 Coordinates of optimized geometry ${}^{1}3a^{+}$

Tag	Symbol	Х	Y	Z
1	С	0.955297	2.120553	1.986437
2	Н	1.940684	2.014533	1.551898
3	С	0.717756	2.977487	3.066494
4	Н	1.535143	3.552953	3.481974
5	С	-0.57558	3.068985	3.595611
6	Н	-0.77871	3.723329	4.434955
7	С	-1.60493	2.305564	3.037292
8	Н	-2.61847	2.336354	3.414995
9	С	-1.30756	1.466454	1.961144
10	С	-2.53257	-0.98762	-0.336
11	C	-3.95925	-1.32818	-0.2483
12	C	-4.82563	-0.76988	0.71478
13	Н	-4.4529	-0.05959	1.437609
14	C	-6 17282	-1 14124	0 74287
15	н	-6 82774	-0.70758	1 490867
16	C	-6 67637	-2.06477	-0 17796
17	н	-7 72271	-2 34908	-0 14931
18	C	-5 82075	-2 62449	-1 13667
19	н	-6 20158	-3 3444	-1 85272
20	C II	-4 47636	-2 26418	-1 17533
20	н	-3 81643	-2 70283	-1 91325
21	C II	-0.95517	2.10205	-1 98572
22	н	-0.95917	2.12141	-1.55116
23	II C	0.71758	2.01350	3.06540
24	ч	-0.71738	3 554423	-3.00349
25	II C	-1.55491	3.070102	-5.4807
20	С ц	0.575757	3.724780	-3.39400
21		1.605027	2 20645	-4.4336
20	С ц	2.618540	2.30043	-3.03000
29	П	2.010349	2.357242	-5.41441
50 21	C C	1.507012	1.407018	-1.90078
31 22	C C	2.532509	-0.98778	0.335057
32 22	C	5.9592	-1.52829	0.247942
33	C U	4.4/0340	-2.26429	1.1/4955
34 25	H	5.810434	-2.70295	1.91289
35	C U	5.820734	-2.62459	1.136248
36	Н	6.201604	-3.34449	1.852288
3/	C	6.6/6314	-2.06486	0.1//508
38	Н	7.722648	-2.34919	0.148807
39	C	6.172732	-1.14132	-0.74329
40	H	6.827629	-0.70764	-1.49131
41	C	4.825538	-0.76997	-0.71515
42	Н	4.452788	-0.05966	-1.43795
43	N	-0.03397	1.384378	1.444641
44	N	-1.7595	-1.61551	-1.23857
45	Ν	-1.82714	-0.05414	0.418159
46	Ν	-2.30435	0.668112	1.38334
47	Ν	0.034032	1.384908	-1.44424

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2014

48	Ν	1.759399	-1.6159	1.238039
49	Ν	1.827097	-0.05411	-0.41829
50	Ν	2.304357	0.668424	-1.38324
51	0	-0.46403	-1.29132	-1.2807
52	0	0.463911	-1.29178	1.28015
53	Co	-0.000013	0.046001	-0.000061

Table S16 Coordinates of optimized geometry ${}^{1}3b^{+}$

Tag	Symbol	Х	Y	Z
1	C	0.957325	2.125439	1.975666
2	Н	1.94256	2.014887	1.541888
3	С	0.721377	2.987353	3.051722
4	Н	1.5398	3.562635	3.46537
5	С	-0.57242	3.084055	3.579522
6	Н	-0.77447	3.74242	4.416003
7	С	-1.6031	2.32111	3.023937
8	Н	-2.61677	2.355949	3.400887
9	С	-1.3077	1.476309	1.951137
10	C	-2.53546	-0.98363	-0.33606
11	C	-3.95969	-1.3218	-0.24543
12	C	-4.83546	-0.74208	0.694847
13	H	-4.47157	-0.01129	1.401821
14	C	-6 18123	-1 11322	0.723185
15	н	-6.83871	-0.65546	1 455721
16	C	-6 70173	-2 06402	-0 16855
17	C C	-5 82052	-2 63716	-1 10691
18	н	-6 19525	-3 37391	-1 81073
10	II C	-0.17325	-2 28035	-1.1/1016
20	с ч	3 8188	2.20035	-1.14710
20	II C	-0.95517	2 11522	-1.0750
21	с ч	1 94074	2.00832	1 560/6
22	II C	-1.94074	2.00852	-1.50040
23	с u	-0.71703	2.571078	-3.07494
24 25		-1.55515	3.063307	-3.49199
25	U U	0.370300	3.003307	-3.00207
20	П	1.605020	2 201010	-4.44249
21	U U	2 61092	2.301919	-3.04202
28	H	2.01983	2.333473	-3.41927
29	C C	1.508956	1.40324	-1.90548
30	C	2.532936	-0.98474	0.336542
31	C	3.95/1/2	-1.32368	0.249387
32	C	4.4/886	-2.26348	1.1/1439
33	H	3.821115	-2.70716	1.908541
34 25	C	5.820202	-2.62209	1.13159/
35	H	6.196313	-3.34618	1.847809
36	C	6.698848	-2.0681	0.178765
37	C	6.1/4843	-1.13895	-0.73283
38	H	6.828898	-0.70044	-1.47995
39	C	4.829169	-0.76589	-0.707
40	Н	4.462637	-0.05218	-1.42989
41	Ν	-0.03348	1.389378	1.436282
42	N	-1.76265	-1.61701	-1.23695
43	Ν	-1.82785	-0.04895	0.413403
44	Ν	-2.30553	0.678882	1.375961
45	Ν	0.034441	1.380795	-1.45063
46	Ν	1.759253	-1.61158	1.24118
47	Ν	1.82654	-0.05406	-0.41907

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2014

48	Ν	2.305498	0.667546	-1.3856
49	0	-0.46667	-1.29535	-1.27924
50	0	0.463659	-1.28791	1.281384
51	Co	-0.00059	0.046421	-0.0032
52	С	-8.15199	-2.47887	-0.11602
53	С	8.153726	-2.46879	0.146759
54	Н	-8.26043	-3.46697	0.350606
55	Н	-8.75175	-1.7726	0.465293
56	Н	-8.5849	-2.54869	-1.12004
57	Н	8.655091	-2.21844	1.090001
58	Н	8.26343	-3.55067	0.003265
59	Н	8.69132	-1.96667	-0.66238

Table S17 Coordinates of optimized geometry ²3a

Tag	Symbol	Х	Y	Z
1	C	-1.0335	2.002268	-1.9708
2	Н	-2.00924	1.835795	-1.53284
3	С	-0.8452	2.880342	-3.03416
4	Н	-1.68888	3.422385	-3.44202
5	С	0.451946	3.043674	-3.55889
6	Н	0.620972	3.717048	-4.39184
7	C	1.513389	2.33626	-3.01123
8	Н	2.523438	2.421539	-3.39023
9	C	1 273456	1 462492	-1 93193
10	C	2 546681	-0.98597	0 31557
11	C	3 987544	-1 28377	0.210438
12	C	4 826246	-0 6844	-0 75114
12	н	4 412421	0.029404	-1 44852
14	C II	6 185222	-1 0129	-0.80257
15	н	6.816176	-0.54403	-0.86237
16	II C	6 731/38	1 03/3	0.005005
17	ч	7 786725	-1.9345	0.095095
19	II C	5.003534	2.10474	1.053622
10	с u	5.905554 6.314805	2 2530	1.053022
20		0.314003	-5.2557	1.75470
20	U U	4.540551	-2.2104	1.113104
21	П	1.024027	-2.06249	1.049037
22	U U	1.054927	1.989955	1.980033
25	П	2.010112	2.861620	1.340803
24 25	U U	0.84075	2.801039	3.050007
25	H	1.090770	3.40088	3.40092
26	U U	-0.44931	3.022017	3.5/6324
27	H	-0.61/96	3.690216	4.41346
28	C	-1.51158	2.317/65	3.024267
29	H	-2.52154	2.400839	3.403958
30	C	-1.27099	1.451837	1.940235
31	C	-2.54802	-0.98315	-0.31985
32	C	-3.98866	-1.28147	-0.21728
33	C	-4.54929	-2.20796	-1.12637
34	H	-3.90722	-2.66926	-1.86622
35	С	-5.90454	-2.52629	-1.06932
36	Н	-6.31572	-3.2408	-1.77543
37	С	-6.73259	-1.93239	-0.107
38	Н	-7.7879	-2.18296	-0.06371
39	C	-6.18654	-1.01709	0.796987
40	Н	-6.81763	-0.55316	1.548732
41	С	-4.82755	-0.68843	0.748111
42	Н	-4.41429	0.020657	1.450576
43	Ν	-0.00642	1.315105	-1.4268
44	Ν	1.825575	-1.63379	1.250857
45	Ν	1.822164	-0.08015	-0.42604
46	Ν	2.294552	0.726057	-1.37149
47	Ν	0.007433	1.306925	1.433669

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2014

48	Ν	-1.82558	-1.62575	-1.25868
49	Ν	-1.82272	-0.0817	0.426326
50	Ν	-2.29379	0.71715	1.374939
51	0	0.4996	-1.3564	1.284568
52	0	-0.50247	-1.35077	-1.29156
53	Co	0.000113	-0.02879	0.0000831